Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW (Open Access)

Epigenetics and developmental programming of welfare and production traits in farm animals

K. D. Sinclair A F , K. M. D. Rutherford B , J. M. Wallace C , J. M. Brameld A , R. Stöger A , R. Alberio A , D. Sweetman A , D. S. Gardner A , V. E. A. Perry A , C. L. Adam C , C. J. Ashworth D , J. E. Robinson E and C. M. Dwyer B
+ Author Affiliations
- Author Affiliations

A Schools of Biosciences and Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.

B Animal Behaviour and Welfare team, SRUC, West Mains Road, Edinburgh EH9 3JG, UK.

C Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.

D The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.

E College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.

F Corresponding author. Email: kevin.sinclair@nottingham.ac.uk

Reproduction, Fertility and Development 28(10) 1443-1478 https://doi.org/10.1071/RD16102
Submitted: 2 March 2016  Accepted: 6 June 2016   Published: 21 July 2016

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the ‘developmental origins of health and disease’ or ‘DOHaD’ hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.

Additional keywords: behaviour, fertility, fetal programming, lactation, livestock, nutrition, stress.


References

Abecia, L., Martin-Garcia, A. I., Martinez, G., Newbold, C. J., and Yanez-Ruiz, D. R. (2013). Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning. J. Anim. Sci. 91, 4832–4840.
Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SqtLvE&md5=87a6d573047c3fcd53055d802abdaf6bCAS | 23965388PubMed |

Adam, C. L., Findlay, P. A., Chanet, A., Aitken, R. P., Milne, J. S., and Wallace, J. M. (2008). Expression of energy balance regulatory genes in the developing ovine fetal hypothalamus at midgestation and the influence of hyperglycemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1895–R1900.
Expression of energy balance regulatory genes in the developing ovine fetal hypothalamus at midgestation and the influence of hyperglycemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVarsrg%3D&md5=269eaf1ce40985f77331e11deba66592CAS | 18417651PubMed |

Adam, C. L., Bake, T., Findlay, P. A., Milne, J. S., Aitken, R. P., and Wallace, J. M. (2011a). Effects of altered glucose supply and adiposity on expression of hypothalamic energy balance regulatory genes in late gestation growth restricted ovine fetuses. Int. J. Dev. Neurosci. 29, 775–781.
Effects of altered glucose supply and adiposity on expression of hypothalamic energy balance regulatory genes in late gestation growth restricted ovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12jur3I&md5=f88f2228e1d67b975ebd075fc924987bCAS | 21616134PubMed |

Adam, C. L., Findlay, P. A., Aitken, R. P., Milne, J. S., and Wallace, J. M. (2011b). Influence of birth weight, sex, age and adiposity on central leptin and insulin sensitivity in young growing sheep, as indicated by changes in voluntary food intake. Proc. Nutr. Soc. 70, E382.
Influence of birth weight, sex, age and adiposity on central leptin and insulin sensitivity in young growing sheep, as indicated by changes in voluntary food intake.Crossref | GoogleScholarGoogle Scholar |

Adam, C. L., Bake, T., Findlay, P. A., Milne, J. S., Aitken, R. P., and Wallace, J. M. (2013). Impact of birth weight and gender on early postnatal hypothalamic energy balance regulatory gene expression in the young lamb. Int. J. Dev. Neurosci. 31, 608–615.
Impact of birth weight and gender on early postnatal hypothalamic energy balance regulatory gene expression in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKqs7fK&md5=46d2bcf4cf31a977187d22ac609bf375CAS | 23932904PubMed |

Adam, C. L., Williams, P. A., Milne, J. S., Aitken, R. P., and Wallace, J. M. (2015). Orexigenic gene expression in late gestation ovine fetal hypothalamus is sensitive to maternal undernutrition and realimentation. J. Neuroendocrinol. 27, 765–771.
Orexigenic gene expression in late gestation ovine fetal hypothalamus is sensitive to maternal undernutrition and realimentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWrtbbI&md5=cdc5e6411dbe02faa98c44fb0d44ef9eCAS | 26212239PubMed |

Aiken, C. E., and Ozanne, S. E. (2014). Transgenerational developmental programming. Hum. Reprod. Update 20, 63–75.
Transgenerational developmental programming.Crossref | GoogleScholarGoogle Scholar | 24082037PubMed |

Aitken, R. P., Milne, J. S., and Wallace, J. M. (2003). The impact of prenatal growth restriction on the onset of puberty, ovulation rate and uterine capacity in sheep. Pediatr. Res. 6, 34A.

Alm, H., Torner, H., Tiemann, U., and Kanitz, W. (1998). Influence of organochlorine pesticides on maturation and postfertilization development of bovine oocytes in vitro. Reprod. Toxicol. 12, 559–563.
Influence of organochlorine pesticides on maturation and postfertilization development of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVKqu7o%3D&md5=ea7457b1dd38febf9b64a44a1a4911eaCAS | 9763248PubMed |

Alworth, L. C., Howdeshell, K. L., Ruhlen, R. L., Day, J. K., Lubahn, D. B., Huang, T. H., Besch-Williford, C. L., and vom Saal, F. S. (2002). Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: effects of low versus high doses. Toxicol. Appl. Pharmacol. 183, 10–22.
Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: effects of low versus high doses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wmt7Y%3D&md5=5befa92fcc1785b49116875abff84f03CAS | 12217638PubMed |

Amen, T. S., Herring, A. D., Sanders, J. O., and Gill, C. A. (2007). Evaluation of reciprocal differences in Bos indicus x Bos taurus backcross calves produced through embryo transfer: I. Birth and weaning traits. J. Anim. Sci. 85, 365–372.
Evaluation of reciprocal differences in Bos indicus x Bos taurus backcross calves produced through embryo transfer: I. Birth and weaning traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1elsrg%3D&md5=63a9c8ae52518303fe70f922a8c4b7c4CAS | 17235021PubMed |

Anderson, L. L., Hard, D. L., and Kertiles, L. P. (1979). Progesterone secretion and fetal development during prolonged starvation in the pig. Am. J. Physiol. 236, E335–E341.
| 1:CAS:528:DyaE1MXitValt74%3D&md5=aa7b2972806eeea92f0cb9936120db4eCAS | 434195PubMed |

Andrade, L. P., Rhind, S. M., Rae, M. T., Kyle, C. E., Jowett, J., and Lea, R. G. (2013). Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis. J. Negat. Results Biomed. 12, 2.
Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis.Crossref | GoogleScholarGoogle Scholar | 23295129PubMed |

Andreoli, K. M., Minton, J. E., Spire, M. F., and Schalles, R. R. (1988). Influence of Prepartum Exposure of Beef Heifers to Winter Weather on Concentrations of Plasma Energy-Yielding Substrates, Serum Hormones and Birth-Weight of Calves. Theriogenology 29, 631–642.
Influence of Prepartum Exposure of Beef Heifers to Winter Weather on Concentrations of Plasma Energy-Yielding Substrates, Serum Hormones and Birth-Weight of Calves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFWmsw%3D%3D&md5=843ff8b2477ed7bdd15884973b577b3dCAS | 16726385PubMed |

Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469.
Epigenetic transgenerational actions of endocrine disruptors and male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1eqsbY%3D&md5=e251b584dd05f99f9d8360f8a0641ba6CAS | 15933200PubMed |

Arnott, G., Roberts, D., Rooke, J. A., Turner, S. P., Lawrence, A. B., and Rutherford, K. M. (2012). Board invited review: The importance of the gestation period for welfare of calves: maternal stressors and difficult births. J. Anim. Sci. 90, 5021–5034.
Board invited review: The importance of the gestation period for welfare of calves: maternal stressors and difficult births.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisFSjs7c%3D&md5=06e3c9082cf571637a7e5ae77753fc70CAS | 22952359PubMed |

Ashworth, C. J., Hogg, C. O., Matheson, S., Dwyer, C. M., and Rooke, J. A. (2014). Breed, but not maternal under nutrition, affects markers of immune status in lambs. Adv. Anim. Biosci. 5, 154.

Azzam, S. M., Kinder, J. E., Nielsen, M. K., Werth, L. A., Gregory, K. E., Cundiff, L. V., and Koch, R. M. (1993). Environmental-Effects on Neonatal-Mortality of Beef-Calves. J. Anim. Sci. 71, 282–290.
| 1:STN:280:DyaK3s7nvFehsA%3D%3D&md5=31a49ec99204ccd3413058aa1afa117aCAS | 8440645PubMed |

Bach, A. (2012). Nourishing and managing the dam and postnatal calf for optimal lactation, reproduction and immunity. J. Anim. Sci. 90, 1835–1845.
Nourishing and managing the dam and postnatal calf for optimal lactation, reproduction and immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWgsbo%3D&md5=933aa297c111b062f93c832a4243f715CAS | 21926322PubMed |

Banchero, G., Vazquez, A., Montossi, F., de Barbieri, I., and Quintans, G. (2010). Pre-partum shearing of ewes under pastoral conditions improves the early vigour of both single and twin lambs. Anim. Prod. Sci. 50, 309–314.
Pre-partum shearing of ewes under pastoral conditions improves the early vigour of both single and twin lambs.Crossref | GoogleScholarGoogle Scholar |

Banos, G., Brotherstone, S., and Coffey, M. P. (2007). Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows. J. Dairy Sci. 90, 3490–3499.
Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlCksbw%3D&md5=d66090adec68c4bb8f82829ee35d73d8CAS | 17582133PubMed |

Barker, D. J., and Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 327, 1077–1081.
Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales.Crossref | GoogleScholarGoogle Scholar |

Barker, D. J., and Osmond, C. (1988). Low birth weight and hypertension. BMJ 297, 134–135.
Low birth weight and hypertension.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1czhtVaisA%3D%3D&md5=e9d88334c831b93afb50470eb8c648bbCAS | 3408942PubMed |

Barker, D. J., Winter, P. D., Osmond, C., Margetts, B., and Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet 334, 577–580.
Weight in infancy and death from ischaemic heart disease.Crossref | GoogleScholarGoogle Scholar |

Barrier, A. C., Haskell, M. J., Birch, S., Bagnall, A., Bell, D. J., Dickinson, J., Macrae, A. I., and Dwyer, C. M. (2013). The impact of dystocia on dairy calf health, welfare, performance and survival. Vet. J. 195, 86–90.
The impact of dystocia on dairy calf health, welfare, performance and survival.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bnslSnug%3D%3D&md5=b1986d34f424857ca19b8bb0ebfe67c4CAS | 22985606PubMed |

Baxter, E. M., Jarvis, S., D’Eath, R. B., Ross, D. W., Robson, S. K., Farish, M., Nevison, I. M., Lawrence, A. B., and Edwards, S. A. (2008). Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology 69, 773–783.
Investigating the behavioural and physiological indicators of neonatal survival in pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3js1yhsA%3D%3D&md5=3eb6d2175e884e75fdddc5fc9c1b7a73CAS | 18242685PubMed |

Baxter, E. M., Mulligan, J., Hall, S. A., Donbavand, J. E., Zanella, A. J., and Dwyer, C. M. (2016). Positive and negative gestational handling influences placental traits and mother-offspring behavior in dairy goats. Physiol. Behav. 157, 129–138.
Positive and negative gestational handling influences placental traits and mother-offspring behavior in dairy goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xitl2hsrg%3D&md5=530e2ce2cf30fc859fd5da90216f984bCAS | 26850289PubMed |

Bebbere, D., Bauersachs, S., Furst, R. W., Reichenbach, H. D., Reichenbach, M., Medugorac, I., Ulbrich, S. E., Wolf, E., Ledda, S., and Hiendleder, S. (2013). Tissue-specific and minor inter-individual variation in imprinting of IGF2R is a common feature of Bos taurus Concepti and not correlated with fetal weight. PLoS One 8, e59564.
Tissue-specific and minor inter-individual variation in imprinting of IGF2R is a common feature of Bos taurus Concepti and not correlated with fetal weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlSnu7w%3D&md5=7948fa7feee03b721d16f312662ae891CAS | 23593146PubMed |

Begum, G., Stevens, A., Smith, E. B., Connor, K., Challis, J. R., Bloomfield, F., and White, A. (2012). Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J. 26, 1694–1703.
Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVCht70%3D&md5=80408a67bc82aeb274fc2382d53c8b1fCAS | 22223754PubMed |

Bellingham, M., Fowler, P. A., Amezaga, M. R., Rhind, S. M., Cotinot, C., Mandon-Pepin, B., Sharpe, R. M., and Evans, N. P. (2009). Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland. Environ. Health Perspect. 117, 1556–1562.
Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCjtbvN&md5=2d79c98a8bb30d8b838e4e6487ff772cCAS | 20019906PubMed |

Bellingham, M., Fowler, P. A., Amezaga, M. R., Whitelaw, C. M., Rhind, S. M., Cotinot, C., Mandon-Pepin, B., Sharpe, R. M., and Evans, N. P. (2010). Foetal hypothalamic and pituitary expression of gonadotrophin-releasing hormone and galanin systems is disturbed by exposure to sewage sludge chemicals via maternal ingestion. J. Neuroendocrinol. 22, 527–533.
Foetal hypothalamic and pituitary expression of gonadotrophin-releasing hormone and galanin systems is disturbed by exposure to sewage sludge chemicals via maternal ingestion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFCmsbo%3D&md5=4a36d71377053825a2b2a3017834cf6cCAS | 20236231PubMed |

Bellingham, M., McKinnell, C., Fowler, P. A., Amezaga, M. R., Zhang, Z., Rhind, S. M., Cotinot, C., Mandon-Pepin, B., Evans, N. P., and Sharpe, R. M. (2012). Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. Int. J. Androl. 35, 317–329.
Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCisrbK&md5=179cd759ec4bae4e780032ae0eab7a33CAS | 22150464PubMed |

Berkowicz, E. W., Magee, D. A., Sikora, K. M., Berry, D. P., Howard, D. J., Mullen, M. P., Evans, R. D., Spillane, C., and MacHugh, D. E. (2011). Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle. J. Dairy Res. 78, 1–8.
Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFylug%3D%3D&md5=f06010a6f786ee1dd56b072761559b24CAS | 20822563PubMed |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2010). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl. Acad. Sci. USA 107, 3394–3399.
Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtbo%3D&md5=efd126a965fd9904445fa7ad3eb1424cCAS | 20133684PubMed |

Berry, D. P., Lonergan, P., Butler, S. T., Cromie, A. R., Fair, T., Mossa, F., and Evans, A. C. O. (2008). Negative influence of high maternal milk production before and after conception on offspring survival, and milk production in dairy cattle. J. Dairy Sci. 91, 329–337.
Negative influence of high maternal milk production before and after conception on offspring survival, and milk production in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGisA%3D%3D&md5=2e090fc34baaf35989641b4419b3565eCAS | 18096955PubMed |

Berry, D. C., Stenesen, D., Zeve, D., and Graff, J. M. (2013). The developmental origins of adipose tissue. Development 140, 3939–3949.
The developmental origins of adipose tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSmsrbJ&md5=1041b80af8212e6b171e4ee384671fd8CAS | 24046315PubMed |

Betancourt, M., Resendiz, A., and Fierro, E. C. (2006). Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro. Reprod. Toxicol. 22, 508–512.
Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Cjt7k%3D&md5=73eb66c290bc329ad66e79a6225f28f8CAS | 16713176PubMed |

Bhattacharya, T. K., and Chatterjee, R. N. (2013). Polymorphism of the myostatin gene and its association with growth traits in chicken. Poult. Sci. 92, 910–915.
Polymorphism of the myostatin gene and its association with growth traits in chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2ktL4%3D&md5=03e20431d31f921ec67415e2c5234476CAS | 23472013PubMed |

Bielli, A., Pérez, R., Pedrana, G., Milton, J. T. B., Lopez, A., Blackberry, M. A., Duncombe, G., Rodriguez-Martinez, H., and Martin, G. B. (2002). Low maternal nutrition during pregnancy reduces the number of Sertoli cells in the newborn lamb. Reprod. Fertil. Dev. 14, 333–337.
Low maternal nutrition during pregnancy reduces the number of Sertoli cells in the newborn lamb.Crossref | GoogleScholarGoogle Scholar |

Billon, N., and Dani, C. (2012). Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev. Rep. 8, 55–66.
Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVCrtrg%3D&md5=a229e492164b436c9a38e4948b03ae86CAS |

Billon, N., Iannarelli, P., Monteiro, M. C., Glavieux-Pardanaud, C., Richardson, W. D., Kessaris, N., Dani, C., and Dupin, E. (2007). The generation of adipocytes by the neural crest. Development 134, 2283–2292.
The generation of adipocytes by the neural crest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1ygsro%3D&md5=88e0ff19067b1b4e68ffc9193a78eaadCAS | 17507398PubMed |

Billon, N., Monteiro, M. C., and Dani, C. (2008). Developmental origin of adipocytes: new insights into a pending question. Biol. Cell 100, 563–575.
Developmental origin of adipocytes: new insights into a pending question.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFamsLrM&md5=29adc6b76d5b405b175dda30b714e02bCAS | 18793119PubMed |

Blair, H. T., Jenkinson, C. M. C., Peterson, S. W., Kenyon, P. R., van der Lindon, D. S., Davenport, L. C., Mackenzie, D. D. S., Morris, S. T., and Firth, E. C. (2010). Dam and granddam feeding during pregnancy in sheep affects milk supply in offspring and reproductive performance in grand-offspring. J. Anim. Sci. 88, E40–E50.
Dam and granddam feeding during pregnancy in sheep affects milk supply in offspring and reproductive performance in grand-offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslyrtQ%3D%3D&md5=a2c55a82d08c427a49bc5a0444d650f4CAS | 19966171PubMed |

Boland, T. M., Guinan, M., Brophy, P. O., Callan, J. J., Quinn, P. J., Nowakowski, P., and Crosby, T. F. (2005). The effect of varying levels of mineral and iodine supplementation to ewes during late pregnancy on serum immunoglobulin G concentrations in their progeny. Anim. Sci. 80, 209–218.
The effect of varying levels of mineral and iodine supplementation to ewes during late pregnancy on serum immunoglobulin G concentrations in their progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVOnsrk%3D&md5=ab2c53c3aedbfa57c97af6e064bac3f4CAS |

Bonilla, L., Block, J., Denicol, A. C., and Hansen, P. J. (2014). Consequences of transfer of an in vitro-produced embryo for the dam and resultant calf. J. Dairy Sci. 97, 229–239.
Consequences of transfer of an in vitro-produced embryo for the dam and resultant calf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslClt77I&md5=61b039f39f3f79677b83fe12f92e2886CAS | 24210495PubMed |

Borengasser, S. J., Zhong, Y., Kang, P., Lindsey, F., Ronis, M. J., Badger, T. M., Gomez-Acevedo, H., and Shankar, K. (2013). Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154, 4113–4125.
Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12qsLfE&md5=b59e41f938eeaf3d6de4d7e5fecf2b5fCAS | 23959936PubMed |

Borwick, S. C., Rhind, S. M., McMillen, S. R., and Racey, P. A. (1997). Effect of undernutrition of ewes from the time of mating on fetal ovarian development in mid gestation. Reprod. Fertil. Dev. 9, 711–715.
Effect of undernutrition of ewes from the time of mating on fetal ovarian development in mid gestation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3osV2nuw%3D%3D&md5=6461fa3f4ad82f0c724c89c66707870bCAS | 9623491PubMed |

Borwick, S. C., Rae, M. T., Brooks, J., McNeilly, A. S., Racey, P. A., and Rhind, S. M. (2003). Undernutrition of ewe lambs in utero and in early post-natal life does not affect hypothalamic–pituitary function in adulthood. Anim. Reprod. Sci. 77, 61–70.
Undernutrition of ewe lambs in utero and in early post-natal life does not affect hypothalamic–pituitary function in adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlGiu7c%3D&md5=8fe066904000a5f332de7db41b16d6ebCAS | 12654528PubMed |

Bouret, S. G. (2013). Organizational actions of metabolic hormones. Front. Neuroendocrinol. 34, 18–26.
Organizational actions of metabolic hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFKmtLo%3D&md5=9206e7438f1562ca3e7a2629e7d68ebfCAS | 23357643PubMed |

Bouret, S. G., and Simerly, R. B. (2007). Development of leptin-sensitive circuits. J. Neuroendocrinol. 19, 575–582.
Development of leptin-sensitive circuits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslKqurs%3D&md5=0169acb346c8ff2637a30c64aecf74e6CAS | 17620099PubMed |

Bowen, J. M., Dahl, G. E., Evans, N. P., Thrun, L. A., Wang, Y., Brown, M. B., and Karsch, F. J. (1998). Importance of the gonadotropin-releasing hormone (GnRH) surge for induction of the preovulatory luteinizing hormone surge of the ewe: dose–response relationship and excess of GnRH. Endocrinology 139, 588–595.
| 1:CAS:528:DyaK1cXns1Onuw%3D%3D&md5=abec8748a379794835b80083a1e42de1CAS | 9449629PubMed |

Brameld, J. M., and Daniel, Z. C. T. R. (2008). In utero effects on livestock muscle development and body composition. Aust. J. Exp. Agric. 48, 921–929.
In utero effects on livestock muscle development and body composition.Crossref | GoogleScholarGoogle Scholar |

Brameld, J. M., Fahey, A. J., Langley-Evans, S. C., and Buttery, P. J. (2003). Nutritional and hormonal control of muscle growth and fat deposition. Arch. Tierz. Dummerstorf 46, 143–156.

