Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells

J. S. Ticianelli A , I. P. Emanuelli A , R. A. Satrapa A , A. C. S. Castilho A , B. Loureiro A , M. J. Sudano B , P. K. Fontes A , R. F. P. Pinto A , E. M. Razza A , R. S. Surjus C , R. Sartori C , M. E. O. A. Assumpção D , J. A. Visintin D , C. M. Barros A and F. F. Paula-Lopes A E F
+ Author Affiliations
- Author Affiliations

A Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, Brazil.

B Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Prof. Dr. Walter Mauricio Correra Street, 18618-970 Botucatu, Brazil.

C Department of Animal Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Pádua Dias Avenue 11, 13418-900 Piracicaba, Brazil.

D Department of Animal Reproduction, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Orlando Marques de Paiva Street, 87, 05508-270 São Paulo, Brazil.

E Institute of Environmental Sciences, Chemistry and Pharmacology, Federal University of São Paulo (UNIFESP), Prof. Artur Riedel Street 275, 09913-030 Diadema, Brazil.

F Corresponding author. Email: paula.lopes29@unifesp.br

Reproduction, Fertility and Development 29(9) 1787-1802 https://doi.org/10.1071/RD16154
Submitted: 15 April 2016  Accepted: 20 September 2016   Published: 2 November 2016

Abstract

The present study determined the transcriptome profile in Nelore and Holstein oocytes subjected to heat shock during IVM and the mRNA abundance of selected candidate genes in Nelore and Holstein heat-shocked oocytes and cumulus cells (CC). Holstein and Nelore cows were subjected to in vivo follicle aspiration. Cumulus–oocyte complexes were assigned to control (38.5°C, 22 h) or heat shock (41°C for 12 h, followed by 38.5°C for 10 h) treatment during IVM. Denuded oocytes were subjected to bovine microarray analysis. Transcriptome analysis demonstrated 127, nine and six genes were differentially expressed between breed, temperature and the breed × temperature interaction respectively. Selected differentially expressed genes were evaluated by real-time polymerase chain reaction in oocytes and respective CC. The molecular motor kinesin family member 3A (KIF3A) was upregulated in Holstein oocytes, whereas the pro-apoptotic gene death-associated protein (DAP) and the membrane trafficking gene DENN/MADD domain containing 3 (DENND3) were downregulated in Holstein oocytes. Nelore CC showed increased transcript abundance for tight junction claudin 11 (CLDN11), whereas Holstein CC showed increased transcript abundance for antioxidant metallothionein 1E (MT1E) . Moreover, heat shock downregulated antioxidant MT1E mRNA expression in CC. In conclusion, oocyte transcriptome analysis indicated a strong difference between breeds involving organisation and cell death. In CC, both breed and temperature affected mRNA abundance, involving cellular organisation and oxidative stress.

Additional keywords: Bos taurus indicus, Bos taurus taurus, mRNA, microarray, real-time polymerase chain reaction.


References

Akasaka, H., Sato, F., Morohashi, S., Wu, Y., Liu, Y., Kondo, J., Odagiri, H., Hakamada, K., and Kijima, H. (2010). Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells. BMC Cancer 10, .
Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSltLzP&md5=7b1135725ac0d21b6f075cc9b99504c9CAS | 20937153PubMed |

Al-Katanani, Y. M., Webb, D. W., and Hansen, P. L. (1999). Factors affecting seasonal variation in 90 day non-return rate to first service in lactating Holstein cows in a hot climate. J. Dairy Sci. 82, 2611–2616.
Factors affecting seasonal variation in 90 day non-return rate to first service in lactating Holstein cows in a hot climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Kq&md5=e1b31f1a64bd480aed2dac795243fa2cCAS | 10629807PubMed |

Al-Katanani, Y. M., Paula-Lopes, F. F., and Hansen, P. J. (2002). Effect of season and exposure to heat stress on oocyte competence in Holstein cows. J. Dairy Sci. 85, 390–396.
Effect of season and exposure to heat stress on oocyte competence in Holstein cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitV2rsb0%3D&md5=96d84db1ba76d14fda218a08bff686ecCAS | 11913699PubMed |

