Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cerium oxide nanoparticles (CeO2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes

F. Ariu A C , L. Bogliolo A , A. Pinna B , L. Malfatti B , P. Innocenzi B , L. Falchi A , D. Bebbere A and S. Ledda A
+ Author Affiliations
- Author Affiliations

A Dipartimento di Medicina Veterinaria, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy.

B Laboratorio di Scienza dei Materiali e Nanotecnologie, Università di Sassari, e CR-INSTM, Palazzo del Pou Salid, Piazza Duomo 6, 07041 Alghero (Sassari), Italy.

C Corresponding author. Email: federica@uniss.it

Reproduction, Fertility and Development 29(5) 1046-1056 https://doi.org/10.1071/RD15521
Submitted: 7 July 2015  Accepted: 11 February 2016   Published: 22 April 2016

Abstract

The present study investigated whether supplementation with different doses of cerium dioxide nanoparticles (CeO2 NPs) during in vitro maturation (IVM) of prepubertal ovine oocytes influenced their embryonic development in vitro. Cumulus–oocyte complexes derived from the ovaries of slaughtered prepubertal sheep underwent IVM with CeO2NPs (0, 44, 88 or 220 µg mL–1). Matured oocytes were fertilised in vitro and zygotes were cultured for 7 days. The results demonstrated that CeO2NPs were internalised in the cumulus cells and not in the oocyte. The treatment with CeO2NPs did not affect nuclear maturation or intracellular levels of reactive oxygen species of the oocytes. The percentage of oocytes with regular chromatin configuration and cytoskeleton structures when treated with 44 µg mL–1 CeO2NPs was similar to oocytes matured in the absence of CeO2NPs and significantly higher than those treated with 88 or 220 µg mL–1 CeO2NPs. The relative quantification of transcripts in the cumulus cells of oocytes matured with 44 µg mL–1 CeO2NPs showed a statistically lower mRNA abundance of BCL2-associated X protein (BAX), B-cell CLL/lymphoma 2 (BCL2) and superoxide dismutase 1 (SOD1) compared with the 0 µg mL–1 CeO2 NPs group. A concentration of 44 µg mL–1 CeO2NPs significantly increased the blastocyst yield and their total, inner cell mass and trophectoderm cell numbers, compared with the 0 and 220 µg mL–1 groups. A low concentration of CeO2NPs in the maturation medium enhanced in vitro embryo production of prepubertal ovine oocytes.

Additional keywords: cytoskeleton, in vitro embryo production.


References

Abazari-Kia, A. H., Mohammadi-Sangcheshmeh, A., Dehghani-Mohammadabadi, M., Jamshidi-Adegani, F., Veshkini, A., Zhandi, M., Cinar, M. U., and Salehi, M. (2014). Intracellular glutathione content, developmental competence and expression of apoptosis-related genes associated with G6PDH activity in goat oocyte. J. Assist. Reprod. Genet. 31, 313–321.
Intracellular glutathione content, developmental competence and expression of apoptosis-related genes associated with G6PDH activity in goat oocyte.Crossref | GoogleScholarGoogle Scholar |

Ali, A. A., Bilodeau, J. F., and Sirard, M. A. (2003). Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilisation and development. Theriogenology 59, 939–949.
Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilisation and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVSh&md5=ae2c8e474e43581df9f140523140a4a0CAS |

Asati, A., Santra, S., Kaittanis, C., and Perez, J. M. (2010). Surface charge-dependent cell localisation and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4, 5321–5331.
Surface charge-dependent cell localisation and cytotoxicity of cerium oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVGgsro%3D&md5=36981cf3d40f03242d920f4214a87648CAS |

Baki, M. E., Miresmaili, S. M., Pourentezari, M., Amraii, E., Yousefi, V., Spenani, H. R., Talebi, A. R., Anvari, M., Fazilati, M., Fallah, A. A., and Mangoli, E. (2014). Effects of silver nanoparticles on sperm parameters, number of Leydig cells and sex hormones in rats. Iran. J. Reprod. Med. 12, 139–144.
| 1:CAS:528:DC%2BC2cXpsFCgtbg%3D&md5=5f06b633e251c2b0bfa9ea4f96571ffeCAS |