Braunschweig, M., Jagannathan, V., Gutzwiller, A., and Bee, G. (2012). Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS One 7, e30583.
Investigations on transgenerational epigenetic response down the male line in F2 pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFWisL4%3D&md5=98c1bf503c4ffa40ef10dae53066e7ecCAS | 22359544PubMed |

Breton, A. B., Cockrum, R. R., Austin, K. J., Cammack, K. M., Ford, S. P., Hess, B. W., Moss, G. E., Nathanielsz, P. W., and Alexander, B. M. (2011). Hypothalamic expression of genes for appetite regulators and estrogen alpha, estrogen beta and leptin receptors in obese dams and their fetuses. Animal 5, 1944–1948.
Hypothalamic expression of genes for appetite regulators and estrogen alpha, estrogen beta and leptin receptors in obese dams and their fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgtbvK&md5=75347a53d7ee57bd7a66f3ebdb8bcc75CAS | 22440471PubMed |

Brevini, T. A., Vassena, R., Paffoni, A., Francisci, C., Fascio, U., and Gandolfi, F. (2004). Exposure of pig oocytes to PCBs during in vitro maturation: effects on developmental competence, cytoplasmic remodelling and communication with cumulus cells. Eur. J. Histochem. 48, 347–356.
| 1:STN:280:DC%2BD2M%2FovVCguw%3D%3D&md5=59cc234ec4daa72cc5a947280eb47382CAS | 15718200PubMed |

Brickell, J. S., McGowan, M. M., and Wathes, D. C. (2009). Effect of management factors and blood metabolites during the rearing period on growth in dairy heifers on UK farms. Domest. Anim. Endocrinol. 36, 67–81.
Effect of management factors and blood metabolites during the rearing period on growth in dairy heifers on UK farms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ahtA%3D%3D&md5=d64db22d0efb5f21beedd5f4f0f2acefCAS | 19059748PubMed |

Brien, F. D., Cloete, S. W. P., Fogarty, N. M., Greeff, J. C., Hebart, M. L., Hiendleder, S., Hocking Edwards, J. E., Kelly, J. M., Kind, K. L., Kleeman, D. O., Plush, K. L., and Miller, D. R. (2014). A review of genetic and epigenetic factors affecting lamb survival. Anim. Prod. Sci. 54, 667–693.
A review of genetic and epigenetic factors affecting lamb survival.Crossref | GoogleScholarGoogle Scholar |

Buckingham, M. (2007). Skeletal muscle progenitor cells and the role of Pax genes. C. R. Biol. 330, 530–533.
Skeletal muscle progenitor cells and the role of Pax genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGmtLc%3D&md5=19bf31150071f1bc12641dc003a19ce9CAS | 17631448PubMed |

Buckingham, M., and Vincent, S. D. (2009). Distinct and dynamic myogenic populations in the vertebrate embryo. Curr. Opin. Genet. Dev. 19, 444–453.
Distinct and dynamic myogenic populations in the vertebrate embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCrsb7E&md5=d6984517b35c6b1f30af99f6032834b1CAS | 19762225PubMed |

Burt, B. E., Hess, B. W., Nathanielsz, P. W., and Ford, S. P. (2007). Flock differences in the impact of maternal dietary restriction on offspring growth and glucose tolerance in female offspring. Soc. Reprod. Fertil. Suppl. 64, 411–424.
| 1:CAS:528:DC%2BD1cXpvVyrsb0%3D&md5=1e4af84f2b78f85076167b54aba53c80CAS | 17491162PubMed |

Buttery, P. J., Brameld, J. M., and Dawson, J. M. (2000). Control and manipulation of hyperplasia and hypertrophy in muscle tissue. In ‘Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction’. (Ed. P. B. Cronje.) pp. 237–254. (CAB International.)

Cafe, L. M., Hennessy, D. W., Hearnshaw, H., Morris, S. T., and Greenwood, P. L. (2006). Influences of nutrition during pregnancy and lactation on birthweights and growth to weaning of calves sired by Piedmontese and Wagyu bulls. Aust. J. Exp. Agric. 46, 245–255.
Influences of nutrition during pregnancy and lactation on birthweights and growth to weaning of calves sired by Piedmontese and Wagyu bulls.Crossref | GoogleScholarGoogle Scholar |

Cahill, R. N. P., Kimpton, W. G., Washington, E. A., Holder, J. E., and Cunningham, C. P. (1999). The ontogeny of T cell recirculation during foetal life. Semin. Immunol. 11, 105–114.
The ontogeny of T cell recirculation during foetal life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3mtlCjuw%3D%3D&md5=f179413cc82e35b842f02786c3569714CAS |

Cameron, N. M., Shahrokh, D., Del Corpo, A., Dhir, S. K., Szyf, M., Champagne, F. A., and Meaney, M. J. (2008). Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care. J. Neuroendocrinol. 20, 795–801.
Epigenetic programming of phenotypic variations in reproductive strategies in the rat through maternal care.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Cju7k%3D&md5=a08f965db43bd65ce8a0f239c928d391CAS | 18513204PubMed |

Campagna, C., Sirad, M. A., Ayotte, P., and Bailey, J. L. (2001). Impaired maturation, fertilization and embryonic development of porcine oocytes following exposure to an environmentally relevant organochlorine mixture. Biol. Reprod. 65, 554–560.
Impaired maturation, fertilization and embryonic development of porcine oocytes following exposure to an environmentally relevant organochlorine mixture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Wns78%3D&md5=a77ee67febc78336123417ea667cd4e3CAS | 11466225PubMed |

Campagna, C., Guillemette, C., Paradis, R., Sirard, M.-A., and Ayotte, P. (2002). An environmentally relevant organochlorine mixture impairs sperm function and embryo development in the porcine model. Biol. Reprod. 67, 80–87.
An environmentally relevant organochlorine mixture impairs sperm function and embryo development in the porcine model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2it7w%3D&md5=b74c37ea7e0a3f790fbac27a0cd19ebdCAS | 12080002PubMed |

Campagna, C., Ayotte, P., Sirard, M. A., and Bailey, J. L. (2008). An environmentally relevant mixture of organochlorines, their metabolites and effects on preimplantation development of porcine embryos. Reprod. Toxicol. 25, 361–366.
An environmentally relevant mixture of organochlorines, their metabolites and effects on preimplantation development of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlyhsL8%3D&md5=5a764cdd4194b0dae4eb41678ed702eeCAS | 18479888PubMed |

Caraty, A., Decourt, C., Briant, C., and Beltramo, M. (2012). Kisspeptins and the reproductive axis: potential applications to manage reproduction in farm animals. Domest. Anim. Endocrinol. 43, 95–102.
Kisspeptins and the reproductive axis: potential applications to manage reproduction in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVCitr8%3D&md5=be68b99502b9b1c4a1e4146ae8acf801CAS | 22533939PubMed |

Carlson, L. L., Page, A. W., and Bestor, T. H. (1992). Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev. 6, 2536–2541.
Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXnslOqtg%3D%3D&md5=d997e1d2eac0cd36f7ea68203e1fb778CAS | 1340468PubMed |

Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304.
Linking DNA methylation and histone modification: patterns and paradigms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksF2rsL0%3D&md5=098b9fce53ad95d5ba49d7c8a7fef7f4CAS | 19308066PubMed |

Chavatte-Palmer, P., Heyman, Y., and Renard, J. P. (2000). Cloning and associated physiopathology of gestation. Gynecol. Obstet. Fertil. 28, 633–642.
| 1:STN:280:DC%2BD3M%2Fkt1enug%3D%3D&md5=48cb4f28ca4babc9549a7b335d6f0cedCAS | 11075501PubMed |

Chavatte-Palmer, P., Remy, D., Cordonnier, N., Richard, C., Issenman, H., Laigre, P., Heyman, Y., and Mialot, J. P. (2004). Health status of cloned cattle at different ages. Cloning Stem Cells 6, 94–100.
Health status of cloned cattle at different ages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFelurw%3D&md5=46cc6e10d05c7d343efab640b546dbadCAS | 15268782PubMed |

Chen Cárdenas, S. M., Mayer, N., Romanini, M. C., Rolando, A. N., Liaudat, A. C., Brun, N., Vivas, A., Gauna, H. F., and Rodríguez, N. (2013). Reproductive response in offspring male rats exposed to prenatal stress and to early postnatal stimulation. Int. J. Morphol. 31, 754–764.
Reproductive response in offspring male rats exposed to prenatal stress and to early postnatal stimulation.Crossref | GoogleScholarGoogle Scholar |

Chomwisarutkun, K., Murani, E., Ponsuksili, S., and Wimmers, K. (2012). Gene expression analaysis of mammary tissue during fetal bud formation and growth in two pig breeds – indications of prenatal initiation of postnatal phenotypic differences. BMC Dev. Biol. 12, 13–29.
Gene expression analaysis of mammary tissue during fetal bud formation and growth in two pig breeds – indications of prenatal initiation of postnatal phenotypic differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SksLk%3D&md5=78e6f6cad15e1eb229ddec0222a07b3cCAS | 22537077PubMed |

Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C., and Georges, M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813–818.
A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFyrurk%3D&md5=fba6e7a51b1c20341d431cfe220d6d0eCAS | 16751773PubMed |

Collet, S. H., Picard-Hagen, N., Viguie, C., Lacroix, M. Z., Toutain, P. L., and Gayrard, V. (2010). Estrogenicity of bisphenol A: a concentration–effect relationship on luteinizing hormone secretion in a sensitive model of prepubertal lamb. Toxicol. Sci. 117, 54–62.
Estrogenicity of bisphenol A: a concentration–effect relationship on luteinizing hormone secretion in a sensitive model of prepubertal lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtLbL&md5=daa3ae6fa1c25e8a1cebbb17e95158aeCAS | 20566471PubMed |

Collier, R. J., Doelger, S. G., Head, H. H., Thatcher, W. W., and Wilcox, C. J. (1982). Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. J. Anim. Sci. 54, 309–319.
| 1:CAS:528:DyaL38XhtF2qu7s%3D&md5=4a13d6a302f13435f4636b8a247f6143CAS | 7076593PubMed |

Collier, C. T., Williams, P. N., Carroll, J. A., Welsh, T. H., and Laurenz, J. C. (2011). Effect of maternal restraint stress during gestation on temporal lipopolysaccharide-induced neuroendocrine and immune responses of progeny. Domest. Anim. Endocrinol. 40, 40–50.
Effect of maternal restraint stress during gestation on temporal lipopolysaccharide-induced neuroendocrine and immune responses of progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2gu7fP&md5=ac3e8ad34e592a863a215a5b1fff335eCAS | 20932703PubMed |

Corah, L. R., Dunn, T. G., and Kaltenbach, C. C. (1975). Influence of prepartum nutrition on the reproductive performance of beef females and the performance of their progeny. J. Anim. Sci. 41, 819–824.
| 1:STN:280:DyaE28%2FgsFaqtA%3D%3D&md5=e0fe3ab4a614066c918be75b22e36b74CAS | 1158813PubMed |

Corbel, T., Gayrard, V., Vigue, C., Puel, S., Lecroix, M. Z., Toutain, P.-L., and Picard-Hagen, N. (2013). Bisphenol A disposition in the sheep maternal-placental-fetal unit: mechanisms determining fetal internal exposure. Biol. Reprod. 89, 11.
Bisphenol A disposition in the sheep maternal-placental-fetal unit: mechanisms determining fetal internal exposure.Crossref | GoogleScholarGoogle Scholar | 23699389PubMed |

Corbel, T., Perdu, E., Gayrard, V., Puel, S., Lacroix, M. Z., Viguie, C., Toutain, P.-L., Zalko, D., and Picard-Hagen, N. (2015). Conjugation and deconjugation reactions within the feto-pacental compartment in a sheep model; a key factor defining Bisphenol A fetal exposure. Drug Metab. Dispos. 43, 467–476.
Conjugation and deconjugation reactions within the feto-pacental compartment in a sheep model; a key factor defining Bisphenol A fetal exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktF2mur0%3D&md5=f67b3ed3b4f57a350b1ea1a346f0fb59CAS | 25576162PubMed |

Coupé, B., Amarger, V., Grit, I., Benani, A., and Parnet, P. (2010). Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology 151, 702–713.
Nutritional programming affects hypothalamic organization and early response to leptin.Crossref | GoogleScholarGoogle Scholar | 20016030PubMed |

Couret, D., Jamin, A., Kuntz-Simon, G., Prunier, A., and Merlot, E. (2009). Maternal stress during late pregnancy has moderate but long-lasting effects on the immune system of the piglets. Vet. Immunol. Immunopathol. 131, 17–24.
Maternal stress during late pregnancy has moderate but long-lasting effects on the immune system of the piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSit77K&md5=c78939f09e2508873d2cf980693a1af4CAS | 19362376PubMed |

Crenshaw, J. D., Park, C. S., Swantek, P. M., Keller, W. L., and Zimprich, R. C. (1989). ‘Phased-Feeding Scheme for Developing Gilts (ND1783 and ND1787).’ (Agriculture Experimental Station, North Dakota State University: Fargo.)

Cristancho, A. G., and Lazar, M. A. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734.
Forming functional fat: a growing understanding of adipocyte differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1anu7%2FN&md5=fca3b215a6636d6a2c379996d14ebb77CAS | 21952300PubMed |

Cronjé, P. B. (2003). Foetal programming of immune competence. Aust. J. Exp. Agric. 43, 1427–1430.
Foetal programming of immune competence.Crossref | GoogleScholarGoogle Scholar |

Crosier, A. E., Farin, C. E., Rodriguez, K. F., Blondin, P., Alexander, J. E., and Farin, P. W. (2002). Development of skeletal muscle and expression of candidate genes in bovine fetuses from embryos produced in vivo or in vitro. Biol. Reprod. 67, 401–408.
Development of skeletal muscle and expression of candidate genes in bovine fetuses from embryos produced in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqtr0%3D&md5=809df4bfca126c6454928f96cc34742aCAS | 12135873PubMed |

Cunningham, C. P., Cahill, R. N. P., Washington, E. A., Holder, J. E., Twohig, J. P., and Kimpton, W. G. (1999). Regulation of T cell homeostasis during fetal and early postnatal life. Vet. Immunol. Immunopathol. 72, 175–181.
Regulation of T cell homeostasis during fetal and early postnatal life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsl2ltb8%3D&md5=176d37b03a72a481d33a081aecfebc41CAS | 10614507PubMed |

Cushman, R. A., Allan, M. F., Kuehn, L. A., Snelling, W. M., Cupp, A. S., and Freetly, H. C. (2009). Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: investigation of influence of stage of the estrous cycle, age, and birth weight. J. Anim. Sci. 87, 1971–1980.
Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: investigation of influence of stage of the estrous cycle, age, and birth weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1eju7w%3D&md5=3bece7ec0e42622cfc623e00b75dcb9fCAS | 19286826PubMed |

Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2001). Influence of placentally mediated fetal growth restriction on the onset of puberty in male and female lambs. Reproduction 122, 375–383.
Influence of placentally mediated fetal growth restriction on the onset of puberty in male and female lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVGksLY%3D&md5=c4962867d3603fc5a6ff16cef9655315CAS | 11597303PubMed |

Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2002). Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses. Reproduction 123, 769–777.
Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCiur8%3D&md5=9677445a213d4496d059b0acce1330afCAS | 12052231PubMed |

Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2003). Effect of maternal overnutrition during pregnancy on pituitary gonadotrophin gene expression and gonadal morphology in female and male foetal sheep at Day 103 of gestation. Placenta 24, 248–257.
Effect of maternal overnutrition during pregnancy on pituitary gonadotrophin gene expression and gonadal morphology in female and male foetal sheep at Day 103 of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOltA%3D%3D&md5=f45e19d09cd4a954e24d560ee70393fbCAS | 12566252PubMed |

Da Silva-Buttkus, P., van den Hurk, R., te Velde, E. R., and Taverne, M. A. M. (2003). Ovarian development in intrauterine growth-retarded and normally developed piglets originating from the same litter. Reproduction 126, 249–258.
Ovarian development in intrauterine growth-retarded and normally developed piglets originating from the same litter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtrs%3D&md5=57b4ecfce5aa8d8230a03af127debc7bCAS | 12887281PubMed |

Dahl, G. E., Tao, S., and Thompson, I. M. (2012). Effects of photoperiod on mammary gland development and lactation. J. Anim. Sci. 90, 755–760.
Effects of photoperiod on mammary gland development and lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFSitbw%3D&md5=45729be26e7782838ff49d969198c663CAS | 21984715PubMed |

