Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Methylated oligonucleotide (MON)-induced promoter hypermethylation is associated with repression of CDH1 expression and contributes to the migration and invasion of human trophoblast cell lines

Xi Lan A , Li-Juan Fu B , Zhuo-Ying Hu C , Qian Feng A , Xue-Qing Liu A , Xue Zhang A , Xue-Mei Chen A , Jun-Lin He A , Ying-Xiong Wang A and Yu-Bin Ding A D
+ Author Affiliations
- Author Affiliations

A Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China.

B School of Traditional Chinese Medicine, Chongqing Medical University, No.1 Yixueyuan Rd, Chongqing, 400016, P.R. China.

C Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Rd, Chongqing, 400016, P.R. China.

D Corresponding author. Email: dingyb@gmail.com

Reproduction, Fertility and Development 29(8) 1509-1520 https://doi.org/10.1071/RD16031
Submitted: 12 February 2016  Accepted: 20 June 2016   Published: 21 July 2016

Abstract

DNA cytosine-5 methylation plays a vital role in regulating the expression of E-cadherin, which is encoded by the CDH1 gene. In this study, we characterised the DNA methylation and expression pattern of CDH1 in an extravillous trophoblast cell line (HTR-8/SVneo) and two trophoblast cell lines ­– JEG-3 and JAR. Promoter hypermethylation with reduced E-cadherin expression in HTR-8/SVneo cells and promoter hypomethylation with increased E-cadherin expression in JEG-3 and JAR cells were observed. Demethylation treatment significantly restored E-cadherin expression, contributing to decreases in the motility and invasiveness of HTR-8/SVneo cells. Sense-methylated oligonucleotides (MONs) labelled with Cy5 and complementary to a region of the human CDH1 promoter were designed, with the cytosines in 5′-cytosine-phosphate-guanine-3′ (CpG) dinucleotides being replaced by methylated cytosines. Following MON transfection into JEG-3 cells, the level of CDH1 promoter DNA methylation as well as cell motility and invasiveness were increased and gene expression was significantly repressed. Our results indicate that MON-mediated DNA methylation of the CDH1 promoter and subsequent alterations in gene expression may contribute to trophoblast motility and invasion, suggesting a potential method for controlling the biological function of trophoblasts in vitro through epigenetic modification.

Additional keywords: DNA methylation, E-cadherin, implantation, pregnancy complications.


References

Adhikary, A., Chakraborty, S., Mazumdar, M., Ghosh, S., Mukherjee, S., Manna, A., Mohanty, S., Nakka, K. K., Joshi, S., De, A., Chattopadhyay, S., Sa, G., and Das, T. (2014). Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of slug transcription and inhibition of E-cadherin degradation: dual role of scaffold/matrix attachment region-binding protein 1 (SMAR1) in breast cancer cells. J. Biol. Chem. 289, 25431–25444.
Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of slug transcription and inhibition of E-cadherin degradation: dual role of scaffold/matrix attachment region-binding protein 1 (SMAR1) in breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFeqsr7J&md5=e4a21383073c9b83c3d3083ffa4e9eb4CAS | 25086032PubMed |

Antoun, G., Baylin, S. B., and Ali-Osman, F. (2000). DNA methyltransferase levels and altered CpG methylation in the total genome and in the GSTP1 gene in human glioma cells transfected with sense and antisense DNA methyltransferase cDNA. J. Cell. Biochem. 77, 372–381.
DNA methyltransferase levels and altered CpG methylation in the total genome and in the GSTP1 gene in human glioma cells transfected with sense and antisense DNA methyltransferase cDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFWjtb8%3D&md5=9340efbb9012e29eeda0ca870a520f06CAS | 10760946PubMed |