Bebbere, D., Ariu, F., Bogliolo, L., Masala, L., Murrone, O., Fattorini, M., Falchi, L., and Ledda, S. (2014). Expression of maternally derived KHDC3, NLRP5, OOEP and TLE6 is associated with oocyte developmental competence in the ovine species. BMC Dev. Biol. 14, 40.
Expression of maternally derived KHDC3, NLRP5, OOEP and TLE6 is associated with oocyte developmental competence in the ovine species.Crossref | GoogleScholarGoogle Scholar |

Bertoldo, M. J., Holyoake, P. K., Evans, G., and Grupen, C. G. (2011). Seasonal effects on oocyte developmental competence in sows experiencing pregnancy loss. Anim. Reprod. Sci. 124, 104–111.
Seasonal effects on oocyte developmental competence in sows experiencing pregnancy loss.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MzgtFelsw%3D%3D&md5=a7aec53f339602f8c3d4758ec68f8a6bCAS |

Braydich-Stolle, L. K., Lucas, B., Schrand, A., Murdock, R. C., Lee, T., Schlager, J. J., Hussain, S. M., and Hofmann, M.-C. (2010). Silver nanoparticles disrupt GDNF/Fyn kinase signalling in spermatogonial stem cells. Toxicol. Sci. 116, 577–589.
Silver nanoparticles disrupt GDNF/Fyn kinase signalling in spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyrsr4%3D&md5=a2f5d719f3a3f365c3ec6661fd65b4f4CAS |

Cai, X., Sezate, S. A., Seal, S., and McGinnis, J. F. (2012). Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 33, 8771–8781.
Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSlsrfJ&md5=9f30f3133ea84cc2076888d958e50e37CAS |

Celardo, I., Traversa, E., and Ghibelli, L. (2011). Cerium oxide nanoparticles: a promise for applications in therapy. J. Exp. Ther. Oncol. 9, 47–51.
| 1:CAS:528:DC%2BC3MXmtlGqtA%3D%3D&md5=34ff383c5f2666b4d32134d41766b59eCAS |

Chaudhury, K., Babu, N. K., Singh, A. K., Das, S., Kumar, A., and Seal, S. (2013). Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomedicine 9, 439–448.
Mitigation of endometriosis using regenerative cerium oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSjsr3E&md5=4abc7d834b8f277d00f3702267b8ef6eCAS |

Chen, S., Hou, Y., Cheng, G., Zhang, C., Wang, S., and Zhang, J. (2013). Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol. Trace Elem. Res. 154, 156–166.
Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVymsr4%3D&md5=13a6060e58e23d676f282c3484e165c1CAS |

Chigurupati, S., Mugha, M. R., Okun, E., Das, S., Kumar, A., McCaffery, M., Seal, S., and Mattson, M. P. (2013). Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34, 2194–2201.
Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyrt77N&md5=9ad9e2663b489a1497f1fb2273ae4d4fCAS |

Ciofani, G., Genchi, G. G., Mazzolai, B., and Mattoli, V. (2014). Transcriptional profile of genes involved in oxidative stress and antioxidant defence in PC12 cells following treatment with cerium oxide nanoparticles. Biochim. Biophys. Acta 1840, 495–506.
Transcriptional profile of genes involved in oxidative stress and antioxidant defence in PC12 cells following treatment with cerium oxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOltL3M&md5=c69dbedf41f82be0f837918c10f28bcbCAS |

Combelles, C. M. H., Gupta, S., and Agarwal, A. (2009). Could oxidative stress influence the in vitro maturation of oocytes? Reprod. Biomed. Online 18, 864–880.
Could oxidative stress influence the in vitro maturation of oocytes?Crossref | GoogleScholarGoogle Scholar |

Courbiere, B., Auffan, M., Rollais, R., Tassistro, V., Bonnefoy, A., Botta, A., Rose, J., Orsière, T., and Perrin, J. (2013). Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles. Int. J. Mol. Sci. 14, 21613–21628.
Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles.Crossref | GoogleScholarGoogle Scholar |