Daniel, Z. C., Brameld, J. M., Craigon, J., Scollan, N. D., and Buttery, P. J. (2007). Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition. J. Anim. Sci. 85, 1565–1576.
Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1antLc%3D&md5=3a0a433988cd92e130a1005e9177b248CAS | 17296773PubMed |

Darnaudéry, M., and Maccari, S. (2008). Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res. Brain Res. Rev. 57, 571–585.
Epigenetic programming of the stress response in male and female rats by prenatal restraint stress.Crossref | GoogleScholarGoogle Scholar |

Das, R., Hampton, D. D., and Jirtle, R. L. (2009). Imprinting evolution and human health. Mamm. Genome 20, 563–572.
Imprinting evolution and human health.Crossref | GoogleScholarGoogle Scholar | 19830403PubMed |

Davis, E., Jensen, C. H., Schroder, H. D., Farnir, F., Shay-Hadfield, T., Kliem, A., Cockett, N., Georges, M., and Charlier, C. (2004). Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr. Biol. 14, 1858–1862.
Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFant7g%3D&md5=5228d62257f90a186b943fff2dd1d2d1CAS | 15498495PubMed |

Daxinger, L., and Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162.
| 1:CAS:528:DC%2BC38XhsVOru7c%3D&md5=791224fb726eeb88c5ab60e20c00698aCAS | 22290458PubMed |

De Blasio, M. J., Gatford, K. L., Robinson, J. S., and Owens, J. A. (2007). Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R875–R886.
Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Gmsr8%3D&md5=a406478e3f3b0ea45c979c27ea13b532CAS | 17023666PubMed |

De Blasio, M. J., Blache, D., Gatford, K. L., Robinson, J. S., and Owens, J. A. (2010). Placental restriction increases adipose leptin gene expression and plasma leptin and alters their relationship to feeding activity in the young lamb. Pediatr. Res. 67, 603–608.
Placental restriction increases adipose leptin gene expression and plasma leptin and alters their relationship to feeding activity in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKktr0%3D&md5=39b3831f02fa8acbac526bcdd64afaa2CAS | 20220548PubMed |

de Rose, E. P., and Wilton, J. W. (1991). Productivity and profitability of twin births in beef cattle. J. Anim. Sci. 69, 3085–3093.
| 1:STN:280:DyaK3MzntlahtQ%3D%3D&md5=ad88136eba881165e23fcc4b4727b401CAS | 1894545PubMed |

Deaton, A. M., Webb, S., Kerr, A. R., Illingworth, R. S., Guy, J., Andrews, R., and Bird, A. (2011). Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 21, 1074–1086.
Cell type-specific DNA methylation at intragenic CpG islands in the immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVKktbY%3D&md5=6dc4c8a4a5b589dce4beab5810b3e243CAS | 21628449PubMed |

Dees, W. L., and McArthur, N. H. (1981). Immunohistochemical localization of gonadotropin releasing hormone (GnRH) in the bovine hypothalamus and infundibulum. Anat. Rec. 200, 281–285.
Immunohistochemical localization of gonadotropin releasing hormone (GnRH) in the bovine hypothalamus and infundibulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkslOmsb8%3D&md5=7c028212ed605104fb747b4c754ca89fCAS | 7023278PubMed |

Dhillo, W. S. (2007). Appetite regulation: an overview. Thyroid 17, 433–445.
Appetite regulation: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSlsr0%3D&md5=082c6c7dea1d715203381cc001e9faebCAS | 17542673PubMed |

Drickamer, L. C., Rosenthal, T. L., and Arthur, R. D. (1999). Factors affecting the number of teats in pigs. J. Reprod. Fertil. 115, 97–100.
Factors affecting the number of teats in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12is7s%3D&md5=8930ed67c84d55d532dbb56186eaceeaCAS | 10341727PubMed |

Ducolomb, Y., Casas, E., Valdez, A., Gonzalez, G., Altamirano-Lozano, M., and Betancourt, M. (2009). In vitro effect of malathion and diazinon on oocyte fertilization and embryo development in porcine. Cell Biol. Toxicol. 25, 623–633.
In vitro effect of malathion and diazinon on oocyte fertilization and embryo development in porcine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKhtLnL&md5=1e5132d142375ef5df6bfd6892606f3aCAS | 19148769PubMed |

Dupont, C., Cordier, A. G., Junien, C., Mandon-Pepin, B., Levy, R., and Chavatte-Palmer, P. (2012). Maternal environment and the reproductive function of the offspring. Theriogenology 78, 1405–1414.
Maternal environment and the reproductive function of the offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bhs1emug%3D%3D&md5=52fc1bef7de20583eefb57725b91d634CAS | 22925651PubMed |

Duprez, D. (2002). Signals regulating muscle formation in the limb during embryonic development. Int. J. Dev. Biol. 46, 915–925.
| 1:CAS:528:DC%2BD38XptlKhs7w%3D&md5=c0f03f41f0cdb4d13e0868947abcfe47CAS | 12455629PubMed |

Dwyer, C. M. (2008). Genetic and physiological determinants of maternal behavior and lamb survival: implications for low-input sheep management. J. Anim. Sci. 86, E246–E258.
Genetic and physiological determinants of maternal behavior and lamb survival: implications for low-input sheep management.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3lsVyntg%3D%3D&md5=0c5e7d9c6c9f7981785a2a25c88766ecCAS | 17709772PubMed |

Dwyer, C. M., Lawrence, A. B., and Bishop, S. C. (2001). The effects of selection for lean tissue content on maternal and neonatal lamb behaviours in Scottish blackface sheep. Anim. Sci. 72, 555–571.

Dwyer, C. M., Lawrence, A. B., Bishop, S. C., and Lewis, M. (2003). Ewe–lamb bonding behaviours at birth are affected by maternal undernutrition in pregnancy. Br. J. Nutr. 89, 123–136.
Ewe–lamb bonding behaviours at birth are affected by maternal undernutrition in pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWlsr0%3D&md5=8ece812a0c21e4966edd6327458a7168CAS | 12568672PubMed |

Eborn, D. R., Cushman, R. A., and Echternkamp, S. E. (2013). Effect of postweaning diet on ovarian development and fertility in replacement beef heifers. J. Anim. Sci. 91, 4168–4179.
Effect of postweaning diet on ovarian development and fertility in replacement beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOlsbrN&md5=01df914a5cd9594daa798cc4217ef089CAS | 23881678PubMed |

Edwards, S. A., and Baxter, E. M. (2015). Piglet mortality: causes and prevention. In ‘The Gestating and Lactating Sow’. (Ed. C. Farmer.) pp. 253–278. (Wageningen Academic Publishers: Wageningen.)

Ehrhardt, R. A., Greenwood, P. L., Bell, A. W., and Boisclair, Y. R. (2003). Plasma leptin is regulated predominantly by nutrition in preruminant lambs. J. Nutr. 133, 4196–4201.
| 1:CAS:528:DC%2BD3sXpslGmurs%3D&md5=54e3fcfc87e77a0e06314582506736e5CAS | 14652371PubMed |

Ellis, S., McFadden, T. B., and Akers, R. M. (1998). Prepubertal ovine mammary gland development is unaffected by ovariectomy. Domest. Anim. Endocrinol. 15, 217–225.
Prepubertal ovine mammary gland development is unaffected by ovariectomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslSns7k%3D&md5=11a96d7f50241e3618adc2a2645cb502CAS | 9673454PubMed |

Erhard, H. W., and Rhind, S. M. (2004). Prenatal and postnatal exposure to environmental pollutants in sewage sludge alters emotional reactivity and exploratory behaviour in sheep. Sci. Total Environ. 332, 101–108.
Prenatal and postnatal exposure to environmental pollutants in sewage sludge alters emotional reactivity and exploratory behaviour in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFWksb4%3D&md5=94ded7527ffb658fcf92186cd09fcf76CAS | 15336895PubMed |

Erickson, B. H. (1966a). Development and senescence of the postnatal bovine ovary. J. Anim. Sci. 25, 800–805.
| 1:STN:280:DyaF2s7ntlWhsw%3D%3D&md5=3f0968413b39826d628e0e8ab90f9c93CAS | 6007918PubMed |

Erickson, B. H. (1966b). Development and radioresponse of the prenatal bovine ovary. J. Reprod. Fertil. 11, 97–105.
Development and radioresponse of the prenatal bovine ovary.Crossref | GoogleScholarGoogle Scholar |

Evans, N. P., North, T., Dye, S., and Sweeney, T. (2004). Differential effects of the endocrine-disrupting compounds bisphenol-A and octylphenol on gonadotropin secretion, in prepubertal ewe lambs. Domest. Anim. Endocrinol. 26, 61–73.
Differential effects of the endocrine-disrupting compounds bisphenol-A and octylphenol on gonadotropin secretion, in prepubertal ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFSgtw%3D%3D&md5=2f2ba182d41a3b720074dee721c098b4CAS | 14732453PubMed |

Evans, D. J. R., Valasek, P., Schmidt, C., and Patel, K. (2006). Skeletal muscle translocation in vertebrates. Anat. Embryol. (Berl.) 211, 43–50.
Skeletal muscle translocation in vertebrates.Crossref | GoogleScholarGoogle Scholar |

Evans, A., Mossa, F., Walsh, S. W., Scheetz, D., Jimenez-Krassel, F., Ireland, J. L. H., Smith, G. W., and Ireland, J. J. (2012). Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reprod. Domest. Anim. 47, 31–37.
Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring.Crossref | GoogleScholarGoogle Scholar | 22827347PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Farmer, C., Palin, M. F., and Martel-Kennes, Y. (2012a). Impact of diet deprivation and subsequent over-allowance during prepuberty. Part 1. Effects on growth performance, metabolite status, and mammary gland development in gilts. J. Anim. Sci. 90, 863–871.
Impact of diet deprivation and subsequent over-allowance during prepuberty. Part 1. Effects on growth performance, metabolite status, and mammary gland development in gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFSiur0%3D&md5=6a4e8d87e112c04e914425eaf22fc07eCAS | 22003231PubMed |

Farmer, C., Palin, M. F., and Martel-Kennes, Y. (2012b). Impact of diet deprivation and subsequent over-allowance during prepuberty. Part 2. Effects on mammary gland development and lactation performance of sows. J. Anim. Sci. 90, 872–880.
Impact of diet deprivation and subsequent over-allowance during prepuberty. Part 2. Effects on mammary gland development and lactation performance of sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFSiuro%3D&md5=5479518f35207315b92b6130517b741dCAS | 22021808PubMed |

Favetta, L. A., Villagómez, D. A., Iannuzzi, L., Di Meo, G., Webb, A., Crain, S., and King, W. A. (2012). Disorders of sexual development and abnormal early development in domestic food-producing mammals: the role of chromosome abnormalities, environment and stress factors. Sex Dev. 6, 18–32.
Disorders of sexual development and abnormal early development in domestic food-producing mammals: the role of chromosome abnormalities, environment and stress factors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383js1ynsw%3D%3D&md5=b7cb76284da792ff1655819a0471c6c5CAS | 22024933PubMed |

Ferris, J., Favetta, L. A., and King, W. A. (2015). Bisphenol A exposure and oocyte maturation in vitro results in spindle abnormalities and chromosome misalignment in Bos taurus. Cytogenet. Genome Res. 145, 50–58.
Bisphenol A exposure and oocyte maturation in vitro results in spindle abnormalities and chromosome misalignment in Bos taurus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOms7nL&md5=7663221d5cb873d209e6a77df21768b1CAS | 25871885PubMed |

Fisher, G. E. J., and Macpherson, A. (1991). Effect of cobalt deficiency in the pregnant ewe on reproductive-performance and lamb viability. Res. Vet. Sci. 50, 319–327.
Effect of cobalt deficiency in the pregnant ewe on reproductive-performance and lamb viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVKks7k%3D&md5=3c9257899599afc7694e30163e253883CAS |

Fong, A. P., Yao, Z., Zhong, J. W., Cao, Y., Ruzzo, W. L., Gentleman, R. C., and Tapscott, S. J. (2012). Genetic and epigenetic determinants of neurogenesis and myogenesis. Dev. Cell 22, 721–735.
Genetic and epigenetic determinants of neurogenesis and myogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFehsbo%3D&md5=2d09a5435c694d1a290ff0ca501f2bcaCAS | 22445365PubMed |

Ford, S. P., Hess, B. W., Schwope, M. M., Nijland, M. J., Gilbert, J. S., Vonnahme, K. A., Means, W. J., Han, H., and Nathanielsz, P. W. (2007). Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J. Anim. Sci. 85, 1285–1294.
Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksF2hur8%3D&md5=82cf655fa27f52d644f5508e48c49ddcCAS | 17224460PubMed |

Fortune, J. E., Yang, M. Y., Allen, J. J., and Herrick, S. L. (2013). Triennial Reproduction Symposium: the ovarian follicular reserve in cattle: what regulates its formation and size? J. Anim. Sci. 91, 3041–3050.
Triennial Reproduction Symposium: the ovarian follicular reserve in cattle: what regulates its formation and size?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFChsL3I&md5=02c49b692716f182c607f9206e4518c9CAS | 23736047PubMed |

Fowden, A. L., Ward, J. W., Wooding, F. B., and Forhead, A. J. (2010). Developmental programming of the ovine placenta. Soc. Reprod. Fertil. Suppl. 67, 41–57.
| 1:STN:280:DC%2BC3MnosFegsA%3D%3D&md5=73fb6ca77c758de741266327771b7ac3CAS | 21755662PubMed |

Fowler, P. A., Dora, N. J., McFerran, H., Amezaga, M. R., Miller, D. W., Lea, R. G., Cash, P., McNeilly, A. S., Evans, N. P., Cotinot, C., Sharpe, R. M., and Rhind, S. M. (2008). In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep. Mol. Hum. Reprod. 14, 269–280.
In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFWks7Y%3D&md5=8c11b38b4abf9a5fd4e566aba15e63fbCAS | 18436539PubMed |

Fowler, P. A., Bellingham, M., Sinclair, K. D., Evans, N. P., Pocar, P., Fischer, B., Schaedlich, K., Schmidt, J. S., Amezaga, M. R., Bhattacharya, S., Rhind, S. M., and O’Shaughnessy, P. J. (2012). Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol. Cell. Endocrinol. 355, 231–239.
Impact of endocrine-disrupting compounds (EDCs) on female reproductive health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFGnsbY%3D&md5=8ebe370a67c29584f291a1171bfc82d2CAS | 22061620PubMed |

Freetly, H. C., Ferrell, C. L., and Jenkins, T. G. (2000). Timing of realimentation of mature cows that were feed-restricted during pregnancy influences calf birth weights and growth rates. J. Anim. Sci. 78, 2790–2796.
| 1:CAS:528:DC%2BD3cXnslKrtL4%3D&md5=91cdbe17bfbc76499d7a6e847325a46eCAS | 11063300PubMed |

Fuso, A., Ferraguti, G., Grandoni, F., Ruggeri, R., Scarpa, S., Strom, R., and Lucarelli, M. (2010). Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region: a priming effect on the spreading of active demethylation. Cell Cycle 9, 3965–3976.
Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region: a priming effect on the spreading of active demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVent7k%3D&md5=3465533c2920718a3472728b6e314be8CAS | 20935518PubMed |

Gagen, E. J., Mosoni, P., Denman, S. E., Al Jassim, R., McSweeney, C. S., and Forano, E. (2012). Methanogen colonisation does not significantly alter acetogen diversity in lambs isolated 17 h after birth and raised aseptically. Microb. Ecol. 64, 628–640.
Methanogen colonisation does not significantly alter acetogen diversity in lambs isolated 17 h after birth and raised aseptically.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgtLjF&md5=88950f509631031ebb89094b6b6756eeCAS | 22383121PubMed |

Gardner, D. S., Van Bon, B. W. M., Dandrea, J., Goddard, P. J., May, S. F., Wilson, V., Stephenson, T., and Symonds, M. E. (2006). Effect of periconceptional undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep. J. Endocrinol. 190, 203–212.
Effect of periconceptional undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjtrc%3D&md5=54c90eaf0c7fb5ada04ec45b22967110CAS | 16899555PubMed |

Gardner, D. S., Lea, R. G., and Sinclair, K. D. (2008). Developmental programming of reproduction and fertility: what is the evidence? Animal 2, 1128–1134.
Developmental programming of reproduction and fertility: what is the evidence?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptFSisQ%3D%3D&md5=5437a2041fd9d3e5e6ce9c1264b45942CAS | 22443724PubMed |

Gardner, D. S., Ozanne, S. E., and Sinclair, K. D. (2009). Effect of the early-life nutritional environment on fecundity and fertility of mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3419–3427.
Effect of the early-life nutritional environment on fecundity and fertility of mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MnpsFalsA%3D%3D&md5=51f398e2f616d13b9f3e92b26a004f55CAS | 19833652PubMed |

Gardner, D. K., Larman, M. G., and Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Mol. Hum. Reprod. 16, 539–547.
Sex-related physiology of the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt7s%3D&md5=adcaad1c20f6846e1a58de68e49f4cb1CAS | 20501630PubMed |

Garry, F. B., Adams, R., McCann, J. P., and Odde, K. G. (1996). Postnatal characteristics of calves produced by nuclear transfer cloning. Theriogenology 45, 141–152.
Postnatal characteristics of calves produced by nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar |

Gentry, P. C., Ross, T. T., Oetting, B. C., and Birch, K. D. (1992). Effects of supplemental d-α-tocopherol on preweaning lamb performance, serum and colostrum tocopherol levels and immunoglobulin G titers. Sheep Res. J. 8, 95–100.