Babawale, M. O., VanNoorden, S., Pignatelli, M., Stamp, G. W. H., Elder, M. G., and Sullivan, M. H. F. (1996). Morphological interactions of human first trimester placental villi co-cultured with decidual explants. Hum. Reprod. 11, 444–450.
Morphological interactions of human first trimester placental villi co-cultured with decidual explants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ls12nsg%3D%3D&md5=1edbe6711723cc04c8735afab2b9383fCAS | 8671240PubMed |

Babawale, M. O., Mobberley, M. A., Ryder, T. A., Elder, M. G., and Sullivan, M. H. F. (2002). Ultrastructure of the early human feto­–maternal interface co-cultured in vitro. Hum. Reprod. 17, 1351–1357.
Ultrastructure of the early human feto­–maternal interface co-cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383pvFOhsg%3D%3D&md5=c7ccdef9819cd9313d71c64a3319314aCAS | 11980764PubMed |

Barber, A., Robson, S. C., Myatt, L., Bulmer, J. N., and Lyall, F. (2001). Heme oxygenase expression in human placenta and placental bed: reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction. FASEB J. 15, 1158–1168.
Heme oxygenase expression in human placenta and placental bed: reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOmsL4%3D&md5=3af5f67ce6390402f16553187ba90981CAS | 11344084PubMed |

Batistatou, A., Makrydimas, G., Zagorianakou, N., Zagorianakou, P., Nakanishi, Y., Agnantis, N. J., Hirohashi, S., and Charalabopoulos, K. (2007). Expression of dysadherin and E-cadherin in trophoblastic tissue in normal and abnormal pregnancies. Placenta 28, 590–592.
Expression of dysadherin and E-cadherin in trophoblastic tissue in normal and abnormal pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksV2mt7o%3D&md5=e72516325c9042a98000ed99d39b8010CAS | 17084448PubMed |

Birchmeier, W. (1995). E-cadherin as a tumor (invasion) suppressor gene. BioEssays 17, 97–99.
E-cadherin as a tumor (invasion) suppressor gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlems70%3D&md5=4d8183cdba5f076287d1c5762f8a5b71CAS | 7748170PubMed |

Bólos, V., Peinado, H., Pérez-Moreno, M. A., Fraga, M. F., Esteller, M., and Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511.
The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors.Crossref | GoogleScholarGoogle Scholar | 12508111PubMed |

Cartwright, J. E., Fraser, R., Leslie, K., Wallace, A. E., and James, J. L. (2010). Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders. Reproduction 140, 803–813.
Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtLk%3D&md5=be7589d15d1a0f3697352ac970ade53aCAS | 20837731PubMed |

DaSilva-Arnold, S., James, J. L., Al-Khan, A., Zamudio, S., and Illsley, N. P. (2015). Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial–mesenchymal transition. Placenta 36, 1412–1418.
Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial–mesenchymal transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslKktb7J&md5=a723e8763b50f55a1de2f7b4814f9852CAS | 26545962PubMed |

Eder, P. S., DeVine, R. J., Dagle, J. M., and Walder, J. A. (1991). Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res. Dev. 1, 141–151.
Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVyhtbY%3D&md5=b0bcc29703b93b29840bc51776b5da2eCAS | 1841656PubMed |

Fitzgerald, J. S., Poehlmann, T. G., Schleussner, E., and Markert, U. R. (2008). Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3). Hum. Reprod. Update 14, 335–344.
Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1SksL0%3D&md5=e0d6ff2535527b0fff5358c2b8ef2761CAS | 18424427PubMed |

Floridon, C., Nielsen, O., Holund, B., Sunde, L., Westergaard, J. G., Thomsen, S. G., and Teisner, B. (2000). Localization of E-cadherin in villous, extravillous and vascular trophoblasts during intrauterine, ectopic and molar pregnancy. Mol. Hum. Reprod. 6, 943–950.
Localization of E-cadherin in villous, extravillous and vascular trophoblasts during intrauterine, ectopic and molar pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslSgt7c%3D&md5=1adf534238ca643a158d3b5e1f334b38CAS | 11006324PubMed |