Armstrong, D. V. (1994). Symposium: nutrition and heat stress. Heat stress interaction with shade and cooling. J. Dairy Sci. 77, 2044–2050.
Symposium: nutrition and heat stress. Heat stress interaction with shade and cooling.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FhsFWksA%3D%3D&md5=e24100ea8712a7d575b98f54d35b125eCAS | 7929964PubMed |

Asano, Y. (2012). Age-related accumulation of non-heme ferric and ferrous iron in mouse ovarian stroma visualized by sensitive non-heme iron histochemistry. J. Histochem. Cytochem. 60, 229–242.
Age-related accumulation of non-heme ferric and ferrous iron in mouse ovarian stroma visualized by sensitive non-heme iron histochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Ojur0%3D&md5=f7d7e15fc9dbc74ef1cc8ed802f67282CAS | 22108647PubMed |

Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalek, J., and Kizek, R. (2012). Mammalian metallothioneins: properties and functions. Metallomics 4, 739–750.
Mammalian metallothioneins: properties and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFansr3I&md5=d10288c57901d5270169b44f41ecce72CAS | 22791193PubMed |

Berman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., and Graber, Y. (1985). Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical environment. J. Dairy Sci. 68, 1488–1495.
Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical environment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3mt1Wqug%3D%3D&md5=bc926c643efbbaa5c0f5807a5b80fd0fCAS | 4019887PubMed |

Blazejczyk, M., Miron, M., and Nadon, R. (2007). FlexArray: a statistical data analysis software for gene expression microarrays. (Genome Quebec: Montreal.) Available at http://genomequebec.mcgill.ca/FlexArray [verified 22 October 2012].

Brevini Gandolfi, T. A. L., and Gandolfi, F. (2001). The maternal legacy to the embryo: cytoplasmic components and their effects on early development. Theriogenology 55, 1255–1276.
The maternal legacy to the embryo: cytoplasmic components and their effects on early development.Crossref | GoogleScholarGoogle Scholar |

Burch, M. G., Li, C., Albrecht, E. D., and Pepe, G. J. (2009). Developmental regulation of the expression of the transferrin receptor and Ki67 in oocytes of the baboon fetal ovary by estrogen. Endocrine 35, 177–183.
Developmental regulation of the expression of the transferrin receptor and Ki67 in oocytes of the baboon fetal ovary by estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVCqt7o%3D&md5=2a381b4c368a4366460db96995799fe0CAS | 19156547PubMed |

Camargo, L. S. A., Viana, J. H. M., Ramos, A. A., Serapião, R. V., de Sá, W. F., Ferreira, A. M., Guimarães, M. F. M., and do Vale Filho, V. R. (2007). Developmental competence and expression of the Hsp70.1 gene in oocytes obtained from Bos indicus and Bos taurus dairy cows in a tropical environment. Theriogenology 68, 626–632.
Developmental competence and expression of the Hsp70.1 gene in oocytes obtained from Bos indicus and Bos taurus dairy cows in a tropical environment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svktFCjtw%3D%3D&md5=bc34c77eb83594682d513be60d4e3387CAS |

Cetica, P. D., Pintos, L. N., Dalvit, G. C., and Beconi, M. T. (2001). Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBM Life 51, 57–64.
Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlSmsL8%3D&md5=ad5d873df01085385b4d821f23e62e66CAS | 11419698PubMed |

Chian, R. C., and Sirard, M. A. (1995). Effects of cumulus cells and follicle-stimulating hormone during in vitro maturation on parthenogenetic activation of bovine oocytes. Mol. Reprod. Dev. 42, 425–431.
Effects of cumulus cells and follicle-stimulating hormone during in vitro maturation on parthenogenetic activation of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVGisLY%3D&md5=191a26e63298f09892e502fb352ad1d9CAS | 8607971PubMed |

Chung, M. J., Hogstrand, C., and Lee, S. J. (2006). Cytotoxicity of nitric oxide is alleviated by zinc-mediated expression of antioxidant genes. Exp. Biol. Med. (Maywood) 231, 1555–1563.
| 1:CAS:528:DC%2BD28XhtVylt7%2FE&md5=51c22babbf051318c91eea5919adfa3aCAS | 17018880PubMed |

Curtis, S. E. (1981). ‘Environmental Management in Animal Agriculture.’ (Animal Environment Services: Iowa.)