George, L. A., Zhang, L., Tuersunjiang, N., Ma, Y., Long, N. M., Uthlaut, A. B., Smith, D. T., Nathanielsz, P. W., and Ford, S. P. (2012). Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R795–R804.
Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFSjsL8%3D&md5=f2b21b8977dfdb693aac3baaeab9cf86CAS | 22277936PubMed |

Georges, M., Charlier, C., and Cockett, N. (2003). The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet. 19, 248–252.
The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFeqtrY%3D&md5=f68f72a9ac8173281907e92dc9ab1d9dCAS | 12711215PubMed |

Gerrard, D. E., and Grant, A. L. (1994). Insulin-like growth factor-II expression in developing skeletal-muscle of double muscled and normal cattle. Domest. Anim. Endocrinol. 11, 339–347.
Insulin-like growth factor-II expression in developing skeletal-muscle of double muscled and normal cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlKhsbw%3D&md5=04bd065e03db4eebb6144dc34320bd4cCAS | 7828428PubMed |

Gkountela, S., Li, Z., Vincent, J. J., Zhang, K. X., Chen, A., Pellegrini, M., and Clark, A. T. (2013). The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat. Cell Biol. 15, 113–122.
The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChtb3L&md5=8f8346c90abd5470b8be5f7a60909582CAS | 23242216PubMed |

Gluckman, P. D., Hanson, M. A., Cooper, C., and Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73.
Effect of in utero and early-life conditions on adult health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFSit7o%3D&md5=651aaeb2724a3b7990f326f486c0e439CAS | 18596274PubMed |

Goerlich, V. C., Natt, D., Elfwing, M., Macdonald, B., and Jensen, P. (2012). Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Horm. Behav. 61, 711–718.
Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSgsbk%3D&md5=6e9572f34b116e513ccadef92d338a00CAS | 22465454PubMed |

González-Recio, O., Ugarte, E., and Bach, A. (2012). Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model. PLoS One 7, e51816.
Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model.Crossref | GoogleScholarGoogle Scholar | 23284777PubMed |

González-Recio, O., Toro, M. A., and Bach, A. (2015). Past, present, and future of epigenetics applied to livestock breeding. Front. Genet. 6, 305.
Past, present, and future of epigenetics applied to livestock breeding.Crossref | GoogleScholarGoogle Scholar | 26442117PubMed |

Grace, K. S., and Sinclair, K. D. (2009). Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin. Reprod. Med. 27, 409–416.
Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOis7zK&md5=0865967ae9ddee89961a31e2bea82d2bCAS | 19711251PubMed |

Grayson, B. E., Kievit, P., Smith, M. S., and Grove, K. L. (2010). Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations. Front. Neuroendocrinol. 31, 16–31.
Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WgsbrF&md5=95af3d9e17b8d015cca4e4ab2c49f87bCAS | 19822169PubMed |

Grazul-Bilska, A. T., Caton, J. S., Arndt, W., Burchill, K., Thorson, C., Borowczyk, E., Bilski, J. J., Redmer, D. A., Reynolds, L. P., and Vonnahme, K. A. (2009). Cellular proliferation and vascularization in ovine fetal ovaries: effects of undernutrition and selenium in maternal diet. Reproduction 137, 699–707.
Cellular proliferation and vascularization in ovine fetal ovaries: effects of undernutrition and selenium in maternal diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2ntbo%3D&md5=f42cac3a7993eb18f0e48d1dc2369fbaCAS | 19129369PubMed |

Greenwood, P. L., and Cafe, L. M. (2007). Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production. Animal 1, 1283–1296.
Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vpt1Wmtg%3D%3D&md5=c4d249549b8ffafe52afdb7f1660efe1CAS | 22444884PubMed |

Greenwood, P. L., Hunt, A. S., Hermanson, J. W., and Bell, A. W. (1998). Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency. J. Anim. Sci. 76, 2354–2367.
| 1:CAS:528:DyaK1cXmsV2jt7k%3D&md5=8a08315cf9bd4e8569860f3fd3d8b4b8CAS | 9781492PubMed |

Greenwood, P., Thompson, A., and Ford, S. (2010). Postnatal consequences of the maternal environment and of growth during prenatal life for productivity of ruminants. In ‘Managing the Prenatal Environment to Enhance Livestock Productivity’. (Eds P. L. Greenwood, A. W. Bell, P. E. Vercoe and G. J. Viljoen.) pp. 3–36. (Springer Netherlands.)

Grossniklaus, U., Kelly, W. G., Ferguson-Smith, A. C., Pembrey, M., and Lindquist, S. (2013). Transgenerational epigenetic inheritance: how important is it? Nat. Rev. Genet. 14, 228–235.
Transgenerational epigenetic inheritance: how important is it?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1ajsbo%3D&md5=b3dc2fdb0f7232e6ddebedb3528e8c3cCAS | 23416892PubMed |

Gu, H., Bock, C., Mikkelsen, T. S., Jager, N., Smith, Z. D., Tomazou, E., Gnirke, A., Lander, E. S., and Meissner, A. (2010). Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat. Methods 7, 133–136.
Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsVaktQ%3D%3D&md5=6391e5f76997604316b73772cfdf92c5CAS | 20062050PubMed |

Gudsnuk, K., and Champagne, F. A. (2012). Epigenetic influence of stress and the social environment. ILAR J. 53, 279–288.
Epigenetic influence of stress and the social environment.Crossref | GoogleScholarGoogle Scholar | 23744967PubMed |

Gunn, R. G., Sim, D. A., and Hunter, E. A. (1995). Effects of nutrition in utero and in early life on the subsequent lifetime reproductive performance of Scottish blackface ewes in two management systems. Anim. Sci. 60, 223–230.
Effects of nutrition in utero and in early life on the subsequent lifetime reproductive performance of Scottish blackface ewes in two management systems.Crossref | GoogleScholarGoogle Scholar |

Hammer, C. J., Thorson, J. F., Meyer, A. M., Redmer, D. A., Luther, J. S., Neville, T. L., Reed, J. J., Reynolds, L. P., Caton, J. S., and Vonnahme, K. A. (2011). Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs. J. Anim. Sci. 89, 3690–3698.
Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSqsrvP&md5=a5ca8c7498970e945f09ce4073bb42a1CAS | 21724938PubMed |

Hancock, S. N., Oliver, M. H., McLean, C., Jaquiery, A. L., and Bloomfield, F. H. (2012). Size at birth and adult fat mass in twin sheep are determined in early gestation. J. Physiol. 590, 1273–1285.
Size at birth and adult fat mass in twin sheep are determined in early gestation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383pt1Ojsg%3D%3D&md5=642fe1de16b82be6a1ed1609e63efa1aCAS | 22183720PubMed |

Harris, A., and Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 59, 279–289.
Glucocorticoids, prenatal stress and the programming of disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1WisLw%3D&md5=1ec991efd5b01c9fdd2c0831d049af8eCAS | 20591431PubMed |

Henry, C., Kabbaj, M., Simon, H., Lemoal, M., and Maccari, S. (1994). Prenatal stress increases the hypothalamo–pituitary–adrenal axis response in young and adult-rats. J. Neuroendocrinol. 6, 341–345.
Prenatal stress increases the hypothalamo–pituitary–adrenal axis response in young and adult-rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FgsVGntg%3D%3D&md5=025d895efd66c285ba07728b37340d1cCAS | 7920600PubMed |

Herbison, A. E., Robinson, J. E., and Skinner, D. C. (1993). Distribution of estrogen receptor-immunoreactive cells in the preoptic area of the ewe: co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone. Neuroendocrinology 57, 751–759.
Distribution of estrogen receptor-immunoreactive cells in the preoptic area of the ewe: co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFagsbo%3D&md5=b84b88bffc08e68d4362a845ed1bd291CAS | 8367037PubMed |

Hernandez, C. E., Matthews, L. R., Oliver, M. H., Bloomfield, F. H., and Harding, J. E. (2010). Effects of sex, litter size and periconceptional ewe nutrition on offspring behavioural and physiological response to isolation. Physiol. Behav. 101, 588–594.
Effects of sex, litter size and periconceptional ewe nutrition on offspring behavioural and physiological response to isolation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nsLrI&md5=caac91654b49030baa676c968f6f8827CAS | 20826171PubMed |

Heyman, Y., Chavatte-Palmer, P., Berthelot, V., Fromentin, G., Hocquette, J. F., Martignat, L., and Renard, J. P. (2007). Assessing the quality of products from cloned cattle: an integrative approach. Theriogenology 67, 134–141.
Assessing the quality of products from cloned cattle: an integrative approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jisVWgsQ%3D%3D&md5=86af4a48f0fec29973b14ecb8542c265CAS | 17092550PubMed |

Hild, S., Clark, C. C. A., Dwyer, C. M., Murrell, J. C., Mendl, M., and Zanella, A. J. (2011). Ewes are more attentive to their offspring experiencing pain but not stress. Appl. Anim. Behav. Sci. 132, 114–120.
Ewes are more attentive to their offspring experiencing pain but not stress.Crossref | GoogleScholarGoogle Scholar |

Hill, J., Winger, Q., Jones, K., Keller, D., King, W. A., and Westhusin, M. (1999). The effect of donor cell serum starvation and oocyte activation compounds on the development of somatic cell cloned embryos. Cloning 1, 201–208.
The effect of donor cell serum starvation and oocyte activation compounds on the development of somatic cell cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFektLg%3D&md5=be68f6c6f178d5b9562df08d6f1f6f2cCAS | 16218820PubMed |

Hinde, K., Carpenter, A. J., Clay, J. S., and Bradford, B. J. (2014). Holsteins favour heifers, not bulls: biased milk production programmed during pregnancy as function of fetal sex. PLoS One 9, e86169.
Holsteins favour heifers, not bulls: biased milk production programmed during pregnancy as function of fetal sex.Crossref | GoogleScholarGoogle Scholar | 24498270PubMed |

Hofmann, J. P., Denner, P., Nussbaum-Krammer, C., Kuhn, P.-H., Suhre, M. H., Scheibel, T., Lichtenthaler, S. F., Schätzl, H. M., Bano, D., and Vorberg, I. M. (2013). Cell-to-cell propagation of infectious cytosolic protein aggregates. Proc. Natl Acad. Sci. USA 110, 5951–5956.
Cell-to-cell propagation of infectious cytosolic protein aggregates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFWmsL4%3D&md5=be7befc70c9df21a4c36a549519d7e04CAS | 23509289PubMed |

Hon, G. C., Rajagopal, N., Shen, Y., McCleary, D. F., Yue, F., Dang, M. D., and Ren, B. (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206.
Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGltL7P&md5=e4b42863d36748b2161dc181d9e98e91CAS | 23995138PubMed |

Hori, N., Nagai, M., Hirayama, M., Hirai, T., Matsuda, K., Hayashi, M., Tanaka, T., Ozawa, T., and Horike, S. (2010). Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim. Reprod. Sci. 122, 303–312.
Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahs7vP&md5=dc15d286ec6df060a14354ba053145deCAS | 21035970PubMed |

Horvath, T. L., and Bruning, J. C. (2006). Developmental programming of the hypothalamus: a matter of fat. Nat. Med. 12, 52–53.
Developmental programming of the hypothalamus: a matter of fat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kgsg%3D%3D&md5=ec5d2f12355106acac650a9079cad45cCAS | 16397567PubMed |

Houghton, P. L., Lemenager, R. P., Horstman, L. A., Hendrix, K. S., and Moss, G. E. (1990). Effects of body-composition, prepartum and postpartum energy-level and early weaning on reproductive-performance of beef-cows and preweaning calf gain. J. Anim. Sci. 68, 1438–1446.
| 1:STN:280:DyaK3czgslGqsg%3D%3D&md5=976a908dba4c5751843a96cbad1c70c9CAS | 2365654PubMed |

Hu, S., Ni, W., Sai, W., Zi, H., Qiao, J., Wang, P., Sheng, J., and Chen, C. (2013a). Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS One 8, e58521.
Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFyqt7c%3D&md5=0ee9402e9f4b57845a8fc2670c4132abCAS | 23526994PubMed |

Hu, Y., Xu, H., Li, Z., Zheng, X., Jia, X., Nie, Q., and Zhang, X. (2013b). Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One 8, e56411.
Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFSitb0%3D&md5=df8adf106299dc80909dd1733f1da161CAS | 23441189PubMed |

Hyldig, S. M., Croxall, N., Contreras, D. A., Thomsen, P. D., and Alberio, R. (2011). Epigenetic reprogramming in the porcine germ line. BMC Dev. Biol. 11, 11.
Epigenetic reprogramming in the porcine germ line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVyltro%3D&md5=4de816b262389e33cf77971ac2b88050CAS | 21352525PubMed |

Ichiyanagi, T., Ichiyanagi, K., Miyake, M., and Sasaki, H. (2013). Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 41, 738–745.
Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyju78%3D&md5=f3abb14aa18c9f5a160f0cf04c3cdb47CAS | 23180759PubMed |

International Embryo Transfer Society (IETS) (2012) ‘Manual of the International Embryo Transfer Society.’ (IETS: Savoy, IL.)

Illingworth, R., Kerr, A., Desousa, D., Jorgensen, H., Ellis, P., Stalker, J., Jackson, D., Clee, C., Plumb, R., Rogers, J., Humphray, S., Cox, T., Langford, C., and Bird, A. (2008). A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6, e22.
A novel CpG island set identifies tissue-specific methylation at developmental gene loci.Crossref | GoogleScholarGoogle Scholar | 18232738PubMed |

Iqbal, K., Jin, S. G., Pfeifer, G. P., and Szabo, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647.
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqs7Y%3D&md5=79c7434a6329e8080b2c5309bf1fdf9dCAS | 21321204PubMed |

Ironside, J. W. (2012). Variant Creutzfeldt–Jakob disease: an update. Folia Neuropathol. 50, 50–56.
| 1:CAS:528:DC%2BC38XoslejtL4%3D&md5=93776c92ae92df94650e9923d37adfb0CAS | 22505363PubMed |

Jablonka, E. (1994). Inheritance systems and the evolution of new levels of individuality. J. Theor. Biol. 170, 301–309.
Inheritance systems and the evolution of new levels of individuality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FovFemuw%3D%3D&md5=c68f126c778d0e5b6ab88329d4561d20CAS | 7996858PubMed |

Jaquiery, A. L., Oliver, M. H., Honeyfield-Ross, M., Harding, J. E., and Bloomfield, F. H. (2012). Periconceptional undernutrition in sheep affects adult phenotype only in males. J. Nutr. Metab. 123, 610.

Jarvis, S., Moinard, C., Robson, S. K., Baxter, E., Ormandy, E., Douglas, A. J., Seckl, J. R., Russell, J. A., and Lawrence, A. B. (2006). Programming the offspring of the pig by prenatal social stress: neuroendocrine activity and behaviour. Horm. Behav. 49, 68–80.
Programming the offspring of the pig by prenatal social stress: neuroendocrine activity and behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCrsbfL&md5=8349410bf25fb91515a8d10779884c75CAS | 15961089PubMed |

Jiang, Y. L., Li, N., Plastow, G., Liu, Z. L., Hu, X. X., and Wu, C. X. (2002a). Identification of three SNPs in the porcine myostatin gene (MSTN). Anim. Biotechnol. 13, 173–178.
Identification of three SNPs in the porcine myostatin gene (MSTN).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Wlsbk%3D&md5=25caaa0228814bd91a78cfd53c5d2d2fCAS | 12212941PubMed |

Jiang, Y. L., Li, N., Fan, X. Z., Xiao, L. R., Xiang, R. L., Hu, X. X., Du, L. X., and Wu, C. X. (2002b). Associations of T → A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs. Asian Australas. J. Anim. Sci. 15, 1543–1545.
Associations of T → A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2mtLo%3D&md5=67fa25e662d89d5ebcee540c2698b9c2CAS |

Jirtle, R. L., and Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262.
Environmental epigenomics and disease susceptibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVGktbY%3D&md5=94cd18b89708ffa628fee0a88c12a56bCAS | 17363974PubMed |

Jurie, C., Picard, B., Heyman, Y., Cassar-Malek, I., Chavatte-Palmer, P., Richard, C., and Hocquette, J. F. (2009). Comparison of cloned and non-cloned Holstein heifers in muscle contractile and metabolic characteristics. Animal 3, 244–250.
Comparison of cloned and non-cloned Holstein heifers in muscle contractile and metabolic characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSns7vE&md5=b01c2d3f59c0549b8d81904fcca33feaCAS | 22444227PubMed |

Kanitz, E., Otten, W., Tuchscherer, M., and Manteuffel, G. (2003). Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets (Sus scrofa) at different ages. J. Vet. Med. A Physiol. Pathol. Clin. Med. 50, 132–139.
Effects of prenatal stress on corticosteroid receptors and monoamine concentrations in limbic areas of suckling piglets (Sus scrofa) at different ages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFOlsbo%3D&md5=c3b727154e1e8a5ebb29d621fb710e33CAS | 12757550PubMed |

Kaplan, J. L., Shi, H. N., and Walker, W. A. (2011). The role of microbes in developmental immunologic programming. Pediatr. Res. 69, 465–472.
The role of microbes in developmental immunologic programming.Crossref | GoogleScholarGoogle Scholar | 21364495PubMed |

Katari, S., Turan, N., Bibikova, M., Erinle, O., Chalian, R., Foster, M., Gaughan, J. P., Coutifaris, C., and Sapienza, C. (2009). DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet. 18, 3769–3778.
DNA methylation and gene expression differences in children conceived in vitro or in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhurfE&md5=b9429215b3c0eb853ee39a7187ae0668CAS | 19605411PubMed |

Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., and Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336.
Human nutrition, the gut microbiome and the immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOqsb4%3D&md5=11991b48831e70ba71bbb60c82527e17CAS | 21677749PubMed |

Keady, T. W. J., and Hanrahan, J. P. (2009). Effects of shearing at housing, grass silage feed value and extended grazing herbage allowance on ewe and subsequent lamb performance. Animal 3, 143–151.
Effects of shearing at housing, grass silage feed value and extended grazing herbage allowance on ewe and subsequent lamb performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSns7rP&md5=4fea43788f8048a35d87dcff75f4f1c0CAS |

Kelly, J. M., Kleemann, D. O., and Walker, S. K. (2005). The effect of nutrition during pregnancy on the in vitro production of embryos from resulting lambs. Theriogenology 63, 2020–2031.
The effect of nutrition during pregnancy on the in vitro production of embryos from resulting lambs.Crossref | GoogleScholarGoogle Scholar | 15823357PubMed |

Kelsey, G., and Bartolomei, M. S. (2012). Imprinted genes… and the number is? PLoS Genet. 8, e1002601.
Imprinted genes… and the number is?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFalur4%3D&md5=73f25188229bec0acf29966600126570CAS | 22479197PubMed |

Khanal, P., Husted, S. V., Axel, A. M., Johnsen, L., Pedersen, K. L., Mortensen, M. S., Kongsted, A. H., and Nielsen, M. O. (2014). Late gestation over- and undernutrition predispose for visceral adiposity in response to a post-natal obesogenic diet, but with differential impacts on glucose-insulin adaptations during fasting in lambs. Acta Physiol. (Oxf.) 210, 110–126.
Late gestation over- and undernutrition predispose for visceral adiposity in response to a post-natal obesogenic diet, but with differential impacts on glucose-insulin adaptations during fasting in lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFalurvL&md5=f2773389e317853fddd985cabc690817CAS | 23746217PubMed |

Khanal, P., Axel, A. M., Kongsted, A. H., Husted, S. V., Johnsen, L., Pandey, D., Pedersen, K. L., Birtwistle, M., Markussen, B., Kadarmideen, H. N., and Nielsen, M. O. (2015). Late gestation under- and overnutrition have differential impacts when combined with a post-natal obesogenic diet on glucose-lactate-insulin adaptations during metabolic challenges in adolescent sheep. Acta Physiol. (Oxf.) 213, 519–536.
Late gestation under- and overnutrition have differential impacts when combined with a post-natal obesogenic diet on glucose-lactate-insulin adaptations during metabolic challenges in adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFCntA%3D%3D&md5=2aaadd9dbe6652b34a22c7855821e763CAS | 25204637PubMed |