Friedl, P., and Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374.
Tumour-cell invasion and migration: diversity and escape mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlals7o%3D&md5=06dc1dbaa9647a7a9630da49ffd794bdCAS | 12724734PubMed |

Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Lochner, D., and Birchmeier, W. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 113, 173–185.
E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVejur8%3D&md5=78d1974187d04fae085f420091f57e44CAS | 2007622PubMed |

Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., and Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211.
Establishment and characterization of first trimester human trophoblast cells with extended lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1OisL0%3D&md5=8e6874b29556910a0c9403e847ce2e0eCAS | 7684692PubMed |

Hajra, K. M., Ji, X., and Fearon, E. R. (1999). Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18, 7274–7279.
Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpvVKq&md5=07057767acc4852f1b9d1042f25df213CAS | 10602481PubMed |

Hmadcha, A., Bedoya, F. J., Sobrino, F., and Pintado, E. (1999). Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J. Exp. Med. 190, 1595–1604.
Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvF2nsbg%3D&md5=587c2e50a8738382a64e0075a89765ddCAS | 10587350PubMed |

Hodge, D. R., Xiao, W., Clausen, P. A., Heidecker, G., Szyf, M., and Farrar, W. L. (2001). Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J. Biol. Chem. 276, 39508–39511.
Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGisb4%3D&md5=834948529c3dfad657f8bb091e1a90b3CAS | 11551897PubMed |

Hoffman, A. R., and Hu, J. F. (2006). Directing DNA methylation to inhibit gene expression. Cell. Mol. Neurobiol. 26, 425–438.
| 1:CAS:528:DC%2BD28XhtleksbzJ&md5=a6c9b3b8f4db28a573f8752510d156c0CAS | 16710755PubMed |

Hoffmann, P., Saoudi, Y., Benharouga, M., Graham, C. H., Schaal, J. P., Mazouni, C., Feige, J. J., and Alfaidy, N. (2009). Role of EG-VEGF in human placentation: physiological and pathological implications. J. Cell. Mol. Med. 13, 2224–2235.
Role of EG-VEGF in human placentation: physiological and pathological implications.Crossref | GoogleScholarGoogle Scholar | 19602057PubMed |

Hu, Y., Blair, J. D., Yuen, R. K. C., Robinson, W. P., and von Dadelszen, P. (2015). Genome-wide DNA methylation identifies trophoblast invasion-related genes: claudin-4 and fucosyltransferase IV control mobility via altering matrix metalloproteinase activity. Mol. Hum. Reprod. 21, 452–465.
Genome-wide DNA methylation identifies trophoblast invasion-related genes: claudin-4 and fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.Crossref | GoogleScholarGoogle Scholar | 25697377PubMed |

Ishii, T., Fujishiro, M., Masuda, M., Teramoto, S., and Matsuse, T. (2004). A methylated oligonucleotide induced methylation of GSTP1 promoter and suppressed its expression in A549 lung adenocarcinoma cells. Cancer Lett. 212, 211–223.
A methylated oligonucleotide induced methylation of GSTP1 promoter and suppressed its expression in A549 lung adenocarcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFyqtbY%3D&md5=e57a466c529b49a70ecaecf93e53678bCAS | 15279901PubMed |

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996–1006.
The human genome browser at UCSC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks12hs7s%3D&md5=db0a84e389522a13b65fa464e48991e0CAS | 12045153PubMed |

Knöfler, M. (2010). Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol. 54, 269–280.
Critical growth factors and signalling pathways controlling human trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 19876833PubMed |

Lewis-Tuffin, L. J., Rodriguez, F., Giannini, C., Scheithauer, B., Necela, B. M., Sarkaria, J. N., and Anastasiadis, P. Z. (2010). Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One 5, e13665.
Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype.Crossref | GoogleScholarGoogle Scholar | 21060868PubMed |