Decker, C. J., and Parker, R. (1994). Mechanisms of mRNA degradation in eukaryotes. Trends Biochem. Sci. 19, 336–340.
Mechanisms of mRNA degradation in eukaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslyjtg%3D%3D&md5=a49500391e46ed67ded20e480b177558CAS | 7940679PubMed |

Dias, F. C. F., Khan, M. I. R., Sirard, M. A., Adams, G. P., and Singh, J. (2013). Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle. Reproduction 146, 181–191.
Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSnsb%2FM&md5=d5a8d918b5bac09e3f9a7cc52dbc388fCAS |

Ealy, A. D., Drost, M., and Hansen, P. J. (1993). Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J. Dairy Sci. 76, 2899–2905.
Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FksVSmtQ%3D%3D&md5=b92422268cb155e8d58c81c4c6381e91CAS | 8227617PubMed |

Edwards, J. L., and Hansen, P. J. (1996). Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol. Reprod. 55, 341–346.
Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28vis1Gmuw%3D%3D&md5=5068167b629c6b69a793027223bada97CAS | 8828838PubMed |

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004). Affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315.
Affy – analysis of Affymetrix GeneChip data at the probe level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Kksr4%3D&md5=11c39e181286ae8b9580ae08f9e90677CAS | 14960456PubMed |

Gendelman, M., and Roth, Z. (2012). In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression. Anim. Reprod. Sci. 134, 125–134.
In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rurjM&md5=947f88b293315e6f33a656fe1049d0b6CAS | 22898494PubMed |

Grado-Ahuir, J. A., Aad, P. Y., and Spicer, L. J. (2011). New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. J. Anim. Sci. 89, 1769–1786.
New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWkt7w%3D&md5=9bac19681b4f98b0c0fb815202bcdcf9CAS | 21239663PubMed |

Gurel, V., Sens, D. A., Somji, S., Garrett, S. H., Weiland, T., and Sens, M. A. (2005). Post-transcriptional regulation of metallothionein isoform 1 and 2 expression in the human breast and the MCF-10A cell line. Toxicol. Sci. 85, 906–915.
Post-transcriptional regulation of metallothionein isoform 1 and 2 expression in the human breast and the MCF-10A cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVSjtLw%3D&md5=a3a702b05365919911546c191dc2f860CAS | 15788722PubMed |

Haghighat, N., and Van Winkle, L. J. (1990). Developmental change in follicular cell enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J. Exp. Zool. 253, 71–82.
Developmental change in follicular cell enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtFKgs7k%3D&md5=1ccb2b87dca509a9d4d777d50f013474CAS | 2313243PubMed |

Hansen, P. J. (2004). Physiological and cellular adaptations of Zebu cattle to thermal stress. Anim. Reprod. Sci. 82-83, 349–360.
Physiological and cellular adaptations of Zebu cattle to thermal stress.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czmslyjtA%3D%3D&md5=c4464afb7fb60b73214576c2014737b4CAS | 15271465PubMed |

Haouzi, D., Assou, S., Monzo, C., Vincens, C., Dechaud, H., and Hamamah, S. (2012). Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome. Hum. Reprod. 27, 3523–3530.
Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrsLjL&md5=fb6153644fac2270b031ea8b4e6cf9ffCAS | 22951915PubMed |

Haraguchi, K., Hayashi, T., Jimbo, T., Yamamoto, T., and Akiyama, T. (2006). Role of the kinesin-2 family protein, KIF3, during mitosis. J. Biol. Chem. 281, 4094–4099.
Role of the kinesin-2 family protein, KIF3, during mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlKktL4%3D&md5=4f665b7205d12359bb3c13b7ecc6b3f7CAS | 16298999PubMed |

Hatzirodos, N., Hummitzsch, K., Irving-Rodgers, H. F., Harland, M. L., Morris, S. E., and Rodgers, R. J. (2014). Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics 15, 40.
Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia.Crossref | GoogleScholarGoogle Scholar | 24438529PubMed |

Kelly, C. F., and Bond, T. E. (1971). Bioclimatic factors and their measurements. In ‘National Academy of Sciences, A guide to environmental research on animals’. pp. 71–92. (National Academy of Sciences: Washington.)

