Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Perinatal exposure to insecticide fipronil: effects on the reproductive system in male rats

Aline L. de Barros A , Julie H. Bae A , Cibele S. Borges A , Josiane L. Rosa A , Marilia M. Cavariani A , Patrícia V. Silva A , Patricia F. F. Pinheiro B , Janete A. Anselmo-Franci C and Arielle C. Arena A D
+ Author Affiliations
- Author Affiliations

A Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, (UNESP) – Distrito de Rubião Junior s/n, 510 – Botucatu, São Paulo State, Brazil.

B Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University, (UNESP), Distrito de Rubião Junior s/n, 510 – Botucatu, São Paulo State, Brazil.

C Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo-FORP/USP, Av. do Cafe, s/n, Monte Alegre, Ribeirão Preto, São Paulo State, Brazil.

D Corresponding author. Email: ariellearena@ibb.unesp.br

Reproduction, Fertility and Development 29(6) 1130-1143 https://doi.org/10.1071/RD15517
Submitted: 5 December 2015  Accepted: 12 March 2016   Published: 11 May 2016

Abstract

Fipronil is an insecticide widely used in agriculture, veterinary medicine and public health that has recently been listed as a potential endocrine disrupter. In the present study we evaluated the effects of perinatal exposure to fipronil during the period of sexual brain differentiation and its later repercussions on reproductive parameters in male rats. Pregnant rats were exposed (via gavage) to fipronil (0.03, 0.3 or 3 mg kg–1) from Gestational Day 15 until Postnatal Day 7. Fipronil exposure did not compromise the onset of puberty. In adulthood, there was no effect on organ weight or sperm production. Furthermore, there were no adverse effects on the number of Sertoli cells per seminiferous tubule, testicular and epididymal histomorphometry or histopathology or expression patterns of androgen receptor in the testis. Similarly, no changes were observed in the sexual behaviour or hormone levels. However, in rats exposed to fipronil, changes in sperm motility were observed, with a decrease in motile spermatozoa and an increase in non-mobile spermatozoa, which can compromise sperm quality in these rats. Perinatal exposure to fipronil has long-term effects on sperm parameters, and the epididymis can be a target organ. Additional studies should be undertaken to identify the mechanisms by which fipronil affects sperm motility.

Additional keywords: endocrine disruptors, sperm motility.


References

Abend, S. L., Fang, S., Alex, S., Braverman, L. E., and Leonard, J. L. (1991). Rapid alteration in circulating free thyroxine modulates pituitary type II 5deiodinase and basal thyrotropin secretion in the rat. J. Clin. Invest. 88, 898–903.
Rapid alteration in circulating free thyroxine modulates pituitary type II 5deiodinase and basal thyrotropin secretion in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlslGntbc%3D&md5=3d827f195dbc34a67e997e5df965f9d9CAS | 1885776PubMed |

Ågmo, A. (1997). Male rat sexual behavior. Brain Res. Protoc. 1, 203–209.
Male rat sexual behavior.Crossref | GoogleScholarGoogle Scholar |

Aitken, R. J., Sutton, M., Warner, P., and Richardson, D. W. (1985). Relationship between the movement characteristics of human spermatozoa and their ability to penetrate cervical mucus and zona-free hamster oocytes. J. Reprod. Fertil. 73, 441–449.
Relationship between the movement characteristics of human spermatozoa and their ability to penetrate cervical mucus and zona-free hamster oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7osFCjsg%3D%3D&md5=30def6fd15813291c74d91d681ad0c5aCAS | 3989795PubMed |

Agencia Nacional de Vigilância Sanitária (ANVISA). (2005). Índice Monográfico. F43 Fipronil. Disponível. Available at http://www4.anvisa.gov.br/base/visadoc/CP/CP%5B9774-1-0%5D.PDF [verified 23 February 2013].

Arena, A. C., Fernandez, C. D., Porto, E. M., Bissacot, D. Z., Pereira, O. C., and Kempinas, W. G. (2008). Fenvalerate, a pyrethroid insecticide, adversely affects sperm production and storage in male rats. J. Toxicol. Environ. Health A 71, 1550–1558.
Fenvalerate, a pyrethroid insecticide, adversely affects sperm production and storage in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CqtrfK&md5=f3493be1c43430ffc901ba580ae03b57CAS | 18923997PubMed |

Auger, A. P., Perrot-Sinal, T. S., and McCarthy, M. M. (2001). Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain. Proc. Natl Acad. Sci. USA 98, 8059–8064.
Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1Knurw%3D&md5=6cd460b9797ad7167808584487bc67c8CAS | 11427701PubMed |