Li, H. L., and Ma, A. N. (2010). Induction of apoptosis of non-small cell lung cancer by a methylated oligonucleotide targeting survivin gene. Cancer Gene Ther. 17, 441–446.
Induction of apoptosis of non-small cell lung cancer by a methylated oligonucleotide targeting survivin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1KisQ%3D%3D&md5=a1c7dc29dc704ccfe617b0067cf1c7cfCAS | 20094073PubMed |

Li, X. Q., Pei, D. S., Qian, G. W., Yin, X. X., Cheng, Q., Li, L. T., Li, H. Z., and Zheng, J. N. (2011). The effect of methylated oligonucleotide targeting Ki-67 gene in human 786–0 renal carcinoma cells. Tumour Biol. 32, 863–872.
The effect of methylated oligonucleotide targeting Ki-67 gene in human 786–0 renal carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGisL7F&md5=a6203b61ce803ae0e5cb0440d612c948CAS | 21598043PubMed |

Li, X. L., Dong, X., Xue, Y., Li, C. F., Gou, W. L., and Chen, Q. (2014). Increased expression levels of E-cadherin, cytokeratin 18 and 19 observed in preeclampsia were not correlated with disease severity. Placenta 35, 625–631.
Increased expression levels of E-cadherin, cytokeratin 18 and 19 observed in preeclampsia were not correlated with disease severity.Crossref | GoogleScholarGoogle Scholar | 24857367PubMed |

Ma, A. N., Huang, W. L., Wu, Z. N., Hu, J. F., Li, T., Zhou, X. J., and Wang, Y. X. (2010). Induced epigenetic modifications of the promoter chromatin silence survivin and inhibit tumor growth. Biochem. Biophys. Res. Commun. 393, 592–597.
Induced epigenetic modifications of the promoter chromatin silence survivin and inhibit tumor growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Onsbk%3D&md5=218a00abcf91dabbbb22a63273578a72CAS | 20152814PubMed |

Nakashima, A., Shiozaki, A., Myojo, S., Ito, M., Tatematsu, M., Sakai, M., Takamori, Y., Ogawa, K., Nagata, K., and Saito, S. (2008). Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion. Am. J. Pathol. 173, 653–664.
Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCit7bM&md5=b1b5c100928f54fe4186b24a8d75eef2CAS | 18688023PubMed |

Niewiadomska, P., Godt, D., and Tepass, U. (1999). DE-cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547.
DE-cadherin is required for intercellular motility during Drosophila oogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFGqsr4%3D&md5=2a8657bc245bb2ba4eb6f47b15e390aaCAS | 9971747PubMed |

Novakovic, B., Gordon, L., Wong, N. C., Moffett, A., Manuelpillai, U., Craig, J. M., Sharkey, A., and Saffery, R. (2011). Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function. Mol. Hum. Reprod. 17, 344–353.
Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOlsbk%3D&md5=77ce2d1611d0fc17f9c210e08d1bca56CAS | 21289002PubMed |

Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548.
Sticky business: orchestrating cellular signals at adherens junctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1SnsLc%3D&md5=b65f6aa64102e5e0e9d5165f50f90574CAS | 12600316PubMed |

Rahnama, F., Shafiei, F., Gluckman, P. D., Mitchell, M. D., and Lobie, P. E. (2006). Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology 147, 5275–5283.
Epigenetic regulation of human trophoblastic cell migration and invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgsLrE&md5=e16ebde14ead40d268c20a6be0aee5b6CAS | 16887905PubMed |

Rodriguez, F. J., Lewis-Tuffin, L. J., and Anastasiadis, P. Z. (2012). E-cadherin’s dark side: possible role in tumor progression. Biochim. Biophys. Acta 1826, 23–31.
| 1:CAS:528:DC%2BC38Xns1Cgsr4%3D&md5=0dce90982b191137542b555b874da03fCAS | 22440943PubMed |