Leibfried, L., and First, N. L. (1979). Characterization of bovine follicular oocytes and their ability to mature in vitro. J. Anim. Sci. 48, 76–86.
Characterization of bovine follicular oocytes and their ability to mature in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2Fgs1arsA%3D%3D&md5=ea286850347ebc093e0a8260b56b4923CAS | 573253PubMed |

Malayer, J. R., Hansen, P. J., and Buhi, W. C. (1988). Effect of day of the oestrous cycle, side of the reproductive tract and heat shock on in vitro protein secretion by bovine endometrium. J. Reprod. Fertil. 84, 567–578.
Effect of day of the oestrous cycle, side of the reproductive tract and heat shock on in vitro protein secretion by bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltler&md5=3c739c33192f89f1c86aaf99bce684f2CAS | 3199376PubMed |

Matsui, T., and Fukuda, M. (2011). Small GTPase Rab12 regulates transferrin receptor degradation. Cell. Logist. 1, 155–158.
Small GTPase Rab12 regulates transferrin receptor degradation.Crossref | GoogleScholarGoogle Scholar | 22279614PubMed |

Matsui, T., Itoh, T., and Fukuda, M. (2011). Small GTPase Rab12 regulates constitutive degradation of transferrin receptor. Traffic 12, 1432–1443.
Small GTPase Rab12 regulates constitutive degradation of transferrin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cgs7bF&md5=4c35a30385f7639529e3aa6ab11041d9CAS | 21718402PubMed |

Maya-Soriano, M. J., López-Gatius, F., Andreu-Vázquez, C., and López-Béjar, M. (2013). Bovine oocytes show a higher tolerance to heat shock in the warm compared with the cold season of the year. Theriogenology 79, 299–305.
Bovine oocytes show a higher tolerance to heat shock in the warm compared with the cold season of the year.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmu7zM&md5=074c9338c5113fbabedb4a01e34bd660CAS | 23174769PubMed |

Monzo, C., Haouzi, D., Roman, K., Assou, S., Dechaud, H., and Hamamah, S. (2012). Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum. Reprod. 27, 2160–2168.
Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGisb4%3D&md5=38c2901d7afcd7bb09401938819b6f66CAS | 22587994PubMed |

Nabenishi, H., Takagi, S., Kamata, H., Nishimoto, T., Morita, T., Ashizawa, K., and Tsuzuki, Y. (2012). The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporine A. Mol. Reprod. Dev. 79, 31–40.
The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporine A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeit7vJ&md5=173a7c89b203ef621026d6c69599d399CAS | 22128015PubMed |

Paula-Lopes, F. F., and Hansen, P. J. (2002). Apoptosis is an adaptive response in bovine preimplantation embryos that facilitates survival after heat shock. Biochem. Biophys. Res. Commun. 295, 37–42.
Apoptosis is an adaptive response in bovine preimplantation embryos that facilitates survival after heat shock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xksl2nu7c%3D&md5=55dcf1e5bce31a0a15f0409454d73f68CAS | 12083763PubMed |

Paula-Lopes, F. F., Chase, C. C., Al-Katanani, Y. M., Krininger, C. E., Rivera, R. M., Tekin, S., Majewski, A. C., Ocon, O. M., Olson, T. A., and Hansen, P. J. (2003). Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction 125, 285–294.
Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVKlt7c%3D&md5=185cba6486004728b2cd87928fcc407fCAS | 12578542PubMed |

Paula-Lopes, F. F., Lima, R. S., Satrapa, R. A., and Barros, C. M. (2013). Physiology and endocrinology symposium: influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature. J. Anim. Sci. 91, 1143–1153.
Physiology and endocrinology symposium: influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFKntLo%3D&md5=9d7f459e8e4fc411e437fd2dda1c5445CAS | 23296831PubMed |