Baird, S., Garrison, A., Jones, J., Avants, J., Bringolf, R., and Black, M. (2013). Enantio selective toxicity and bioaccumulation of fipronil in fathead minnows (Pimephales promelas) following water and sediment exposure. Environ. Toxicol. Chem. 32, 222–227.
Enantio selective toxicity and bioaccumulation of fipronil in fathead minnows (Pimephales promelas) following water and sediment exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVersrY%3D&md5=73a290a204aa779a5720559f6cc0a5b0CAS | 23109279PubMed |

Barratt, C. L. R., Tomlinson, M. J., and Cooke, I. D. (1993). Prognostic significance of computerized motility analysis for in vivo fertility. Fertil. Steril. 60, 520–525.
| 1:STN:280:DyaK3szoslGisQ%3D%3D&md5=e7d81c06dbea3d8faee00bf071819c46CAS |

Bonde, J. P., Toft, G., Rylander, L., Rignell-Hydbom, A., Giwercman, A., Spano, M., Manicardi, G. C., Bizzaro, D., Ludwicki, J. K., Zvyezday, V., Bonefeld-Jorgensen, E. C., Pedersen, H. S., Jonsson, B. A. G., and Thulstrup, A. M. (2008). Fertility and markers of male reproductive function in Inuit and European populations spanning large contrasts in blood levels of persistent organochlorines. Environ. Health Perspect. 116, 269–277.
Fertility and markers of male reproductive function in Inuit and European populations spanning large contrasts in blood levels of persistent organochlorines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFaqtrY%3D&md5=51053e439143d62599cbe6c085d224bfCAS | 18335090PubMed |

Bostofte, E., Bagger, P., Michael, A., and Stakemann, G. (1990). Fertility prognosis for infertile men from two different population evaluated by the Cox regression model. Fertil. Steril. 54, 1100–1106.
| 1:STN:280:DyaK3M%2FlvF2itw%3D%3D&md5=4bd86c3a2b1dacc88d4bbab0e45c016cCAS | 2245836PubMed |

Brand, T., Kroonen, J., Mos, J., and Slob, A. K. (1991). Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations. Horm. Behav. 25, 323–341.
Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslSrur0%3D&md5=a3a96fab546f5b63e4fa58db36b7b524CAS | 1937426PubMed |

Çelik, A., Ekinci, S. Y., Güler, G., and Yildirim, S. (2014). In vitro genotoxicity of fipronil sister chromatid exchange, cytokinesis block micronucleus test, and comet assay. DNA Cell Biol. 33, 148–154.
In vitro genotoxicity of fipronil sister chromatid exchange, cytokinesis block micronucleus test, and comet assay.Crossref | GoogleScholarGoogle Scholar | 24460388PubMed |

Clarkson, J., and Herbison, A. E. (2006). Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty. Mol. Cell. Endocrinol. 254–255, 32–38.
Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty.Crossref | GoogleScholarGoogle Scholar | 16781054PubMed |

Clegg, E. D., Perreault, S. D., and Klinefelter, G. R. (2001). Assessment of male reproductive toxicology. In ‘Principles and Methods of Toxicology’. (Ed. A. W. Hayes.) pp. 263–300. (Taylor & Francis: Philadelphia, PA.)

Creasy, D. M. (2003). Evaluation of testicular toxicology: a synopsis and discussion of the recommendations proposed by the society of toxicologic pathology. Birth Defects Res. B Dev. Reprod. Toxicol. 68, 408–415.
Evaluation of testicular toxicology: a synopsis and discussion of the recommendations proposed by the society of toxicologic pathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFOjtro%3D&md5=15384d392c81c1db3a315780435d4c78CAS | 14745990PubMed |

de Oliveira, P. R., Bechara, G. H., Denardi, S. E., Oliveir, R. J., and Mathias, M. I. C. (2012). Genotoxic and mutagenic effects of fipronil on mice. Exp. Toxicol. Pathol. 64, 569–573.
Genotoxic and mutagenic effects of fipronil on mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFeitLvK&md5=5b872cc206116cc764b761de1d4c6009CAS | 21146380PubMed |

Den Hond, E., Tournaye, H., De Sutter, P., Ombelet, W., Baeyens, W., Covaci, A., Cox, B., Nawrot, T. S., Van Larebeke, N., and D’Hooghe, T. (2015). Human exposure to endocrine disrupting chemicals and fertility: a case-control study in male subfertility patients. Environ. Int. 84, 154–160.
Human exposure to endocrine disrupting chemicals and fertility: a case-control study in male subfertility patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKltrbJ&md5=cbeacf8dc807483694ea372fab5b281aCAS | 26292060PubMed |

Ebling, F. J. (2005). The neuroendocrine timing of puberty. Reproduction 129, 675–683.
The neuroendocrine timing of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFGitro%3D&md5=6ab93b9fccff1967e65cd1c6cd4412a9CAS | 15923383PubMed |

FAO/WHO (1997). ‘Food consumption and exposure assessment to chemicals, Report of a FAO/WHO Consultation, Geneva, 10–14 February 1997, Document WHO/FSF/FOS/97.5.’ (World Health Organization: Geneva.)