Shah, P. P., and Kakar, S. S. (2011). Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of Twist, Snail, Slug, and E-cadherin. Cancer Lett. 311, 66–76.
Pituitary tumor transforming gene induces epithelial to mesenchymal transition by regulation of Twist, Snail, Slug, and E-cadherin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2iu7bO&md5=c32c6aae3521df13f86fbce7cc285144CAS | 21839581PubMed |

Shamir, E. R., and Ewald, A. J. (2015). Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr. Top. Dev. Biol. 112, 353–382.
Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration.Crossref | GoogleScholarGoogle Scholar | 25733146PubMed |

Shih, I. M., Hsu, M. Y., Oldt, R. J., Herlyn, M., Gearhart, J. D., and Kurman, R. J. (2002). The role of E-cadherin in the motility and invasion of implantation site intermediate trophoblast. Placenta 23, 706–715.
The role of E-cadherin in the motility and invasion of implantation site intermediate trophoblast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptV2ntb4%3D&md5=8d9ad9276968a1e83885f42095a116f4CAS |

Tarrade, A., Lai Kuen, R., Malassine, A., Tricottet, V., Blain, P., Vidaud, M., and Evain-Brion, D. (2001). Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta. Lab. Invest. 81, 1199–1211.
Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Sntrk%3D&md5=73953b3fdff2c8d4b42822ea8c0cb0b8CAS | 11555668PubMed |

Vleminckx, K., Vakaet, L., Mareel, M., Fiers, W., and Vanroy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107–119.
Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFKisL0%3D&md5=ef7cdd15aa94ebee2f6cb3d2c2102144CAS | 2070412PubMed |

Wong, A. S. T., and Gumbiner, B. M. (2003). Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161, 1191–1203.
Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCms78%3D&md5=0cf238ad35cf3698c5818cb8311161a2CAS |

Xue, W. C., Feng, H. C., Tsao, S. W., Chan, K. Y. K., Ngan, H. Y. S., Chiu, P. M., Maccalman, C. D., and Cheung, A. N. Y. (2003). Methylation status and expression of E-cadherin and cadherin-11 in gestational trophoblastic diseases. Int. J. Gynecol. Cancer 13, 879–888.
Methylation status and expression of E-cadherin and cadherin-11 in gestational trophoblastic diseases.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srpsVCisQ%3D%3D&md5=d68fb3a1a4bf9dbfac42f78f54810bfbCAS | 14675328PubMed |

Yao, X., Hu, J. F., Daniels, M., Shiran, H., Zhou, X., Yan, H., Lu, H., Zeng, Z., Wang, Q., Li, T., and Hoffman, A. R. (2003). A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J. Clin. Invest. 111, 265–273.
A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVGqtg%3D%3D&md5=f8b3a167f3706992e651b888e4a6c1b2CAS | 12531883PubMed |

Yoshiura, K., Kanai, Y., Ochiai, A., Shimoyama, Y., Sugimura, T., and Hirohashi, S. (1995). Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 7416–7419.
Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlKmtbc%3D&md5=22cdb726cb4998e3272813aa1d307c93CAS | 7543680PubMed |

Zhou, Y., Damsky, C. H., and Fisher, S. J. (1997a). Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest. 99, 2152–2164.
Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFCisbk%3D&md5=878eb921431a9a72a5955a68c10131fcCAS | 9151787PubMed |

Zhou, Y., Fisher, S. J., Janatpour, M., Genbacev, O., Dejana, E., Wheelock, M., and Damsky, C. H. (1997b). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J. Clin. Invest. 99, 2139–2151.
Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFCisbg%3D&md5=56b0a52f61fe7801f315733e7d7694feCAS | 9151786PubMed |

Zhu, J. Y., Pang, Z. J., and Yu, Y. H. (2012). Regulation of trophoblast invasion: the role of matrix metalloproteinases. Rev. Obstet. Gynecol. 5, e137–e143.
| 23483768PubMed |