Knight, C. H., and Sorensen, A. (2001). Windows in early mammary development: critical or not? Reproduction 122, 337–345.
Windows in early mammary development: critical or not?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVGksLs%3D&md5=4511383420188385128dcd3bc2a3c5a6CAS | 11597300PubMed |

Kobayashi, S., Isotani, A., Mise, N., Yamamoto, M., Fujihara, Y., Kaseda, K., Nakanishi, T., Ikawa, M., Hamada, H., Abe, K., and Okabe, M. (2006). Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr. Biol. 16, 166–172.
Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xosl2mtw%3D%3D&md5=3d45f96e25d6d8dd93e720126608a98fCAS | 16431368PubMed |

Kobayashi, H., Sakurai, T., Imai, M., Takahashi, N., Fukuda, A., Yayoi, O., Sato, S., Nakabayashi, K., Hata, K., Sotomaru, Y., Suzuki, Y., and Kono, T. (2012). Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 8, e1002440.
Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyitrg%3D&md5=f9aca4af45c15f4c82c99dcda19197efCAS | 22242016PubMed |

Koohmaraie, M., Shackelford, S. D., Wheeler, T. L., Lonergan, S. M., and Doumit, M. E. (1995). A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 73, 3596–3607.
| 1:CAS:528:DyaK28XptFWiug%3D%3D&md5=8736f19aa458e4d0e663e4d877ff18d0CAS | 8655433PubMed |

Korosi, A., Naninck, E. F. G., Oomen, C. A., Schouten, M., Krugers, H., Fitzsimons, C., and Lucassen, P. J. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behav. Brain Res. 227, 400–409.
Early-life stress mediated modulation of adult neurogenesis and behavior.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387mtlKmuw%3D%3D&md5=b1151a9e0609783aaef98fdf19684cdfCAS | 21821065PubMed |

Kotsampasi, B., Chadio, S., Papadomichelakis, G., Deligeorgis, S., Kalogiannis, D., Menegatos, I., and Zervas, G. (2009). Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring. Reprod. Domest. Anim. 44, 677–684.
Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaiurbM&md5=d9c70435ff3e2d1413f498a2e2eeea54CAS | 19642222PubMed |

Kranendonk, G., Hopster, H., Fillerup, M., Ekkel, E. D., Mulder, E. J. H., Wiegant, V. M., and Taverne, M. A. M. (2006a). Lower birth weight and attenuated adrenocortical response to ACTH in offspring from sows that orally received cortisol during gestation. Domest. Anim. Endocrinol. 30, 218–238.
Lower birth weight and attenuated adrenocortical response to ACTH in offspring from sows that orally received cortisol during gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVartL4%3D&md5=955a0dab04dbb556bdfc7228ad8a273fCAS | 16107308PubMed |

Kranendonk, G., Hopster, H., Fillerup, M., Ekkel, E. D., Mulder, E. J. H., and Taverne, M. A. M. (2006b). Cortisol administration to pregnant sows affects novelty-induced locomotion, aggressive behaviour, and blunts gender difference in their offspring. Horm. Behav. 49, 663–672.
Cortisol administration to pregnant sows affects novelty-induced locomotion, aggressive behaviour, and blunts gender difference in their offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCqurY%3D&md5=31ec171949b3612a250f37094806188bCAS | 16488416PubMed |

Kraugerud, M., Aleksandersen, M., Nyengaard, J. R., Ostby, G. C., Gutleb, A. C., Dahl, E., Berg, V., Farstad, W., Schweder, T., Skaare, J. U., and Ropstad, E. (2012). In utero and lactational exposure to PCB 118 and PCB 153 alter ovarian follicular dynamics and GnRH-induced luteinizing hormone secretion in female lambs. Environ. Toxicol. 27, 623–634.
In utero and lactational exposure to PCB 118 and PCB 153 alter ovarian follicular dynamics and GnRH-induced luteinizing hormone secretion in female lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFalsbvI&md5=144a47867c7a4cd1a328eb97c7de5dcaCAS | 21344607PubMed |

Laible, G., Brophy, B., Knighton, D., and Wells, D. N. (2007). Compositional analysis of dairy products derived from clones and cloned transgenic cattle. Theriogenology 67, 166–177.
Compositional analysis of dairy products derived from clones and cloned transgenic cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12rsbrP&md5=58f415b0951f9e5b46b1e250eb9d72faCAS | 17052749PubMed |

Langlands, J., Donald, G., and Paull, D. (1984). Effects of different stocking intensities in early life on the productivity of Merino ewes grazed as adults at two stocking rates. 2. Reproductive performance. Aust. J. Exp. Agric. 24, 47–56.
Effects of different stocking intensities in early life on the productivity of Merino ewes grazed as adults at two stocking rates. 2. Reproductive performance.Crossref | GoogleScholarGoogle Scholar |

Langley-Evans, S. C. (2013). Fetal programming of CVD and renal disease: animal models and mechanistic considerations. Proc. Nutr. Soc. 72, 317–325.
Fetal programming of CVD and renal disease: animal models and mechanistic considerations.Crossref | GoogleScholarGoogle Scholar | 23312451PubMed |

Lauri, A., Lazzari, G., Galli, C., Lagutina, I., Genzini, E., Braga, F., Mariani, P., and Williams, J. L. (2013). Assessment of MDA efficiency for genotyping using cloned embryo biopsies. Genomics 101, 24–29.
Assessment of MDA efficiency for genotyping using cloned embryo biopsies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWnu73E&md5=80f87136d0155ad4380a8e1f406caa89CAS | 22982297PubMed |

Lay, D. C., Randel, R. D., Friend, T. H., Jenkins, O. C., Neuendorff, D. A., Bushong, D. M., Lanier, E. K., and Bjorge, M. K. (1997). Effects of prenatal stress on suckling calves. J. Anim. Sci. 75, 3143–3151.
| 1:CAS:528:DyaK2sXotVWgt7w%3D&md5=1db94ce7648db4809bc846a5ef24c33cCAS | 9419987PubMed |

Le Dividich, J., Rooke, J. A., and Herpin, P. (2005). Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci. 143, 469–485.
Nutritional and immunological importance of colostrum for the new-born pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFGmug%3D%3D&md5=f74f79b3c22295928f9ff4026f3f4635CAS |

Lea, R. G., Andrade, L. P., Rae, M. T., Hannah, L. T., Kyle, C. E., Murray, J. F., Rhind, S. M., and Miller, D. W. (2006). Effects of maternal undernutrition during early pregnancy on apoptosis regulators in the ovine fetal ovary. Reproduction 131, 113–124.
Effects of maternal undernutrition during early pregnancy on apoptosis regulators in the ovine fetal ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFegsrg%3D&md5=ee3d59198c85791ae2814284f9f2f5dcCAS | 16388015PubMed |

Lee, S.-J. (2004). Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol. 20, 61–86.
Regulation of muscle mass by myostatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaqu7nF&md5=9f2178726d5c7a316cb0ada4f1820361CAS | 15473835PubMed |

Lehman, M. N., Robinson, J. E., Karsch, F. J., and Silverman, A. J. (1986). Immunocytochemical localization of luteinizing hormone-releasing hormone (LHRH) pathways in the sheep brain during anestrus and the mid-luteal phase of the estrous cycle. J. Comp. Neurol. 244, 19–35.
Immunocytochemical localization of luteinizing hormone-releasing hormone (LHRH) pathways in the sheep brain during anestrus and the mid-luteal phase of the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287ktV2ktw%3D%3D&md5=b952fa62fd36245ef21898bf79f67f92CAS | 3512631PubMed |

Lepikhov, K., Zakhartchenko, V., Hao, R., Yang, F., Wrenzycki, C., Niemann, H., Wolf, E., and Walter, J. (2008). Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1, 8.
Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes.Crossref | GoogleScholarGoogle Scholar | 19014417PubMed |

Li, Y., and O’Neill, C. (2012). Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS One 7, e30687.
Persistence of cytosine methylation of DNA following fertilisation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlaqsb8%3D&md5=e7377e5aa508665b1b796cc05b21b835CAS | 22292019PubMed |

Li, E., Bestor, T. H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVGgsr0%3D&md5=78e220d181b54234250ed26f6520f037CAS | 1606615PubMed |

Li, L., Wang, L., Xu, X., Lou, H., Le, F., Li, L., Sheng, J., Huang, H., and Jin, F. (2011). Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny: a putative model for ART-conceived humans. Reprod. Toxicol. 32, 98–105.
Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny: a putative model for ART-conceived humans.Crossref | GoogleScholarGoogle Scholar | 21672625PubMed |

Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., Lucero, J., Huang, Y., Dwork, A. J., Schultz, M. D., Yu, M., Tonti-Filippini, J., Heyn, H., Hu, S., Wu, J. C., Rao, A., Esteller, M., He, C., Haghighi, F. G., Sejnowski, T. J., Behrens, M. M., and Ecker, J. R. (2013). Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905.
Global epigenomic reconfiguration during mammalian brain development.Crossref | GoogleScholarGoogle Scholar | 23828890PubMed |

Liu, J., and Jia, G. (2014). Methylation modifications in eukaryotic messenger RNA. J. Genet. Genomics 41, 21–33.
Methylation modifications in eukaryotic messenger RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWgtbvP&md5=9bd5f4c944f3929f21f09803d6761132CAS | 24480744PubMed |

Liu, W., Shan, T., Yang, X., Liang, S., Zhang, P., Liu, Y., Liu, X., and Kuang, S. (2013). A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J. Cell Sci. 126, 3527–3532.
A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelu7fJ&md5=0b5ec6fd751c92fd2e14b2c6dec1f894CAS | 23781029PubMed |

Long, N. M., George, L. A., Uthlaut, A. B., Smith, D. T., Nijland, M. J., Nathanielsz, P. W., and Ford, S. P. (2010a). Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J. Anim. Sci. 88, 3546–3553.
Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGlsL7J&md5=b24a27c4da1d52eb4dc9fd9a9851a2aeCAS | 20622177PubMed |

Long, N. M., Nijland, M. J., Nathanielsz, P. W., and Ford, S. P. (2010b). The effect of early to mid-gestational nutrient restriction on female offspring fertility and hypothalamic–pituitary–adrenal axis response to stress. J. Anim. Sci. 88, 2029–2037.
The effect of early to mid-gestational nutrient restriction on female offspring fertility and hypothalamic–pituitary–adrenal axis response to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVeqt7Y%3D&md5=ae86fc5b7f69a29bc5cbe49e60c84decCAS | 20190172PubMed |

Louey, S., Cock, M. L., and Harding, R. (2005). Long term consequences of low birthweight on postnatal growth, adiposity and brain weight at maturity in sheep. J. Reprod. Dev. 51, 59–68.
Long term consequences of low birthweight on postnatal growth, adiposity and brain weight at maturity in sheep.Crossref | GoogleScholarGoogle Scholar | 15750297PubMed |

Luther, J., Aitken, R., Milne, J., Matsuzaki, M., Reynolds, L., Redmer, D., and Wallace, J. (2007). Maternal and fetal growth, body composition, endocrinology, and metabolic status in undernourished adolescent sheep. Biol. Reprod. 77, 343–350.
Maternal and fetal growth, body composition, endocrinology, and metabolic status in undernourished adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ontr4%3D&md5=7e89d64e03f6b67089503156d59cb690CAS | 17475926PubMed |

Maalouf, W. E., Alberio, R., and Campbell, K. H. (2008). Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3, 199–209.
Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos.Crossref | GoogleScholarGoogle Scholar | 18698155PubMed |

Magee, D. A., Sikora, K. M., Berkowicz, E. W., Berry, D. P., Howard, D. J., Mullen, M. P., Evans, R. D., Spillane, C., and MacHugh, D. E. (2010). DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein–Friesian cattle. BMC Genet. 11, 93.
DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein–Friesian cattle.Crossref | GoogleScholarGoogle Scholar | 20942903PubMed |

Mahoney, M. M., and Padmanabhan, V. (2010). Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol. Appl. Pharmacol. 247, 98–104.
Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFyju70%3D&md5=eba1965ba409884322a1872ead8151ffCAS | 20621667PubMed |

Maltin, C. A., Delday, M. I., Sinclair, K. D., Steven, J., and Sneddon, A. A. (2001). Impact of manipulations of myogenesis in utero on the performance of adult skeletal muscle. Reproduction 122, 359–374.
Impact of manipulations of myogenesis in utero on the performance of adult skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVGksLk%3D&md5=1fe987d63f01da2cfa2fd9ace03a6f8aCAS | 11597302PubMed |

Marsit, C. J., Maccani, M. A., Padbury, J. F., and Lester, B. M. (2015). Placental 11β hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioural outcome. PLoS One 7, 33794.
Placental 11β hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioural outcome.Crossref | GoogleScholarGoogle Scholar |

Martin, J. L., Cupp, A. S., Rasby, R. J., Hall, Z. C., and Funston, R. N. (2007). Utilization of dried distillers grains for developing beef heifers. J. Anim. Sci. 85, 2298–2303.
Utilization of dried distillers grains for developing beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGlsLY%3D&md5=ad1379b3b3d5d981f82215283dd04625CAS | 17526658PubMed |

Macias, H., and Hink, L. (2012). Mammary gland development. WIREs Dev. Biol. 1, 533–557.
Mammary gland development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sqs77I&md5=e172bf587bf0f15055017d3298ccdc84CAS |

Maxfield, E. K., Sinclair, K. D., Broadbent, P. J., McEvoy, T. G., Robinson, J. J., and Maltin, C. A. (1998). Short-term culture of ovine embryos modifies fetal myogenesis. Am. J. Physiol. 274, E1121–E1123.
| 1:CAS:528:DyaK1cXktVCrs78%3D&md5=4baac49ce2f051ee8bdd9ff1839d35d2CAS | 9611165PubMed |

McCann, M. A., Goode, L., Harvey, R. W., Caruolo, E. V., and Mann, D. L. (1989). Effects of rapid weight gain to puberty on reproduction, mammary development and lactation of ewe lambs. Theriogenology 32, 55–68.
Effects of rapid weight gain to puberty on reproduction, mammary development and lactation of ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFCitA%3D%3D&md5=2f48cb91b2ad57d3704ceaa57e033d8cCAS | 16726652PubMed |

McEvoy, T. G., Sinclair, K. D., Broadbent, P. J., Goodhand, K. L., and Robinson, J. J. (1998). Post-natal growth and development of Simmental calves derived from in vivo or in vitro embryos. Reprod. Fertil. Dev. 10, 459–464.
Post-natal growth and development of Simmental calves derived from in vivo or in vitro embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FltlGqtA%3D%3D&md5=496fcab22a7574de23b8a6f07bb65017CAS | 10588375PubMed |

McGee, M., Drennan, M. J., and Caffrey, P. J. (2006). Effect of age and nutrient restriction pre partum on beef suckler cow serum immunoglobulin concentrations, colostrum yield, composition and immunoglobulin concentration and immune status of their progeny. Ir. J. Agric. Food Res. 45, 157–171.

McMillen, I. C., and Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633.
Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt12lsLw%3D&md5=e616c9456d7ab6c1ffa2d34a7ed40eb1CAS | 15788706PubMed |

McNatty, K. P., Smith, P., Hudson, N. L., Heath, D. A., Tisdall, D. J., O, W. S., and Braw-Tal, R. (1995). Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes. J. Reprod. Fertil. Suppl. 49, 123–135.
| 1:STN:280:DyaK2MzkvV2qug%3D%3D&md5=bdf651fa24e60d3d637fa2f65222f6aaCAS | 7623307PubMed |

McPherron, A. C., and Lee, S. J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl Acad. Sci. USA 94, 12 457–12 461.
Double muscling in cattle due to mutations in the myostatin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1ylsbk%3D&md5=65984576db5d4e3a5c84f6ceca66b021CAS |

Merlot, E., Quesnel, H., and Prunier, A. (2013). Prenatal stress, immunity and neonatal health in farm animal species. Animal 7, 2016–2025.
Prenatal stress, immunity and neonatal health in farm animal species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sfmsl2jsQ%3D%3D&md5=0cea128270e772312a415814bce29ebcCAS | 23915487PubMed |

Mesquita, A. R., Wegerich, Y., Patchev, A. V., Oliveira, M., Leão, P., Sousa, N., and Almeida, O. F. X. (2009). Glucocorticoids and neuro- and behavioural development. Semin. Fetal Neonatal Med. 14, 130–135.
Glucocorticoids and neuro- and behavioural development.Crossref | GoogleScholarGoogle Scholar | 19084485PubMed |

Micke, G. C., Sullivan, T. M., Gatford, K. L., Owens, J. A., and Perry, V. E. A. (2010a). Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits. Anim. Reprod. Sci. 121, 208–217.
Nutrient intake in the bovine during early and mid-gestation causes sex-specific changes in progeny plasma IGF-I, liveweight, height and carcass traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hsrrE&md5=13118cfec67173e08866e3a3aefead72CAS | 20591585PubMed |

Micke, G. C., Sullivan, T. M., Rolls, P. J., Hasell, B., Greer, R. M., Norman, S. T., and Perry, V. E. A. (2010b). Dystocia in 3-year-old beef heifers; relationship to maternal nutrient intake during early- and mid-gestation, pelvic area and hormonal indicators of placental function. Anim. Reprod. Sci. 118, 163–170.
Dystocia in 3-year-old beef heifers; relationship to maternal nutrient intake during early- and mid-gestation, pelvic area and hormonal indicators of placental function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGltbg%3D&md5=1bab6e7c1e273c0cb0cd7456d9e73a4cCAS | 19762178PubMed |

Micke, G. C., Sullivan, T. M., Soares Magalhaes, R. J., Rolls, P. J., Norman, S. T., and Perry, V. E. (2010c). Heifer nutrition during early- and mid-pregnancy alters fetal growth trajectory and birth weight. Anim. Reprod. Sci. 117, 1–10.
Heifer nutrition during early- and mid-pregnancy alters fetal growth trajectory and birth weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjt7vO&md5=07f1d00228169d580dac4b9d63766155CAS | 19394770PubMed |

Micke, G. C., Sullivan, T. M., McMillen, I. C., Gentili, S., and Perry, V. E. A. (2011a). Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R. Mol. Cell. Endocrinol. 332, 234–241.
Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLfL&md5=dc9a15e0bb0379cbbc68a7b1da3e77b2CAS | 21056085PubMed |

Micke, G. C., Sullivan, T. M., McMillen, I. C., Gentili, S., and Perry, V. E. A. (2011b). Heifer nutrient intake during early- and mid-gestation programs adult offspring adiposity and mRNA expression of growth-related genes in adipose depots. Reproduction 141, 697–706.
Heifer nutrient intake during early- and mid-gestation programs adult offspring adiposity and mRNA expression of growth-related genes in adipose depots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCis78%3D&md5=1f98fc3a86e3a6836e0a1e3fe54b9c40CAS | 21310814PubMed |

Micke, G. C., Sullivan, T. M., Kennaway, D. J., Hernandez-Medrano, J., and Perry, V. E. A. (2015). Maternal endocrine adaptation throughout pregnancy to nutrient manipulation: consequences for sexually dimorphic programming of thyroid hormones and development of their progeny. Theriogenology 83, 604–615.
Maternal endocrine adaptation throughout pregnancy to nutrient manipulation: consequences for sexually dimorphic programming of thyroid hormones and development of their progeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKmsb7F&md5=dbc71d9ab6939ce2be5d0df1b8812316CAS | 25492373PubMed |

Miranda, A., Ramos-Ibeas, P., Pericuesta, E., Ramirez, M. A., and Gutierrez-Adan, A. (2013). The role of prion protein in stem cell regulation. Reproduction 146, R91–R99.
The role of prion protein in stem cell regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVaiu77M&md5=00d78a1becf5c32055ce4e5ac372d5d1CAS | 23740082PubMed |

Mok, G. F., and Sweetman, D. (2011). Many routes to the same destination: lessons from skeletal muscle development. Reproduction 141, 301–312.
Many routes to the same destination: lessons from skeletal muscle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Crtro%3D&md5=c47c873105446b0c9b7c0440fb780869CAS | 21183656PubMed |

Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318.
Epigenetic inheritance at the agouti locus in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Gns7w%3D&md5=c048c474369a9c83e93daf14bf9ca35fCAS | 10545949PubMed |

Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. (2005). Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.
Epigenetic reprogramming in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFeksb4%3D&md5=0982f8cee6b62c29af98cb0b981b4bc6CAS | 15809273PubMed |

Morgavi, D. P., Forano, E., Martin, C., and Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal 4, 1024–1036.
Microbial ecosystem and methanogenesis in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVajtr0%3D&md5=423789f5201f93b566b99bf40a0e6e2cCAS | 22444607PubMed |

Morris, S. T., McCutcheon, S. N., and Revell, D. K. (2000). Birth weight responses to shearing ewes in early to mid gestation. Anim. Sci. 70, 363–369.