Culcasi, M., Benameur, L., Mercier, A., Lucchesi, C., Rahmouni, H., Asteian, A., Casano, G., Botta, A., Kovacic, H., and Pietri, S. (2012). EPR spin-trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem. Biol. Interact. 199, 161–176.
EPR spin-trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgs7rN&md5=6f08ff9cb2336833f38168be9253ca65CAS |

Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63.
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOjsbvI&md5=3d2dbdb3ea5287acd5cd2e092516afcfCAS |

Dalvit, G., Llanes, S. P., Descalzo, A., Insani, M., Beconi, M. T., and Cetica, P. D. (2005). Effect of alphatocopherol and ascorbic acid on bovine oocyte in vitro maturation. Reprod. Domest. Anim. 40, 93–97.
Effect of alphatocopherol and ascorbic acid on bovine oocyte in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFalsLc%3D&md5=33493f2f1a7b3d310d20088107b9bde2CAS |

Deleuze, S., and Goudet, G. (2010). Cysteamine supplementation of in vitro maturation media: a review. Reprod. Domest. Anim. 45, e476–e482.
Cysteamine supplementation of in vitro maturation media: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsLfF&md5=7441dcb9e5765e7352df177c269d7ddcCAS |

Donabela, F. C., Meola, J., Padovan, C. C., de Paz, C. C., and Navarro, P. A. (2015). Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod. Sci. 22, 1452–1460.
Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xls1SlsL0%3D&md5=dafbdd63dfe1b57da70c9d970b9a6e9bCAS |

Dumesic, D. A., Padmanabhan, V., and Abbott, D. H. (2008). Polycystic ovary syndrome and oocyte developmental competence. Obstet. Gynecol. Surv. 63, 39–48.
Polycystic ovary syndrome and oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar |

Eppig, J. J. (1980). Regulation of cumulus oophorus expansion by gonadotrophins in vivo and in vitro. Biol. Reprod. 23, 545–552.
Regulation of cumulus oophorus expansion by gonadotrophins in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtlWhtLs%3D&md5=9ceba01afb675a4e145e953e9ea70f63CAS |

Eppig, J. J., and Ward-Bailey, P. F. (1982). The mechanism of cumulus cell–oocyte uncoupling: evidence for the participation of both cumulus cells and oocytes. Gamete Res. 6, 145–154.
The mechanism of cumulus cell–oocyte uncoupling: evidence for the participation of both cumulus cells and oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xltl2jtrc%3D&md5=80a1480abf5509c24ffda2fa557749f9CAS |

Ge, H., Tollner, T. L., Hu, Z., Da, M., Li, X., Guan, H., Shan, D., Lu, J., Huang, C., and Dong, Q. (2012). Impaired mitochondrial function in murine oocytes is associated with controlled ovarian hyperstimulation and in vitro maturation. Reprod. Fertil. Dev. 24, 945–952.
Impaired mitochondrial function in murine oocytes is associated with controlled ovarian hyperstimulation and in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Grs7vK&md5=8fbcbe69cf3e3830bdb8a98df850bdd0CAS |

Grupen, C. G., Nagashima, H., and Nottle, M. B. (1995). Cysteamine enhances in vitro development of porcine oocytes matured and fertilised in vitro. Biol. Reprod. 53, 173–178.
Cysteamine enhances in vitro development of porcine oocytes matured and fertilised in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt12itb4%3D&md5=a29c2ed69ca883f2f11ec8b268323da3CAS |

Hall, V. J., Compton, D., Stojkovic, P., Nesbitt, M., Herbert, M., Murdoch, A., and Stojkovic, M. (2007). Developmental competence of human in vitro-aged oocytes as host cells for nuclear transfer. Hum. Reprod. 22, 52–62.
Developmental competence of human in vitro-aged oocytes as host cells for nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jitVCrsA%3D%3D&md5=520238dea55b49c4cce4d9e676c08763CAS |

Hirst, S. M., Karakoti, A., Singh, S., Self, W., Tyler, R., Seal, S., and Reilly, C. M. (2013). Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ. Toxicol. 28, 107–118.
Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFOmsw%3D%3D&md5=4229f6281b68de10fae29e79c62655caCAS |