Payton, R. R., Rispoli, L. A., Saxton, A. M., and Edwards, J. L. (2011). Impact of heat stress exposure during meiotic maturation on oocyte, surrounding cumulus cell, and embryo RNA populations. J. Reprod. Dev. 57, 481–491.
Impact of heat stress exposure during meiotic maturation on oocyte, surrounding cumulus cell, and embryo RNA populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GksLnP&md5=af2b95dadd4de54c87aef39a3c628fafCAS | 21478651PubMed |

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=51f6629ba1b312b1408f7eddf9237334CAS | 11328886PubMed |

Ramakers, C., Ruijter, J. M., Deprez, R. H. L., and Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.
Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Kks70%3D&md5=b0465bfb122d6cd96afdfbdf998ea00dCAS | 12618301PubMed |

Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., Weber, W. J., Crooker, B. A., and Baumgard, L. H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism, and aspects of circulating somatropin. J. Dairy Sci. 92, 1986–1997.
Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism, and aspects of circulating somatropin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFynu7k%3D&md5=eb10aaf9709a85bf4d1894d374eec0c9CAS | 19389956PubMed |

Rispoli, L. A., Payton, R. R., Gondro, C., Saxton, A. M., Nagle, K. A., Jenkins, B. W., Schrick, F. N., and Edwards, J. L. (2013). Heat stress effects on the cumulus cell surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production. Reproduction 146, 193–207.
Heat stress effects on the cumulus cell surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSnsb%2FN&md5=9a3f3c4495316e50f3db22284ac3fd48CAS | 23744615PubMed |

Rocha, A., Randel, R. D., Broussard, J. R., Lim, J. M., Blair, R. M., Roussel, J. D., Godke, R. A., and Hansel, W. (1998). High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows. Theriogenology 49, 657–665.
High environmental temperature and humidity decrease oocyte quality in Bos taurus but not in Bos indicus cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ps1GqsQ%3D%3D&md5=a5ceaf10458aa6bc9caa2689c20eb75eCAS | 10732044PubMed |

Roman-Ponce, H., Thatcher, W. W., Canton, D., Barron, D. H., and Wolcox, C. J. (1978). Thermal stress effects on uterine blood flow in dairy cows. J. Anim. Sci. 46, 175–180.
Thermal stress effects on uterine blood flow in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFyltrg%3D&md5=f456566395afe500a97734cd73007b93CAS | 565348PubMed |

Roth, Z., and Hansen, P. J. (2004). Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol. Reprod. 71, 1898–1906.
Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsrzL&md5=f6fb145a55e76c729cb4276b08755f59CAS | 15306551PubMed |

Roth, Z., and Hansen, P. J. (2005). Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction 129, 235–244.
Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yrsrg%3D&md5=d30cc4b67c963dc59f4d453be9711243CAS | 15695618PubMed |

Roth, Z., Meidan, R., Braw-tal, R., and Wolfenson, D. (2000). Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J. Reprod. Fertil. 120, 83–90.
| 1:CAS:528:DC%2BD3cXntlCiurs%3D&md5=78c083f728088663e780760b56c7da70CAS | 11006149PubMed |

Sartori, R., Haughian, J. M., Shaver, R. D., Rosa, G. J., and Wiltbank, M. C. (2004). Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows. J. Dairy Sci. 87, 905–920.
Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyru78%3D&md5=8e7837058ae4cca6ca87185a028ed45cCAS | 15259225PubMed |

Schwartz, S. L., Cao, C., Pylypenco, O., Rak, A., and Wandinger-Ness, A. (2007). RabGTPases at a glance. J. Cell Sci. 120, 3905–3910.
RabGTPases at a glance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOru7%2FO&md5=73045971e69d0b900b616ec4713911e5CAS | 17989088PubMed |

Shimizu, K., Shirataki, H., Honda, T., Minami, S., and Takai, Y. (1998). Complex formation of SMAP/KAP3, a KIF3A/B ATPase motor-associated protein, with a human chromosome-associated polypeptide. J. Biol. Chem. 273, 6591–6594.
| 1:CAS:528:DyaK1cXitVCrur8%3D&md5=902d23399e622589440074288a0ee570CAS | 9506951PubMed |