Fernandes, G. S. A., Arena, A. C., Fernandez, C. D. B., Mercadante, A., Barbisan, L. F., and Kempinas, W. G. (2007). Reproductive effects in male rats exposed to diuron. Reprod. Toxicol. 23, 106–112.
Reproductive effects in male rats exposed to diuron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisValsA%3D%3D&md5=b01cbace1eae9e0038cf308461777aa5CAS |

Filler, R. (1993). Methods for evaluation of rat epididymal sperm morphology. In ‘Methods in Toxicology: Male Reproductive Toxicology’. (Eds R. E. Chapin and J. J. Heildel.) pp. 334–343. (Academic Press: San Diego, CA.)

Foster, W. G., Maharaj-Briceno, S., and Cyr, D. G. (2010). Dioxin-induced changes in epididymal sperm count and spermatogenesis. Environ. Health Perspect. 118, 458–464.
Dioxin-induced changes in epididymal sperm count and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 20368131PubMed |

Fudvoye, J., Bourguignon, J. P., and Parent, A. S. (2014). Endocrine-disrupting chemicals and human growth and maturation: a focus on early critical windows of exposure. Vitam. Horm. 94, 1–25.
Endocrine-disrupting chemicals and human growth and maturation: a focus on early critical windows of exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnt1aku7Y%3D&md5=2c13e1ea207a47b6ea285f6cd8780f8bCAS | 24388185PubMed |

Gallavan, R. H., Holson, J. F., Stump, D. G., Knapp, J. F., and Reynolds, V. L. (1999). Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights. Reprod. Toxicol. 13, 383–390.
Interpreting the toxicologic significance of alterations in anogenital distance: potential for confounding effects of progeny body weights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVyitb4%3D&md5=ac1ef39dcbe8aee26d3fde4721c065bfCAS | 10560587PubMed |

Gatti, J. L., Castella, S., Dacheux, F., Ecruyd, H., Metayer, S., Thimon, V., and Dacheux, J. L. (2004). Post-testicular sperm environment and fertility. Anim. Reprod. Sci. 82–83, 321–339.
Post-testicular sperm environment and fertility.Crossref | GoogleScholarGoogle Scholar | 15271463PubMed |

Gerardin, D. C., Pereira, O. C., Kempinas, W. G., Florio, J. C., Moreira, E. G., and Bernardi, M. M. (2005). Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol. Behav. 84, 97–104.
Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFyntw%3D%3D&md5=7514b3d697a2fb4469c9c0ee60c0c9bdCAS | 15642612PubMed |

Gerecke, K. M., Kishore, R., Jasnow, A., Quadros-Menella, P., Parker, S., Kozub, F. J., Lambert, K. G., and Kinsley, C. H. (2012). Alterations of sex-typical microanatomy: prenatal stress modifies the structure of medial preoptic area neurons in rats. Dev. Psychobiol. 54, 16–27.
Alterations of sex-typical microanatomy: prenatal stress modifies the structure of medial preoptic area neurons in rats.Crossref | GoogleScholarGoogle Scholar | 21656762PubMed |

Gore, A. C. (2010). Neuroendocrine targets of endocrine disruptors. Hormones (Athens) 9, 16–27.
Neuroendocrine targets of endocrine disruptors.Crossref | GoogleScholarGoogle Scholar | 20363718PubMed |

Hood, A., Hashmi, R., and Klaassen, C. D. (1999). Effects of microsomal enzyme inducers on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy. Toxicol. Appl. Pharmacol. 160, 163–170.
Effects of microsomal enzyme inducers on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1yms7g%3D&md5=4d9ddbf09e11b9b798671175978520faCAS | 10527915PubMed |

Hurley, P. M. (1998). Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ. Health Perspect. 106, 437–445.
Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFeht7g%3D&md5=05cb7b9b67d25952bf8cdf8145d94359CAS | 9681970PubMed |

Jackson, D., Cornell, C.B., Luukinen, B., Buhl, K., and Stone, D. (2009). ‘Fipronil Technical Fact Sheet.’ (National Pesticide Information Center, Oregon State University Extension: Corvallis.)