Morrison, A. G., Callanan, J. J., Evans, N. P., Aldridge, T. C., and Sweeney, T. (2003). Effects of endocrine disrupting compounds on the pathology and oestrogen receptor alpha and beta distribution in the uterus and cervix of ewe lambs. Domest. Anim. Endocrinol. 25, 329–343.
Effects of endocrine disrupting compounds on the pathology and oestrogen receptor alpha and beta distribution in the uterus and cervix of ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlymsr0%3D&md5=4df1d71037eafd3199641341e5d022dfCAS | 14652134PubMed |

Mossa, F., Walsh, S. W., Butler, S. T., Berry, D. P., Carter, F., Lonergan, P., Smith, G. W., Ireland, J. J., and Evans, A. C. (2012). Low numbers of ovarian follicles >/=3 mm in diameter are associated with low fertility in dairy cows. J. Dairy Sci. 95, 2355–2361.
Low numbers of ovarian follicles >/=3 mm in diameter are associated with low fertility in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFygtLo%3D&md5=b8760125f735f2663f09b42764bb8452CAS | 22541464PubMed |

Mossa, F., Carter, F., Walsh, S. W., Kenny, D. A., Smith, G. W., Ireland, J. L., Hildebrandt, T. B., Lonergan, P., Ireland, J. J., and Evans, A. C. (2013). Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol. Reprod. 88, 92.
Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring.Crossref | GoogleScholarGoogle Scholar | 23426432PubMed |

Mousavi, K., Zare, H., Dell’orso, S., Grontved, L., Gutierrez-Cruz, G., Derfoul, A., Hager, G. L., and Sartorelli, V. (2013). eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51, 606–617.
eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGqsrrE&md5=6fa4d1dfc66f1acf32baec3b26918984CAS | 23993744PubMed |

Muhlhausler, B. S., and Ong, Z. Y. (2011). The fetal origins of obesity: early origins of altered food intake. Endocr. Metab. Immune Disord. Drug Targets 11, 189–197.
The fetal origins of obesity: early origins of altered food intake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOksLnO&md5=8299488cd7af6ba5f13ec57db74083beCAS | 21831032PubMed |

Mühlhäusler, B. S., Adam, C. L., Marrocco, E. M., Findlay, P. A., Roberts, C. T., McFarlane, J. R., Kauter, K. G., and McMillen, I. C. (2005). Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation. J. Physiol. 565, 185–195.
Impact of glucose infusion on the structural and functional characteristics of adipose tissue and on hypothalamic gene expression for appetite regulatory neuropeptides in the sheep fetus during late gestation.Crossref | GoogleScholarGoogle Scholar | 15661821PubMed |

Muhlhausler, B. S., Adam, C. L., Findlay, P. A., Duffield, J. A., and McMillen, I. C. (2006). Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J. 20, 1257–1259.
Increased maternal nutrition alters development of the appetite-regulating network in the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFelt7Y%3D&md5=c876b97e73bbf1fcef6410e2944497ffCAS | 16684802PubMed |

Muñoz, C., Carson, A. F., Mccoy, M. A., Dawson, L. E. R., O’Connell, N. E., and Gordon, A. W. (2009). Effect of plane of nutrition of 1- and 2-year-old ewes in early and mid-pregnancy on ewe reproduction and offspring performance up to weaning. Animal 3, 657–669.
Effect of plane of nutrition of 1- and 2-year-old ewes in early and mid-pregnancy on ewe reproduction and offspring performance up to weaning.Crossref | GoogleScholarGoogle Scholar | 22444443PubMed |

Murdoch, W. J., Van Kirk, E. A., Vonnahme, K. A., and Ford, S. P. (2003). Ovarian responses to undernutrition in pregnant ewes, USA. Reprod. Biol. Endocrinol. 1, 6.
Ovarian responses to undernutrition in pregnant ewes, USA.Crossref | GoogleScholarGoogle Scholar | 12646075PubMed |

Mychasiuk, R., Gibb, R., and Kolb, B. (2011). Prenatal stress produces sexually dimorphic and regionally specific changes in gene expression in hippocampus and frontal cortex of developing rat offspring. Dev. Neurosci. 33, 531–538.
Prenatal stress produces sexually dimorphic and regionally specific changes in gene expression in hippocampus and frontal cortex of developing rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Cntr0%3D&md5=fcf82352b9415421310138ad8cf1caccCAS | 22286693PubMed |

Mychasiuk, R., Harker, A., Ilnytskyy, S., and Gibb, R. (2013). Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 241, 100–105.
Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2gsLo%3D&md5=987e75b5cfe7b732f0f76a7bfcad744aCAS | 23531434PubMed |

Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=637ad143958af36c18e17d0fd0e6afb8CAS | 22722204PubMed |

Neugebauer, N., Räder, I., Schild, H. J., Zimmer, D., and Reinsch, N. (2010). Evidence for parent-of-origin effects on genetic variability of beef traits. J. Anim. Sci. 88, 523–532.
Evidence for parent-of-origin effects on genetic variability of beef traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVOqtrY%3D&md5=d88637e7f11d0e8241dca48688b6728dCAS | 19854988PubMed |

Norman, H. D., and Walsh, M. K. (2004). Performance of dairy cattle clones and evaluation of their milk composition. Cloning Stem Cells 6, 157–164.
Performance of dairy cattle clones and evaluation of their milk composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFeltLc%3D&md5=36eedab63623cebc4a2eea051af27bfbCAS | 15268790PubMed |

Oliver, V. F., Miles, H. L., Cutfield, W. S., Hofman, P. L., Ludgate, J. L., and Morison, I. M. (2012). Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population. Fertil Steril 97, 147–153.e7.
Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12rtg%3D%3D&md5=38d6824df7504347584edcc3972e9387CAS | 22112648PubMed |

Ooi, S. K., Wolf, D., Hartung, O., Agarwal, S., Daley, G. Q., Goff, S. P., and Bestor, T. H. (2010). Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics Chromatin 3, 17.
Dynamic instability of genomic methylation patterns in pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 20868487PubMed |

Otten, W., Kanitz, E., Tuchscherer, M., Puppe, B., and Nurnberg, G. (2007). Repeated administrations of adrenocorticotropic hormone during gestation in gilts: effects on growth, behaviour and immune responses of their piglets. Livest. Sci. 106, 261–270.
Repeated administrations of adrenocorticotropic hormone during gestation in gilts: effects on growth, behaviour and immune responses of their piglets.Crossref | GoogleScholarGoogle Scholar |

Otten, W., Kanitz, E., Couret, D., Veissier, I., Prunier, A., and Merlot, E. (2010). Maternal social stress during late pregnancy aggects hypothalamic–pituitary–adrenal function and brain neurotransmitter systems in pig offspring. Domest. Anim. Endocrinol. 38, 146–156.
Maternal social stress during late pregnancy aggects hypothalamic–pituitary–adrenal function and brain neurotransmitter systems in pig offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFGkt78%3D&md5=255251341fa2258d2f8cfede53691b8bCAS | 19879712PubMed |

Otten, W., Kanitz, E., and Tuchscherer, M. (2015). The impact of prenatal stress on offspring development in pigs. J. Agric. Sci. 153, 907–919.
The impact of prenatal stress on offspring development in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptVSjsb0%3D&md5=4497fb0f268a2854049aedc3c09c8493CAS |

Padmanabhan, N., Jia, D., Geary-Joo, C., Wu, X., Ferguson-Smith, A. C., Fung, E., Bieda, M. C., Snyder, F. F., Gravel, R. A., Cross, J. C., and Watson, E. D. (2013). Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93.
Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFemsLvO&md5=3217352b85519e86732c74dc44eb2227CAS | 24074862PubMed |

Palacios, D., Summerbell, D., Rigby, P. W., and Boyes, J. (2010). Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse Myogenin gene. Mol. Cell. Biol. 30, 3805–3815.
Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse Myogenin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOlsLvL&md5=f691f976ac7776240712daa3b5da2aaaCAS | 20498275PubMed |

Park, C. S., Erickson, G. M., Choi, Y. J., and Marx, G. D. (1987). Effect of compensatory growth on regulation of growth and lactation: response of dairy heifers to a stair-step growth pattern. J. Anim. Sci. 64, 1751–1758.
| 1:CAS:528:DyaL2sXksFOrt7k%3D&md5=3aff7504d0cb45009d89644c370e27f1CAS | 3597190PubMed |

Parr, R. A., Williams, A. H., Campbell, I. P., Witcombe, G. F., and Roberts, A. M. (1986). Low nutrition of ewes in early pregnancy and the residual effect on the offspring. J. Agric. Sci. 106, 81–87.
Low nutrition of ewes in early pregnancy and the residual effect on the offspring.Crossref | GoogleScholarGoogle Scholar |

Paten, A. M., Kenyon, P. R., Lopez-Villalobos, N., Peterson, S. W., Jenkinson, C. M. C., Pain, S. J., and Blair, H. T. (2013). Maternal nutrition during lactation and mod-to-late pregnancy: comparative effects on milk production of twin-born ewe progeny during their first lactation. J. Anim. Sci. 91, 676–684.
Maternal nutrition during lactation and mod-to-late pregnancy: comparative effects on milk production of twin-born ewe progeny during their first lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKnurc%3D&md5=9b41080cf73bdab72da91f746cbdeaa3CAS | 23230109PubMed |

Patterson, D. C., Steen, R. W. J., and Kilpatrick, D. J. (1993). A comparison of growth, food efficiency and carcass characteristics of single and twin beef calves derived by embryo transfer. Anim. Sci. 57, 81–89.

Paul, C., Rhind, S. M., Kyle, C. E., Scott, H., McKinnell, C., and Sharpe, R. M. (2005). Cellular and hormonal disruption of fetal testis development in sheep reared on pasture treated with sewage sludge. Environ. Health Perspect. 113, 1580–1587.
Cellular and hormonal disruption of fetal testis development in sheep reared on pasture treated with sewage sludge.Crossref | GoogleScholarGoogle Scholar | 16263515PubMed |

Peralta, O. A., Huckle, W. R., and Eyestone, W. H. (2011). Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 81, 68–77.
Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFagsL7J&md5=284407c7223ba6fe1f04cd8d6d76e017CAS | 20926176PubMed |

Peralta, O. A., Huckle, W. R., and Eyestone, W. H. (2012). Developmental expression of the cellular prion protein (PrP(C)) in bovine embryos. Mol. Reprod. Dev. 79, 488–498.
Developmental expression of the cellular prion protein (PrP(C)) in bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVektL0%3D&md5=9843f1a632b5781d128e1966fdd1ea21CAS | 22674901PubMed |

Peters, A. H., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M., and Jenuwein, T. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337.
Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVKhsb4%3D&md5=a4a02ad7e383e0d779b914bc7953d0f4CAS | 11701123PubMed |

Pocar, P., Perazzoli, F., Luciano, A. M., and Gandolfi, F. (2001a). In vitro reproductive toxicity of polychlorinated biphenyls: effects on oocyte maturation and developmental competence in cattle. Mol. Reprod. Dev. 58, 411–416.
In vitro reproductive toxicity of polychlorinated biphenyls: effects on oocyte maturation and developmental competence in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Siu7c%3D&md5=ad73a2f83c51fd307c827b3821e117b1CAS | 11241777PubMed |

Pocar, P., Brevini, T. A., Perazzoli, F., Cillo, F., Modina, S., and Gandolfi, F. (2001b). Cellular and molecular mechanisms mediating the effects of polychlorinated biphenyls on oocyte developmental competence in cattle. Mol. Reprod. Dev. 60, 535–541.
Cellular and molecular mechanisms mediating the effects of polychlorinated biphenyls on oocyte developmental competence in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosl2qt7g%3D&md5=c9569fa76fd2169d7fa5fca6c5f54fcbCAS | 11746964PubMed |

Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., Pellegrini, M., Jacobsen, S. E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105.
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitl2gs7Y%3D&md5=6475413046d805441cd03a9315e9505bCAS | 20098412PubMed |

Posfai, E., Kunzmann, R., Brochard, V., Salvaing, J., Cabuy, E., Roloff, T. C., Liu, Z., Tardat, M., van Lohuizen, M., Vidal, M., Beaujean, N., and Peters, A. H. (2012). Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932.
Polycomb function during oogenesis is required for mouse embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslOgt78%3D&md5=d65166576a4223f7a89b1e2d03dd9379CAS | 22499591PubMed |

Quesnel, H., Boulot, S., Serriere, S., Venturi, E., and Martinat-Botté, F. (2010). Post-insemination level of feeding does not influence embryonic survival and growth in highly prolific gilts. Anim. Reprod. Sci. 120, 120–124.
Post-insemination level of feeding does not influence embryonic survival and growth in highly prolific gilts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3czktVOkug%3D%3D&md5=6bb12e1fd08f7dd09189c583aac08503CAS | 20434856PubMed |

Rae, M. T., Palassio, S., Kyle, C. E., Brooks, A. N., Lea, R. G., Miller, D. W., and Rhind, S. M. (2001). Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses. Reproduction 122, 915–922.
Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWisw%3D%3D&md5=233b1d8abea184e0a3dce728524124dcCAS | 11732987PubMed |

Rae, M. T., Kyle, C. E., Miller, D. W., Hammond, A. J., Brooks, A. N., and Rhind, S. M. (2002a). The effects of undernutrition, in utero, on reproductive function in adult male and female sheep. Anim. Reprod. Sci. 72, 63–71.
The effects of undernutrition, in utero, on reproductive function in adult male and female sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFahsLw%3D&md5=05a267ce9d685a9c5afc127a8db071a9CAS | 12106966PubMed |

Rae, M. T., Rhind, S. M., Fowler, P. A., Miller, D. W., Kyle, C. E., and Brooks, A. N. (2002b). Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses. Reproduction 124, 33–39.
Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaks7s%3D&md5=ebc9b8af68cb6b805d6daf39de7fc94fCAS | 12090916PubMed |

Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A. P., and Jaenisch, R. (2000). Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA 97, 5237–5242.
Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVWntLs%3D&md5=c26ef496162e2e3f10d7e434271557e7CAS | 10805783PubMed |

Rehfeldt, C., Pas, M. F. W. T., Wimmers, K., Brameld, J. M., Nissen, P. M., Berri, C., Valente, L. M. P., Power, D. M., Picard, B., Stickland, N. C., and Oksbjerg, N. (2011a). Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. II – Genetic factors related to animal performance and advances in methodology. Animal 5, 718–730.
Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. II – Genetic factors related to animal performance and advances in methodology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFenu7k%3D&md5=dded05d808b9f676af13f112211be0edCAS | 22439994PubMed |

Rehfeldt, C., Pas, M. F. W. T., Wimmers, K., Brameld, J. M., Nissen, P. M., Berri, C., Valente, L. M. P., Power, D. M., Picard, B., Stickland, N. C., and Oksbjerg, N. (2011b). Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. Regulation of myogenesis and environmental impact. Animal 5, 703–717.
Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. Regulation of myogenesis and environmental impact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFenu70%3D&md5=e7d282d9c3740e26fe2f2e5aa58f432eCAS | 22439993PubMed |

Renfree, M. B., Suzuki, S., and Kaneko-Ishino, T. (2013). The origin and evolution of genomic imprinting and viviparity in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120151.
The origin and evolution of genomic imprinting and viviparity in mammals.Crossref | GoogleScholarGoogle Scholar | 23166401PubMed |

Rhind, S. M. (2005). Are endocrine disrupting compounds a threat to farm animal health, welfare and productivity? Reprod. Domest. Anim. 40, 282–290.
Are endocrine disrupting compounds a threat to farm animal health, welfare and productivity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVartrk%3D&md5=39bdeb7430d41cebc02f8786963fe308CAS | 16008758PubMed |

Rhind, S. M., Elston, D. A., Jones, J. R., Rees, M. E., McMillen, S. R., and Gunn, R. G. (1998). Effects of restriction of growth and development of Brecon Cheviot ewe lambs on subsequent lifetime reproductive performance. Small Rumin. Res. 30, 121–126.
Effects of restriction of growth and development of Brecon Cheviot ewe lambs on subsequent lifetime reproductive performance.Crossref | GoogleScholarGoogle Scholar |

Rhind, S. M., Rae, M. T., and Brooks, A. N. (2003). Environmental influences on the fetus and neonate – timing, mechanisms of action and effects on subsequent adult function. Domest. Anim. Endocrinol. 25, 3–11.
Environmental influences on the fetus and neonate – timing, mechanisms of action and effects on subsequent adult function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svit1Ojsg%3D%3D&md5=f97f5c37c855044affbb337e00185bbeCAS | 12963095PubMed |

Rhind, S. M., Kyle, C. E., Mackie, C., McDonald, L., Zhang, Z., Duff, E. I., Bellingham, M., Amezaga, M. R., Mandon-Pepin, B., Loup, B., Cotinot, C., Evans, N. P., Sharp, R. M., and Fowler, P. A. (2010). Maternal and fetal tissue accumulation of selected endocrine disrupting compounds (EDCs) following exposure to sewage sludge-treated pastures before or after conception. J. Environ. Monit. 12, 1582–1593.
Maternal and fetal tissue accumulation of selected endocrine disrupting compounds (EDCs) following exposure to sewage sludge-treated pastures before or after conception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgtb0%3D&md5=9d16ad285694808f74c9c6831e7fff12CAS | 20676422PubMed |

Rhind, S. M., Kyle, C. E., Kerr, C., Osprey, M., and Zhang, Z. L. (2011). Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep. Sci. Total Environ. 409, 3850–3856.
Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGktbjE&md5=196b56ddcbbd3a7fa1984ea1a855a380CAS | 21767868PubMed |

Riggs, A. D., Martienssen, R. A., and Russo, V. E. A. (1996). ‘Epigenetic Mechanisms of Gene Regulation.’ (Ed. V. E. A. Russo et al. ) pp. 1–4. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York.)