Silva, C. F., Sartorelli, E. S., Castilho, A. C. S., Satrapa, R. A., Puelker, R. Z., Razza, E. M., Ticianelli, J. S., Eduardo, H. P., Loureiro, B., and Barros, C. M. (2013). Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology 79, 351–357.
Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Kqs7zE&md5=f8e243fe16fce3da93ee911a6b2b6e12CAS | 23154141PubMed |

Smyth, G. (2005). Limma: linear models for microarray data. In ‘Bioinformatics and Computational Biology Solutions Using R and Bioconductor. (Eds V. C. R. Gentleman, S. Dudoit, R. Irizarry and W. Huber.) pp. 397–420. (Springer: New York.)

Sudano, M. J., Caixeta, E. S., Paschoal, D. M., Martins, A., Machado, R., Buratini, J., and Landim-Alvarenga, F. D. (2013). Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reprod. Fertil. Dev. 26, 112–114.
Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts.Crossref | GoogleScholarGoogle Scholar |

Tachiyama, R., Ishikawal, D., Matsumoto, M., Nakayama, K. I., Yoshimori, T., Yokota, S., Himeno, M., Tanaka, Y., and Fujita, H. (2011). Proteome of ubiquitin QMVB pathway: possible involvement of iron-induced ubiquitylation of transferrin receptor in lysosomal degradation. Genes Cells 16, 448–466.
Proteome of ubiquitin QMVB pathway: possible involvement of iron-induced ubiquitylation of transferrin receptor in lysosomal degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOltrs%3D&md5=251674d682fd4f6734ef04dfa747c739CAS | 21392187PubMed |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=d0056bd0d7d47cdad680c3a3a6e1de0bCAS | 11835587PubMed |

Tatemoto, H., Sakurai, N., and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu78%3D&md5=413ad20b887c556911f17655d878715dCAS | 10952924PubMed |

Trounson, A., Anderiesz, C., and Jones, G. (2001). Maturation of human oocytes in vitro and their developmental competence. Reproduction 121, 51–75.
Maturation of human oocytes in vitro and their developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslakuw%3D%3D&md5=cdb1e3afaa450b92d7ee1f3bffce5729CAS | 11226029PubMed |

Udvardi, M. K., Czechowski, T., and Scheible, W. R. (2008). Eleven golden rules of quantitative RT-PCR. Plant Cell 20, 1736–1737.
Eleven golden rules of quantitative RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyrsbnF&md5=63b0be537fdc24a5b4996153707eb7b0CAS | 18664613PubMed |

Vasconcelos, M. H., Tam, S. C., Hesketh, J. E., Reid, M., and Beattie, J. H. (2002). Metal- and tissue-dependent relationship between metallothionein mRNA and protein. Toxicol. Appl. Pharmacol. 182, 91–97.
Metal- and tissue-dependent relationship between metallothionein mRNA and protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFWqtr8%3D&md5=d40c8e5452edc9cbe08b7c0168fd0cf6CAS | 12140172PubMed |

Wolfenson, D., Thatcher, W. W., Badinga, L., Savio, J. D., Meidan, R., Lew, B. J., Braw-Tal, R., and Berman, A. (1995). Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 52, 1106–1113.
Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCjs74%3D&md5=d60cac321c03335b15bd0812a9785e4eCAS | 7626710PubMed |

Wu, C., Rui, R., Dai, J., Zhang, C., Ju, S., Xie, B., Lu, X., and Zheng, X. (2006). Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol. Reprod. Dev. 73, 1454–1462.
Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksb%2FJ&md5=109232c5ec7e959c4ed6a40ff835c282CAS | 16894553PubMed |

Yoshimura, S., Gerondopoulos, A., Linford, A., Rigden, D. J., and Barr, F. A. (2010). Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191, 367–381.
Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nt7bP&md5=74e2780fcbae1887bb003ed2d7147335CAS | 20937701PubMed |