Hosseini, A., Baeeri, M., Rahimifard, M., Navaei-Nigjeh, M., Mohammadirad, A., Pourkhalili, N., Hassani, S., Kamali, M., and Abdollahi, M. (2013). Anti-apoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum. Exp. Toxicol. 32, 544–553.
Anti-apoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Okur%2FJ&md5=9cfd7de72889a5f34210cf014d32dc3eCAS |

Jiao, G. Z., Cao, X. Y., Cui, W., Lian, H. Y., Mao, Y. L., Wu, X. F., Ying, D. H., and Tan, J. H. (2013). Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS One 8, e58018.
Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Wht7g%3D&md5=fce261b583fcedb85ce655d6d797596cCAS |

Khalil, W. A., Marei, W. F., and Khalid, M. (2013). Protective effects of antioxidants on linoleic acid-treated bovine oocytes during maturation and subsequent embryo development. Theriogenology 80, 161–168.
Protective effects of antioxidants on linoleic acid-treated bovine oocytes during maturation and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslCgs70%3D&md5=4af8b6b164f6d47a65803f666d335f67CAS |

Kim, I. S., Baek, M., and Choi, S. J. (2010). Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol. 10, 3453–3458.
Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlCru7o%3D&md5=d183e5d9cc6915f30aea0dfa20888b82CAS |

Kumari, M., Singh, S. P., Chinde, S., Rahman, M. F., Mahboob, M., and Grover, P. (2014). Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. Int. J. Toxicol. 33, 86–97.
Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslWgsrfF&md5=a7be31584c173f22e8b0bddef6307cffCAS |

Kyosseva, S. V., Chen, L., Seal, S., and McGinis, J. F. (2013). Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp. Eye Res. 116, 63–74.
Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWlurrM&md5=80fe896d24a0debbace4cc4b0da5b48eCAS |

Lacham-Kaplan, O., and Trounson, A. (2008). Reduced developmental competence of immature, in vitro-matured and postovulatory aged mouse oocytes following IVF and ICSI. Reprod. Biol. Endocrinol. 6, 58.
Reduced developmental competence of immature, in vitro-matured and postovulatory aged mouse oocytes following IVF and ICSI.Crossref | GoogleScholarGoogle Scholar |

Ledda, S., Bogliolo, L., Leoni, G., and Naitana, S. (2001). Cell coupling and maturation-promoting factor activity in in vitro-matured prepubertal and adult sheep oocytes. Biol. Reprod. 65, 247–252.
Cell coupling and maturation-promoting factor activity in in vitro-matured prepubertal and adult sheep oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhur8%3D&md5=ec22af6965e760f51ccf3a8564fd1886CAS |

Leoni, G. G., Bebbere, D., Succu, S., Berlinguer, F., Mossa, F., Galioto, M., Bogliolo, L., Ledda, S., and Naitana, S. (2007). Relations between relative mRNA abundance and developmental competence of ovine oocytes. Mol. Reprod. Dev. 74, 249–257.
Relations between relative mRNA abundance and developmental competence of ovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2qtg%3D%3D&md5=c7317721ee293e8c999379bae289a00dCAS |

Li, R., and Albertini, D. F. (2013). The road to maturation: somatic cell interaction and self-organisation of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 14, 141–152.
The road to maturation: somatic cell interaction and self-organisation of the mammalian oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVKmsrY%3D&md5=d80e98651d310bc3f8d8f3fd55411a98CAS |

Lian, H. Y., Gao, Y., Jiao, G. Z., Sun, M. J., Wu, X. F., Wang, T. Y., Li, H., and Tan, J. H. (2013). Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes. Reproduction 146, 559–568.
Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFynt73L&md5=5270d37aff9aa72b97ae87d441a1b3afCAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=3d53b7f31b0c4fa91bfc79f22f87effaCAS |

Luciano, A. M., Goudet, G., Perazzoli, F., Lahuec, C., and Gerard, N. (2006). Glutathione content and glutathione peroxidase expression in in vivo- and in vitro-matured equine oocytes. Mol. Reprod. Dev. 73, 658–666.
Glutathione content and glutathione peroxidase expression in in vivo- and in vitro-matured equine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Kitb4%3D&md5=20d9254470a8b10628d3d6faafdbf58cCAS |

Lutterotti, L., Matthies, S., and Wenk, H.-R. (1999). “MAUD: a friendly Java program for material analysis using diffraction.” IUCr. Newsletter of the CPD 21, 14–15.

Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Nakai, M., Shino, M., Nagai, T., and Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilisation and embryonic development in vitro. Theriogenology 67, 983–993.
Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilisation and embryonic development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFOns70%3D&md5=e3ecce8508c4606f4d96d9d05cc1f894CAS |

Martino, N. A., Lacalandra, G. M., Filioli Uranio, M., Ambruosi, B., Caira, M., Silvestre, F., Pizzi, F., Desantis, S., Accogli, G., and Dell’Aquila, M. E. (2012). Oocyte mitochondrial bioenergy potential and oxidative stress: within-/between-subject, in vivo vs in vitro maturation and age-related variations in a sheep model. Fertil. Steril. 97, 720–728.e1.
Oocyte mitochondrial bioenergy potential and oxidative stress: within-/between-subject, in vivo vs in vitro maturation and age-related variations in a sheep model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1GrsLo%3D&md5=5c98f2fc78e0a54105a9d4406c2a3365CAS |

Mukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., Saugandhika, S., Kumar, S., De, S., Guha, S. K., and Malakar, D. (2014). Resveratrol treatment during goat oocyte maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J. Assist. Reprod. Genet. 31, 229–239.
Resveratrol treatment during goat oocyte maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression.Crossref | GoogleScholarGoogle Scholar |

Ould-Moussa, N., Safi, M., Guedeau-Boudeville, M. A., Montero, D., Conjeaud, H., and Berret, J. F. (2014). In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology 8, 799–811.
| 1:CAS:528:DC%2BC3sXhvFemu73I&md5=62dd7662c80f91e685f50622a4bc9187CAS |

Pagliari, F., Mandoli, C., Forte, G., Magnani, E., Pagliari, S., Nardone, G., Licoccia, S., Minieri, M., Di Nardo, P., and Traversa, E. (2012). Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6, 3767–3775.
Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCrsLc%3D&md5=bb6b5de8b7fab5b979a9b47238994f15CAS |

Pierscionek, B. K., Li, Y. B., Schachar, R. A., and Chen, W. (2012). The effect of high concentration and exposure duration of nanoceria on human lens epithelial cells. Nanomedicine 8, 383–390.
The effect of high concentration and exposure duration of nanoceria on human lens epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Ggsrs%3D&md5=472a7380381b5d0035da0ee747b73584CAS |

Pinna, A., Malfatti, L., Galleri, G., Manetti, R., Cossu, S., Rocchitta, G., Migheli, R., Serra, P. A., and Innocenzi, P. (2015). Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Advances 5, 20432–20439.
Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis1SktLs%3D&md5=a1d3e84911588ff34672874e4e62610fCAS |

Ponnurangam, S., O’Connell, G. D., Chernyshova, I. V., Wood, K., Hung, C. T., and Somasundaran, P. (2014). Beneficial effects of cerium oxide nanoparticles in development of chondrocyte-seeded hydrogel constructs and cellular response to interleukin insults. Tissue Eng. Part A 20, 2908–2919.
Beneficial effects of cerium oxide nanoparticles in development of chondrocyte-seeded hydrogel constructs and cellular response to interleukin insults.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSntLfE&md5=f65d8d1bc7004d54b6c059e8b1fbea46CAS |

Ptak, G., Matsukawa, K., Palmieri, C., Della Salda, L., Scapolo, P. A., and Loi, P. (2006). Developmental and functional evidence of nuclear immaturity in prepubertal oocytes. Hum. Reprod. 21, 2228–2237.
Developmental and functional evidence of nuclear immaturity in prepubertal oocytes.Crossref | GoogleScholarGoogle Scholar |

Rodea-Palomares, I., Boltes, K., Fernández-Piñas, F., Leganés, F., García-Calvo, E., Santiago, J., and Rosal, R. (2011). Physicochemical characterisation and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci. 119, 135–145.
Physicochemical characterisation and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rsbbP&md5=9b1fdaad348c66486f65d95359129193CAS |