Rivera, O. E., Varayoud, J., Rodriguez, H. A., Munoz-de-Toro, M., and Luque, E. H. (2011). Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod. Toxicol. 32, 304–312.
Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2htbfJ&md5=55f44c6b7b3e5fda285060a77248bef4CAS | 21722727PubMed |

Rivera, O. E., Varayoud, J., Rodriguez, H. A., Santamaria, C. G., Bosquiazzo, V. L., Osti, M., Belmonte, N. M., Munoz-de-Toro, M., and Luque, E. H. (2015). Neonatal exposure to xenoestrogens impairs the ovarian response to gonadotropin treatment in lambs. Reproduction 149, 645–655.
Neonatal exposure to xenoestrogens impairs the ovarian response to gonadotropin treatment in lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFamtb7L&md5=f21ace458dd08fd8a59411011e09fddcCAS | 25778539PubMed |

Robinson, G. W., Karpf, A. B. C., and Kratochwil, K. (1999). Regulation of mammary gland development by tissue interaction. J. Mammary Gland Biol. Neoplasia 4, 9–19.
Regulation of mammary gland development by tissue interaction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3jsFejuw%3D%3D&md5=cbd96f0b3aed817aaace6571aa061801CAS | 10219903PubMed |

Robinson, D. L., Cafe, L. M., and Greenwood, P. L. (2013). Meat Science and Muscle Biology Symposium: developmental programming in cattle: consequences for growth, efficiency, carcass, muscle, and beef quality characteristics. J. Anim. Sci. 91, 1428–1442.
Meat Science and Muscle Biology Symposium: developmental programming in cattle: consequences for growth, efficiency, carcass, muscle, and beef quality characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFKnu7s%3D&md5=e521be7c4f2506ee261f676d0853db6cCAS | 23230118PubMed |

Rodgers, B. D., and Garikipati, D. K. (2008). Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev. 29, 513–534.
Clinical, agricultural, and evolutionary biology of myostatin: a comparative review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKnsrvJ&md5=086096118bef0ffe7baa3a4b7f05d908CAS | 18591260PubMed |

Rooke, I. A., Dwyer, C. M., and Ashworth, C. J. (2008). The potential for improving physiological, behavioural and immunological responses in the neonatal lamb by trace element and vitamin supplementation of the ewe. Animal 2, 514–524.
The potential for improving physiological, behavioural and immunological responses in the neonatal lamb by trace element and vitamin supplementation of the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVKnsLY%3D&md5=53286087703031ce0060a9f50dbc49efCAS |

Rooke, J. A., Houdijk, J. G. M., McIlvaney, K., Ashworth, C. J., and Dwyer, C. M. (2010). Differential effects of maternal undernutrition between Days 1 and 90 of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds. J. Anim. Sci. 88, 3833–3842.
Differential effects of maternal undernutrition between Days 1 and 90 of pregnancy on ewe and lamb performance and lamb parasitism in hill or lowland breeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGnsrrK&md5=f6a7fdc8f6d63c3320e175c9b311502fCAS | 20675602PubMed |

Rooke, J. A., Arnott, G., Dwyer, C. M., and Rutherford, K. M. D. (2015). The importance of the gestation period for welfare of lambs: maternal stressors and lamb vigour and well-being. J. Agric. Sci. 153, 497–519.
The importance of the gestation period for welfare of lambs: maternal stressors and lamb vigour and well-being.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, E., and Zilber-Rosenberg, I. (2011). Symbiosis and development: the hologenome concept. Birth Defects Res. C Embryo Today 93, 56–66.
Symbiosis and development: the hologenome concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFGiurc%3D&md5=7bcdb56355af428115f4f14486fb9625CAS | 21425442PubMed |

Ross, E. M., Moate, P. J., Marett, L. C., Cocks, B. G., and Hayes, B. J. (2013). Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. PLoS One 8, e73056.
Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCrsrnE&md5=c3f73f37772f59c38a307c1211d30e95CAS | 24023808PubMed |

Roussel, S., Hemsworth, P. H., Boissy, A., and Duvaux-Ponter, C. (2004). Effects of repeated stress during pregnancy in ewes on the behavioural and physiological responses to stressful events and birth weight of their offspring. Appl. Anim. Behav. Sci. 85, 259–276.
Effects of repeated stress during pregnancy in ewes on the behavioural and physiological responses to stressful events and birth weight of their offspring.Crossref | GoogleScholarGoogle Scholar |

Roussel, S., Hemsworth, P. H., Leruste, H., White, C., Duvaux-Ponter, C., Nowak, R., and Boissy, A. (2006). Repeated transport and isolation during pregnancy in ewes: effects on the reactivity to humans and to their offspring after lambing. Appl. Anim. Behav. Sci. 97, 172–189.
Repeated transport and isolation during pregnancy in ewes: effects on the reactivity to humans and to their offspring after lambing.Crossref | GoogleScholarGoogle Scholar |

Roussel-Huchette, S., Hemsworth, P. H., Boissy, A., and Duvaux-Ponter, C. (2008). Repeated transport and isolation during pregnancy in ewes: differential effects on emotional reactivity and weight of their offspring. Appl. Anim. Behav. Sci. 109, 275–291.
Repeated transport and isolation during pregnancy in ewes: differential effects on emotional reactivity and weight of their offspring.Crossref | GoogleScholarGoogle Scholar |

Rudenko, L., and Matheson, J. C. (2007). The US FDA and animal cloning: risk and regulatory approach. Theriogenology 67, 198–206.
The US FDA and animal cloning: risk and regulatory approach.Crossref | GoogleScholarGoogle Scholar | 17055042PubMed |

Rudenko, L., Matheson, J. C., and Sundlof, S. F. (2007). Animal cloning and the FDA – the risk assessment paradigm under public scrutiny. Nat. Biotechnol. 25, 39–43.
Animal cloning and the FDA – the risk assessment paradigm under public scrutiny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1GlsA%3D%3D&md5=da0d0913ee6c65bd7eb29a5b9068c536CAS | 17211392PubMed |

Rutherford, K. M., Robson, S. K., Donald, R. D., Jarvis, S., Sandercock, D. A., Scott, E. M., Nolan, A. M., and Lawrence, A. B. (2009). Pre-natal stress amplifies the immediate behavioural responses to acute pain in piglets. Biol. Lett. 5, 452–454.
Pre-natal stress amplifies the immediate behavioural responses to acute pain in piglets.Crossref | GoogleScholarGoogle Scholar | 19411272PubMed |

Rutherford, K., Donald, R., Arnott, G., Rooke, J., Dixon, L., Mehers, J., Turnbull, J., and Lawrence, A. (2012). Farm animal welfare: assessing risks attributable to the prenatal environment. Anim. Welf. 21, 419–429.
Farm animal welfare: assessing risks attributable to the prenatal environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOntL%2FE&md5=58370c99fd0bfa09f270362510f58e69CAS |

Rutherford, K. M. D., Baxter, E. M., D’Eath, R. B., Turner, S. P., Arnott, G., Roehe, R., Ask, B., Sandøe, P., Moustsen, V. A., Thorup, F., Edwards, S. A., Berg, P., and Lawrence, A. B. (2013). The welfare implications of large litter size in the domestic pig I: biological factors. Anim. Welf. 22, 199–218.
The welfare implications of large litter size in the domestic pig I: biological factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1ajuro%3D&md5=91d667b6bf1322b7adb54bcd6084b374CAS |

Rutherford, K. M. D., Piastowska, A., Donald, R. D., Robson, S. K., Ison, S. H., Brunton, P. J., Russell, J. A., and Lawrence, A. B. (2014). Prenatal stress produces anxiety prone female offspring and impaired maternal behaviour in the domestic pig. Physiol. Behav. 129, 255–264.
Prenatal stress produces anxiety prone female offspring and impaired maternal behaviour in the domestic pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvVWmsrY%3D&md5=bf5d7b812f3f21f9cf063a0066f6f3c0CAS |

Sabin, L. R., Delas, M. J., and Hannon, G. J. (2013). Dogma derailed: the many influences of RNA on the genome. Mol. Cell 49, 783–794.
Dogma derailed: the many influences of RNA on the genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOlsrw%3D&md5=cedf021afe6c4b53bae5c80b4c07e532CAS | 23473599PubMed |

Saitou, M., and Yamaji, M. (2012). Primordial germ cells in mice. Cold Spring Harb. Perspect. Biol. 4, a008375.
Primordial germ cells in mice.Crossref | GoogleScholarGoogle Scholar | 23125014PubMed |

Salloum, R. H., Rubin, J. P., and Marra, K. G. (2013). The role of steroids in mesenchymal stem cell differentiation: molecular and clinical perspectives. Horm. Mol. Biol. Clin. Investig. 14, 3–14.
The role of steroids in mesenchymal stem cell differentiation: molecular and clinical perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVektbc%3D&md5=35e05e8cf942ae93d9750ec8065cc3c2CAS | 25436715PubMed |

Santos, F., Hyslop, L., Stojkovic, P., Leary, C., Murdoch, A., Reik, W., Stojkovic, M., Herbert, M., and Dean, W. (2010). Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum. Reprod. 25, 2387–2395.
Evaluation of epigenetic marks in human embryos derived from IVF and ICSI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGru77P&md5=11c4f428437df004ec1f20636d638106CAS | 20634187PubMed |

Savabieasfahani, M., Kannan, K., Astapova, O., Evans, N. P., and Padmanabhan, V. (2006). Developmental programming: differential effects of prenatal exposure to bisphenol-A or methoxychlor on reproductive function. Endocrinology 147, 5956–5966.
Developmental programming: differential effects of prenatal exposure to bisphenol-A or methoxychlor on reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtrrN&md5=908be9d377df0a5f9a6974f4b19d9b3bCAS | 16946013PubMed |

Schiaffino, S., and Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1–Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4.
Regulation of skeletal muscle growth by the IGF1–Akt/PKB pathway: insights from genetic models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFShurk%3D&md5=6a2ecb38ed30930a568f4079ee93382fCAS | 21798082PubMed |

Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J., and Baskin, D. G. (2000). Central nervous system control of food intake. Nature 404, 661–671.
| 1:CAS:528:DC%2BD3cXis1Grur4%3D&md5=abcdebe7204d862a8a05e7851cb01ef3CAS | 10766253PubMed |

Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H., Tempst, P., Rudnicki, M. A., Beier, D. R., and Spiegelman, B. M. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967.
PRDM16 controls a brown fat/skeletal muscle switch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWns7%2FN&md5=c9cdef098b3691abf44a71cb4ea5e26eCAS | 18719582PubMed |

Sébert, S. P., Hyatt, M. A., Chan, L. L., Patel, N., Bell, R. C., Keisler, D., Stephenson, T., Budge, H., Symonds, M. E., and Gardner, D. S. (2009). Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity. Endocrinology 150, 634–641.
Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity.Crossref | GoogleScholarGoogle Scholar | 18818297PubMed |

Seisenberger, S., Peat, J. R., and Reik, W. (2013). Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr. Opin. Cell Biol. 25, 281–288.
Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1KrsLk%3D&md5=fbc1433723a930923a7c242e8f47ad65CAS | 23510682PubMed |

Sharifabadi, H. R., Zamiri, M. J., Rowghani, E., and Bottje, W. G. (2012). Relationship between the activity of mitochondrial respiratory chain complexes and feed efficiency in fat-tailed Ghezel lambs. J. Anim. Sci. 90, 1807–1815.
Relationship between the activity of mitochondrial respiratory chain complexes and feed efficiency in fat-tailed Ghezel lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWgsb4%3D&md5=142f94b9e076f0598b5a0b7c10483702CAS | 22147474PubMed |

Sharpe, R. M., McKinnell, C., Kivlin, C., and Fisher, J. S. (2003). Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784.
Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFelt7c%3D&md5=10cf4b0261e962d361c84957f26be906CAS | 12773099PubMed |

Shin, J., Velleman, S. G., Latshaw, J. D., Wick, M. P., Suh, Y., and Lee, K. (2009). The ontogeny of delta-like protein 1 messenger ribonucleic acid expression during muscle development and regeneration: comparison of broiler and leghorn chickens. Poult. Sci. 88, 1427–1437.
The ontogeny of delta-like protein 1 messenger ribonucleic acid expression during muscle development and regeneration: comparison of broiler and leghorn chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Omtb0%3D&md5=de2ceb4d8e98526dbf6f26612b56658eCAS | 19531714PubMed |

Shirane, K., Toh, H., Kobayashi, H., Miura, F., Chiba, H., Ito, T., Kono, T., and Sasaki, H. (2013). Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439.
Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1ejurw%3D&md5=7141afa7bdeb0ea15d72faf4491f4775CAS | 23637617PubMed |

Sibbald, A. M., and Davidson, G. C. (1998). The effect of nutrition during early life on voluntary food intake by lambs between weaning and 2 years of age. Anim. Sci. 66, 697–703.
The effect of nutrition during early life on voluntary food intake by lambs between weaning and 2 years of age.Crossref | GoogleScholarGoogle Scholar |

Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., Cohen, T., Xia, J., Suderman, M., Hallett, M., Trasler, J., Peters, A. H., and Kimmins, S. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006.
Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.Crossref | GoogleScholarGoogle Scholar | 26449473PubMed |

Sinclair, K. D., Broadbent, P. J., and Dolman, D. F. (1995). In vitro produced embryos as a means of achieving pregnancy and improving productivity in beef cows. Anim. Sci. 60, 55–64.
In vitro produced embryos as a means of achieving pregnancy and improving productivity in beef cows.Crossref | GoogleScholarGoogle Scholar |

Sinclair, K. D., Young, L. E., Wilmut, I., and McEvoy, T. G. (2000). In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Hum. Reprod. 15, 68–86.
In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men.Crossref | GoogleScholarGoogle Scholar | 11263539PubMed |

Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl Acad. Sci. USA 104, 19 351–19 356.
DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjug%3D%3D&md5=75bba51e8598b1ca3ed0d168ef755b4cCAS |

Skinner, M. K., Manikkam, M., and Guerrero-Bosagna, C. (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol. Metab. 21, 214–222.
Epigenetic transgenerational actions of environmental factors in disease etiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVejtLc%3D&md5=42dfc0362c4e143155e65b513bd50548CAS | 20074974PubMed |

Smallwood, S. A., and Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42.
De novo DNA methylation: a germ cell perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2msA%3D%3D&md5=44574d749151e47986ba566827c0afb3CAS | 22019337PubMed |

Smit, M. N., Spencer, J. D., Almeida, F. R. C. L., Patterson, J. L., Chiarini-Garcia, H., Dyck, M. K., and Foxcroft, G. R. (2013). Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig. Animal 7, 1681–1689.
Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sjnslyrtw%3D%3D&md5=9af1db00edb6f0eddbd8352f8dc2ad04CAS | 23822933PubMed |

Smith, J. A., Lewis, A. M., Wiener, P., and Williams, J. L. (2000). Genetic variation in the bovine myostatin gene in UK beef cattle: allele frequencies and haplotype analysis in the South Devon. Anim. Genet. 5, 306–309.
Genetic variation in the bovine myostatin gene in UK beef cattle: allele frequencies and haplotype analysis in the South Devon.Crossref | GoogleScholarGoogle Scholar |

Smith, L. C., Suzuki, J., Goff, A. K., Filion, F., Therrien, J., Murphy, B. D., Kohan-Ghadr, H. R., Lefebvre, R., Brisville, A. C., Buczinski, S., Fecteau, G., Perecin, F., and Meirelles, F. V. (2012). Developmental and epigenetic anomalies in cloned cattle. Reprod. Domest. Anim. 47, 107–114.
Developmental and epigenetic anomalies in cloned cattle.Crossref | GoogleScholarGoogle Scholar | 22827358PubMed |

Steegers-Theunissen, R. P., Twigt, J., Pestinger, V., and Sinclair, K. D. (2013). The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum. Reprod. Update 19, 640–655.
The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1GqurnM&md5=ec97771a71178d4c3ac06376edb63de9CAS | 23959022PubMed |

Stevens, A., Begum, G., Cook, A., Connor, K., Rumball, C., Oliver, M., Challis, J., Bloomfield, F., and White, A. (2010). Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 151, 3652–3664.
Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oju77J&md5=5caa46473163365bb0404088424e769eCAS | 20573728PubMed |

Sullivan, T. M., Micke, G. C., Greer, R. M., Irving-Rodgers, H. F., Rodgers, R. J., and Perry, V. E. A. (2009). Dietary manipulation of Bos indicus × heifers during gestation affects the reproductive development of their heifer calves. Reprod. Fertil. Dev. 21, 773–784.
Dietary manipulation of Bos indicus × heifers during gestation affects the reproductive development of their heifer calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOhu7Y%3D&md5=c685abd4b12a720747ac82ee77c7e914CAS | 19567220PubMed |

Sullivan, T. M., Micke, G. C., Greer, R. M., and Perry, V. E. (2010). Dietary manipulation of Bos indicus × heifers during gestation affects the prepubertal reproductive development of their bull calves. Anim. Reprod. Sci. 118, 131–139.
Dietary manipulation of Bos indicus × heifers during gestation affects the prepubertal reproductive development of their bull calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGltbo%3D&md5=7bf3a413b3a1cfb6b2acecb3c515f382CAS | 19671489PubMed |

Suteevun-Phermthai, T., Curchoe, C. L., Evans, A. C., Boland, E., Rizos, D., Fair, T., Duffy, P., Sung, L. Y., Du, F., Chaubal, S., Xu, J., Wechayant, T., Yang, X., Lonergan, P., Parnpai, R., and Tian, X. C. (2009). Allelic switching of the imprinted IGF2R gene in cloned bovine fetuses and calves. Anim. Reprod. Sci. 116, 19–27.
Allelic switching of the imprinted IGF2R gene in cloned bovine fetuses and calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKkt7jM&md5=b3b7e0459c1fe4fe7c1cc667666320c6CAS | 19217227PubMed |

Swali, A., and Wathes, D. C. (2006). Influence of the dam and sire on size at birth and subsequent growth, milk production and fertility in dairy heifers. Theriogenology 66, 1173–1184.
Influence of the dam and sire on size at birth and subsequent growth, milk production and fertility in dairy heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vps1yitA%3D%3D&md5=56e197d52db82210a11de727e1907485CAS | 16647111PubMed |

Swatland, H. J., and Cassens, R. G. (1972). Muscle growth: the problem of muscle fibers with an intrafascicular termination. J. Anim. Sci. 35, 336–344.
| 1:STN:280:DyaE383ms1Khsg%3D%3D&md5=71adf21e3cbe73357eb9280815e3e748CAS | 4115636PubMed |

Sweeney, T., Nicol, L., Roche, J. F., and Brooks, A. N. (2000). Maternal exposure to octylphenol suppresses ovine fetal follicle-stimulating hormone secretion, testis size, and Sertoli cell number. Endocrinology 141, 2667–2673.
| 1:CAS:528:DC%2BD3cXlt1Wmu70%3D&md5=4823169c6fc92cf566e750a3dd12ae3eCAS | 10875272PubMed |

Sweeney, T., Fox, J., Robertson, L., Kelly, G., Duffy, P., Lonergan, P., O’Doherty, J., Roche, J. F., and Evans, N. P. (2007). Postnatal exposure to octylphenol decreases semen quality in the adult ram. Theriogenology 67, 1068–1075.
Postnatal exposure to octylphenol decreases semen quality in the adult ram.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFOnsrs%3D&md5=5e6ff1d1f47912c3c612bba41cb89b44CAS | 17284332PubMed |

Sweetman, D. (2012). The myogenic regulatory factors: critical determinants of muscle identity in development, growth and regeneration. In ‘Skeletal Muscle: From Myogenesis to Clinical Relations’. (Ed. J. Cseri.) pp. 31–48. (Intech.: Rijeka, Croatia.)