Safi, M., Sarrouj, H., Sandre, O., Mignet, N., and Berret, J. F. (2010). Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state. Nanotechnology 21, 145103.
Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gvFKisg%3D%3D&md5=a1540d143c384d6eadc123fdc1dabcc6CAS |

Saito, H., Seino, T., Kaneko, T., Nakahara, K., Toya, M., and Kurachi, H. (2002). Endometriosis and oocyte quality. Gynecol. Obstet. Invest. 53, 46–51.
Endometriosis and oocyte quality.Crossref | GoogleScholarGoogle Scholar |

Silva, E., Greene, A. F., Strauss, K., Herrick, J. R., Schoolcraft, W. B., and Krisher, R. L. (2015). Antioxidant supplementation during in vitro culture improves mitochondrial function and development of embryos from aged female mice. Reprod. Fertil. Dev. 27, 975–983.
Antioxidant supplementation during in vitro culture improves mitochondrial function and development of embryos from aged female mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOlsbnO&md5=5142a21f27d1cc8b6f3582aeb4320bdbCAS |

Spivak, N. Y., Shepel, E. A., Zholobak, N. M., Shcherbakov, A. B., Antonovitch, G. V., Yanchiy, R. I., Ivanov, V. K., and Tretyakov, YuD. (2012). Ceria nanoparticles boost activity of aged murine oocytes. Nano Biomed. Eng. 4, 188–194.
| 1:CAS:528:DC%2BC3sXjtlCrsb8%3D&md5=1bd08caf71912fde6ee58b73c5f5ec9dCAS |

Tarín, J. J. (1996). Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol. Hum. Reprod. 2, 717–724.
Potential effects of age-associated oxidative stress on mammalian oocytes/embryos.Crossref | GoogleScholarGoogle Scholar |

Taylor, U., Barchanski, A., Kues, W., Barcikowski, S., and Rath, D. (2012). Impact of metal nanoparticles on germ-cell viability and functionality. Reprod. Domest. Anim. 47, 359–368.
Impact of metal nanoparticles on germ-cell viability and functionality.Crossref | GoogleScholarGoogle Scholar |

Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., and Flank, A. M. (2006). Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156.
Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVagsbc%3D&md5=bd0c64c081596bf43e4393fa99e63ec7CAS |

Tiedemann, D., Taylor, U., Rehbock, C., Jakobi, J., Klein, S., Kues, W. A., Barcikowski, S., and Rath, D. (2014). Reprotoxicity of gold, silver and gold–silver alloy nanoparticles on mammalian gametes. Analyst 139, 931–942.
Reprotoxicity of gold, silver and gold–silver alloy nanoparticles on mammalian gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Ciu7s%3D&md5=df9194d2eb714e168142ef3f0536952eCAS |

Tseng, M. T., Lu, X., Duan, X., Hardas, S. S., Sultana, R., Wu, P., Unrine, J. M., Graham, U., Butterfield, D. A., Grulke, E. A., and Yokel, R. A. (2012). Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol. Appl. Pharmacol. 260, 173–182.
Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOnur0%3D&md5=fbca433803a07702025638673e8d8472CAS |

Vandaele, L., Thys, M., Bijttebier, J., Van Langendonckt, A., Donnay, I., Maes, D., Meyer, E., and Van Soom, A. (2010). Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development. Reproduction 139, 505–511.
Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtV2lsb8%3D&md5=ab1bf98994a35ddbabae4c92e7e7cdccCAS |

Walker, S. K., Hill, J. L., Kleemann, D. O., and Nancarrow, C. D. (1996). Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol. Reprod. 55, 703–708.
Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKgurw%3D&md5=f14fd50c65ab56f051d9d1153171127fCAS |

Yuan, Y., Wheeler, M. B., and Krisher, R. L (2012). Disrupted redox homeostasis and aberrant redox gene expression in porcine oocytes contribute to decreased developmental competence. Biol. Reprod. 87, 78.
Disrupted redox homeostasis and aberrant redox gene expression in porcine oocytes contribute to decreased developmental competence.Crossref | GoogleScholarGoogle Scholar |