Symonds, M. E., Bryant, M. J., Shepherd, D. A., and Lomax, M. A. (1988). Glucose metabolism in shorn and unshorn pregnant sheep. Br. J. Nutr. 60, 249–263.
Glucose metabolism in shorn and unshorn pregnant sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1OrsLo%3D&md5=22743408b49c831f4dbed340afc49212CAS | 3143399PubMed |

Takahashi, S., and Yoshihiko, I. (2004). Evaluation of meat products from cloned cattle: biological and biochemical properties. Cloning Stem Cells 6, 165–171.
Evaluation of meat products from cloned cattle: biological and biochemical properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFeltb4%3D&md5=fbdee5c317b482f9dfe29ff6ee88ad85CAS | 15268791PubMed |

Tang, W.-Y., Newbold, R., Mardilovich, K., Jefferson, W., Cheng, R. Y. S., Medvedovic, M., and Ho, S.-M. (2008). Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149, 5922–5931.
Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGltrzP&md5=e0abd80be568f7109658ac7ee3988e47CAS | 18669593PubMed |

Tao, S., Monteiro, A. P. A., Thompson, I. M., Hayen, M. J., and Dahl, G. E. (2012). Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J. Dairy Sci. 95, 7128–7136.
Effect of late-gestation maternal heat stress on growth and immune function of dairy calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gu7vF&md5=e9dd39b81d8996fc05ca406a19088884CAS | 23021751PubMed |

Tellam, R. L., Cockett, N. E., Vuocolo, T., and Bidwell, C. A. (2012). Genes contributing to genetic variation of muscling in sheep. Front. Genet. 3, 164.
Genes contributing to genetic variation of muscling in sheep.Crossref | GoogleScholarGoogle Scholar | 22952470PubMed |

Thayer, K., Heindel, J., Bucher, J., and Gallo, M. (2012). Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ. Health Perspect. 120, 779–789.
Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOjtrbN&md5=2ef353a13fe4be5c497bec6bd3bba335CAS | 22296744PubMed |

Thurston, A., Taylor, J., Gardner, J., Sinclair, K. D., and Young, L. E. (2008). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction 135, 29–40.
Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1CksL0%3D&md5=0fe2a04c59dd34bcfe13e2a93504b98aCAS | 18159081PubMed |

Tiemann, U., Pohland, R., and Schneider, F. (1996). Influence of organochlorine pesticides on physiological potency of cultured granulosa cells from bovine preovulatory follicles. Theriogenology 46, 253–265.
Influence of organochlorine pesticides on physiological potency of cultured granulosa cells from bovine preovulatory follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVShsLs%3D&md5=1b7914da82f310b12f4d70379647d97bCAS | 16727895PubMed |

Tomé, D., Dubarry, M., and Fromentin, G. (2004). Nutritional value of milk and meat products derived from cloning. Cloning Stem Cells 6, 172–177.
Nutritional value of milk and meat products derived from cloning.Crossref | GoogleScholarGoogle Scholar | 15268792PubMed |

Tomizawa, S., Nowacka-Woszuk, J., and Kelsey, G. (2012). DNA methylation establishment during oocyte growth: mechanisms and significance. Int. J. Dev. Biol. 56, 867–875.
DNA methylation establishment during oocyte growth: mechanisms and significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyqsLY%3D&md5=184a63c79ef7bf989fdc67a1b58c2557CAS | 23417409PubMed |

Tsumagari, K., Baribault, C., Terragni, J., Varley, K. E., Gertz, J., Pradhan, S., Badoo, M., Crain, C. M., Song, L., Crawford, G. E., Myers, R. M., Lacey, M., and Ehrlich, M. (2013). Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics 8, 317–332.
Early de novo DNA methylation and prolonged demethylation in the muscle lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVantLw%3D&md5=b07c120b0b2f8464e72c62c83ccf1ad6CAS | 23417056PubMed |

Tuchscherer, M., Kanitz, E., Otten, W., and Tuchscherer, A. (2002). Effects of prenatal stress on cellular and humoral immune response in neonatal pigs. Vet. Immunol. Immunopathol. 86, 195–203.
Effects of prenatal stress on cellular and humoral immune response in neonatal pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVSqtb0%3D&md5=591ab6336600bb8b96458aa2924e17ddCAS | 12007885PubMed |

Tuchscherer, M., Otten, W., Kanitz, E., Grabner, M., Tuchscherer, A., Bellmann, O., Rehfeldt, C., and Metges, C. (2012). Effects of inadequate maternal dietary protein: carbohydrate ratios during pregnancy on offspring immunity in pigs. BMC Vet. Res. 8, 232.
Effects of inadequate maternal dietary protein: carbohydrate ratios during pregnancy on offspring immunity in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOltb0%3D&md5=95c853da83d5e21c0cab9899d8af4c97CAS | 23190629PubMed |

Valasek, P., Theis, S., DeLaurier, A., Hinits, Y., Luke, G. N., Otto, A. M., Minchin, J., He, L., Christ, B., Brooks, G., Sang, H., Evans, D. J., Logan, M., Huang, R., and Patel, K. (2011). Cellular and molecular investigations into the development of the pectoral girdle. Dev. Biol. 357, 108–116.
Cellular and molecular investigations into the development of the pectoral girdle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWrs7rP&md5=ab991ee31b5f0d349b3f31ab6c3e5955CAS | 21741963PubMed |

Vallet, J. L., McNeel, A. K., Johnson, G., and Bazer, F. W. (2013). Triennial Reproduction Symposium: limitations in uterine and conceptus physiology that lead to fetal losses. J. Anim. Sci. 91, 3030–3040.
Triennial Reproduction Symposium: limitations in uterine and conceptus physiology that lead to fetal losses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFChsL3N&md5=a4e82971d7fd69853853596058771041CAS | 23798512PubMed |

van der Linden, D. S., Kenyon, P. R., Blair, H. T., Lopez-Vilalobos, N., Jenkinson, C. M. C., Peterson, S. W., and Mackenzie, D. D. S. (2009). Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation. J. Anim. Sci. 87, 3944–3954.
Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhs7bO&md5=c169466ae68a8b174b9847d5938da160CAS | 19684261PubMed |

van Wagtendonk-de Leeuw, A. M., Mullaart, E., de Roos, A. P., Merton, J. S., den Daas, J. H., Kemp, B., and de Ruigh, L. (2000). Effects of different reproduction techniques: AI MOET or IVP, on health and welfare of bovine offspring. Theriogenology 53, 575–597.
Effects of different reproduction techniques: AI MOET or IVP, on health and welfare of bovine offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFahtA%3D%3D&md5=f6a087098732d6e3a5b6aae8cb499b79CAS | 10735051PubMed |

Veiga-Lopez, A., Luense, L. J., Christenson, L. K., and Padmanabhan, V. (2013). Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology 154, 1873–1884.
Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFWks70%3D&md5=2ef17829a4033b5c106aabb8a921f08eCAS | 23525218PubMed |

Vilette, Y., and Theriez, M. (1981). Influence of birth weight on lamb performance. I. Level of feed intake and growth. Ann. Zootech. 30, 151–168.

Villette, Y., and Theriez, M. (1983). Milk intake in lambs suckled by their dams during the first week of life. Ann. Zootech. 30, 169–182.
Milk intake in lambs suckled by their dams during the first week of life.Crossref | GoogleScholarGoogle Scholar |

Vincent, I. C., Williams, H. L., and Hill, R. (1985). The influence of a low-nutrient intake after mating on gestation and perinatal survival of lambs. Br. Vet. J. 141, 611–617.
The influence of a low-nutrient intake after mating on gestation and perinatal survival of lambs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2Flt1Grsw%3D%3D&md5=feabfe95a4fca74c02572615a3ee31a5CAS | 4063783PubMed |

Vonnahme, K. A., Wilson, M. E., Foxcroft, G. R., and Ford, S. P. (2002). Impacts of conceptus survival in a commercial swine herd. J. Anim. Sci. 84, 2316–2337.

Wagner, K. D., Wagner, N., Ghanbarian, H., Grandjean, V., Gounon, P., Cuzin, F., and Rassoulzadegan, M. (2008). RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev. Cell 14, 962–969.
RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVCrsbc%3D&md5=4abaa53ee39da3acb394086c751cf82eCAS | 18539123PubMed |

Walker, S. K., Hartwich, K. M., and Seamark, R. F. (1996). The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology 45, 111–120.
The production of unusually large offspring following embryo manipulation: concepts and challenges.Crossref | GoogleScholarGoogle Scholar |

Wallace, C. (1953). Observations on mammary development in calves and lambs. J. Agric. Sci. 43, 413–421.
Observations on mammary development in calves and lambs.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. M. (2011). Adaptive maternal, placental and fetal responses to nutritional extremes in the pregnant adolescent: lessons from sheep. In ‘Reproduction and Adaptation’. (Eds C. G. N. Mascie-Taylor and L. Rosetta.) pp. 112–127. (Cambridge University Press.)

Wallace, J. M., Milne, J. S., Green, L. R., and Aitken, R. P. (2011a). Postnatal hypothalamic-pituitary-adrenal function in sheep is influenced by age and sex, but not by prenatal growth restriction. Reprod. Fertil. Dev. 23, 275–284.
Postnatal hypothalamic-pituitary-adrenal function in sheep is influenced by age and sex, but not by prenatal growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFeqsA%3D%3D&md5=47b37ef1c47cf6b9d610410f15a82992CAS | 21211460PubMed |

Wallace, J. M., Aitken, R. P., Milne, J. S., Bake, T., and Adam, C. L. (2011b). Growth, body composition and metabolism in neonatal and adolescent life stages in low birth weight offspring. Proc. Nutr. Soc. 70, OCE1.
Growth, body composition and metabolism in neonatal and adolescent life stages in low birth weight offspring.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. M., Milne, J. S., Aitken, R. P., and Adam, C. L. (2014a). Impact of embryo donor adiposity, birthweight and gender on early postnatal growth, glucose metabolism and body composition in the young lamb. Reprod. Fertil. Dev. 26, 665–681.
Impact of embryo donor adiposity, birthweight and gender on early postnatal growth, glucose metabolism and body composition in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVentb3K&md5=2f5ff6a0055992f18ec17d4e5deea09dCAS | 23714163PubMed |

Wallace, J. M., Milne, J. S., Aitken, R. P., and Adam, C. L. (2014b). Influence of birthweight and gender on lipid status and adipose tissue gene expression in lambs. J. Mol. Endocrinol. 53, 131–144.
Influence of birthweight and gender on lipid status and adipose tissue gene expression in lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1enu7nL&md5=d9e631447b7fa121d569f6a3f42a84deCAS | 24928206PubMed |

Wallace, J. M., Milne, J. S., Aitken, R. P., Redmer, D. A., Reynolds, L. P., Luther, J. S., Horgan, G. W., and Adam, C. L. (2015). Undernutrition and stage of gestation influence fetal adipose tissue gene expression. J. Mol. Endocrinol. 54, 263–275.
Undernutrition and stage of gestation influence fetal adipose tissue gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFKjtLnE&md5=1e4dfda69c2dc7c89a137461069f3098CAS | 25917833PubMed |

Warnes, K. E., Morris, M. J., Symonds, M. E., Phillips, I. D., Clarke, I. J., Owens, J. A., and McMillen, I. C. (1998). Effects of increasing gestation, cortisol and maternal undernutrition on hypothalamic neuropeptide Y expression in the sheep fetus. J. Neuroendocrinol. 10, 51–57.
Effects of increasing gestation, cortisol and maternal undernutrition on hypothalamic neuropeptide Y expression in the sheep fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFOiu7k%3D&md5=3b9c36bada280b044842856424ad79d3CAS | 9510058PubMed |

Warrington, B. G., Byers, F. M., Schelling, G. T., Forrest, D. W., Baker, J. F., and Greene, L. W. (1988). Gestation nutrition, tissue exchange and maintenance requirements of heifers. J. Anim. Sci. 66, 774–782.
| 1:STN:280:DyaL1c3ktlGnsQ%3D%3D&md5=fdf04723ef48cf415a014801e9a4ada6CAS | 3378933PubMed |

Watanabe, S., and Nagai, T. (2008). Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan. J. Reprod. Dev. 54, 6–17.
Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.Crossref | GoogleScholarGoogle Scholar | 18319570PubMed |

Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., and Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854.
Epigenetic programming by maternal behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVamt7c%3D&md5=6563ea224e434bf3117919fe39a741ceCAS | 15220929PubMed |

Wei, Y., Yang, C. R., Wei, Y. P., Zhao, Z. A., Hou, Y., Schatten, H., and Sun, Q. Y. (2014). Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878.
Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFyjs7c%3D&md5=fb27a6013aad55a49cc21e625103c268CAS | 24449870PubMed |

White, P. J., Windsor, P. A., Dhand, N. K., and Toribio, J. A. L. M. L. (2010b). Risk factors for congenital chondrodystrophy of unknown origin in beef cattle herds in south-eastern Australia. Prev. Vet. Med. 96, 36–48.
Risk factors for congenital chondrodystrophy of unknown origin in beef cattle herds in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 20638972PubMed |

Wijchers, P. J., and Festenstein, R. J. (2011). Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet. 27, 132–140.
Epigenetic regulation of autosomal gene expression by sex chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2murg%3D&md5=a1ee1cd8dbfd7589674fb79fa713399bCAS | 21334089PubMed |

Wilkins, J. F., Fry, R. C., Hearnshaw, H., Cafe, L. M., and Greenwood, P. L. (2006). Ovarian activity in heifers at 30 months of age following high or low growth in utero and from birth to weaning. In ‘Australian Society of Animal Production 26th Biennial Conference’. (Eds K. Cocker, N. Adams and D. Lindsay.) (Australian Society of Animal Production: Perth.)

Wilson, S. J., Mcewan, J. C., Sheard, P. W., and Harris, A. J. (1992). Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle. J. Muscle Res. Cell Motil. 13, 534–550.
Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2FpsVegtA%3D%3D&md5=3eb52edd84560ed773cd355b681e1013CAS | 1460082PubMed |

Wossidlo, M., Arand, J., Sebastiano, V., Lepikhov, K., Boiani, M., Reinhardt, R., Scholer, H., and Walter, J. (2010). Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29, 1877–1888.
Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVWjsLY%3D&md5=9e18d6f6f3a38a3ff3338d8f1b2b7f78CAS | 20442707PubMed |

Wrathall, A. E., Holyoak, G. R., Parsonson, I. M., and Simmons, H. A. (2008). Risks of transmitting ruminant spongiform encephalopathies (prion diseases) by semen and embryo transfer techniques. Theriogenology 70, 725–745.
Risks of transmitting ruminant spongiform encephalopathies (prion diseases) by semen and embryo transfer techniques.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crjtVyqsQ%3D%3D&md5=07150a421afcec3d165bf42089af4f3fCAS | 18586320PubMed |

Wright, C., Evans, A. C., Evans, N. P., Duffy, P., Fox, J., Boland, M. P., Roche, J. F., and Sweeney, T. (2002). Effect of maternal exposure to the environmental estrogen, octylphenol, during fetal and/or postnatal life on onset of puberty, endocrine status, and ovarian follicular dynamics in ewe lambs. Biol. Reprod. 67, 1734–1740.
Effect of maternal exposure to the environmental estrogen, octylphenol, during fetal and/or postnatal life on onset of puberty, endocrine status, and ovarian follicular dynamics in ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVels7Y%3D&md5=157f0f841d5b79ce5f3db87196ffb64dCAS | 12444047PubMed |

Wu, G., Bazer, F. W., Wallace, J. M., and Spencer, T. E. (2006). Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.
Board-invited review: intrauterine growth retardation: implications for the animal sciences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFGktLs%3D&md5=b593f5476e5a12e92c091576679dd13eCAS | 16908634PubMed |

Wu, J., Boström, P., Sparks Lauren, M., Ye, L., Choi Jang, H., Giang, A.-H., Khandekar, M., Virtanen Kirsi, A., Nuutila, P., Schaart, G., Huang, K., Tu, H., van Marken Lichtenbelt Wouter, D., Hoeks, J., Enerbäck, S., Schrauwen, P., and Spiegelman Bruce, M. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376.
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVekur3I&md5=c4ca93fc0f9ae575c0e6863be7427dc3CAS | 22796012PubMed |

Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=47d38389154db7dca4d8ad6cda8d16f6CAS | 9829550PubMed |

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGktL8%3D&md5=eb2f860a259dfd94c8b31fde3d21914aCAS | 11175780PubMed |

Young, L. E., Schnieke, A. E., McCreath, K. J., Wieckowski, S., Konfortova, G., Fernandes, K., Ptak, G., Kind, A. J., Wilmut, I., Loi, P., and Feil, R. (2003). Conservation of IGF2–H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mech. Dev. 120, 1433–1442.
Conservation of IGF2–H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlyns7Y%3D&md5=e3f81b71582f35ffd412cc7e502cce5eCAS | 14654216PubMed |

Yuan, S., Oliver, D., Schuster, A., Zheng, H., and Yan, W. (2015). Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci. Rep. 5, 9266.
Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosVKnt74%3D&md5=46d994e9e378c191e6e68553e0a07911CAS | 25783852PubMed |

Zuena, A. R., Mairesse, J., Casolini, P., Cinque, C., Alema, G. S., Morley-Fletcher, S., Chiodi, V., Spagnoli, L. G., Gradini, R., Catalani, A., Nicoletti, F., and Maccari, S. (2008). Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One 3, e2170.
Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats.Crossref | GoogleScholarGoogle Scholar | 18478112PubMed |