Janssen, D., Derst, C., Buckinx, R., Van den Eynden, J., Rigo, J. M., and Van Kerkhove, E. (2007). Dorsal unpaired median neurons of Locusta migratoria express ivermectin and fipronil-sensitive glutamate-gated chloride channels. J. Neurophysiol. 97, 2642–2650.
Dorsal unpaired median neurons of Locusta migratoria express ivermectin and fipronil-sensitive glutamate-gated chloride channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVSqt7s%3D&md5=7612326172cbd4f3917ae4c7fafee2cdCAS | 17267752PubMed |

Jennings, K. A., Keller, R. J., Atieh, B. H., Doss, R. B., and Gupta, R. C. (2002). Human exposure to fipronil from dogs treated with Frontline. Vet. Hum. Toxicol. 44, 301–303.
| 1:CAS:528:DC%2BD38XotVSgsrY%3D&md5=5f98c66c988524e8b70fd763d8407835CAS | 12361121PubMed |

Lal, H., and Emmett-Oglesby, M. W. (1983). Behavioral analogues of anxiety. Animal models. Neuropharmacology 22, 1423–1441.
Behavioral analogues of anxiety. Animal models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXnvFemtg%3D%3D&md5=0ea1d9b78ee902d734d1330e28d3cfe7CAS | 6142426PubMed |

Lamano-Carvalho, T. L., Guimarães, M. A., Kempinas, W. G., Petenusci, S. O., and Rosa e Silva, A. A. M. (1996). Effects of guanethidine-induced sympathectomy on the spermatogenic and steroidogenic testicular functions of prepubertal to mature rats. Andrologia 28, 117–122.
Effects of guanethidine-induced sympathectomy on the spermatogenic and steroidogenic testicular functions of prepubertal to mature rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlKitLc%3D&md5=65216f29adaba49732b5e6fe419d02a5CAS |

Le Faouder, J., Bichon, E., Brunschwig, P., Landelle, R., Andre, F., and Le Bizec, B. (2007). Transfer assessment of fipronil residues from feed to cow milk. Talanta 73, 710–717.
Transfer assessment of fipronil residues from feed to cow milk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGisLrJ&md5=9c4bf21e105be38f10867e44a6a55ad5CAS | 19073092PubMed |

Leblond, C. P., and Clermont, Y. (1952). Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-Fuchs in sulfurous acid technique. Am. J. Anat. 90, 167–215.
Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-Fuchs in sulfurous acid technique.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG38%2FltlOgtw%3D%3D&md5=663ba1616fee91de72d01b7b1ebb5d1aCAS | 14923625PubMed |

Leghait, J., Gayrard, V., Picard-Hagen, N., Camp, M., Perdu, E., Toutain, P., and Viguié, C. (2009). Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes. Toxicology 255, 38–44.
Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2gurbO&md5=f5fc07cb577274999f0f8e48006bdc55CAS | 18977275PubMed |

Lu, M., Du, J., Zhou, P., Chen, H., Lu, C., and Zhang, Q. (2015). Endocrine disrupting potential of fipronil and its metabolite in reporter gene assays. Chemosphere 120, 246–251.
Endocrine disrupting potential of fipronil and its metabolite in reporter gene assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12nsLfN&md5=9c9c644f6d59dad9320245e3688e7e86CAS | 25112704PubMed |

MacLusky, N. J., and Naftolin, F. (1981). Sexual differentiation of the central nervous system. Science 211, 1294–1302.
Sexual differentiation of the central nervous system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlKlt74%3D&md5=dbc3c6612dece5f7ce8892e936fded23CAS | 6163211PubMed |

Mahadevan, M. M., and Trounson, A. O. (1984). The influence of seminal characteristics on the success rate of human in vitro fertilization. Fertil. Steril. 42, 400–405.
| 1:STN:280:DyaL2c3os1Shtg%3D%3D&md5=1f4fc2771692e3bbb38cd169ea0c6146CAS | 6468675PubMed |

McCarthy, M. M., Auger, A. P., and Perrot-Sinal, T. S. (2002). Getting excited about GABA and sex differences in the brain. Trends Neurosci. 25, 307–312.
Getting excited about GABA and sex differences in the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1ymtL0%3D&md5=af63733ac221c49d98f85c42dbf3acd8CAS | 12086749PubMed |

Monje, L., Varayoud, J., Muñoz-de-Toro, M., Luque, E. H., and Ramos, J. G. (2010). Exposure of neonatal female rats to bisphenol A disrupts hypothalamic LHRH pre-mRNA processing and estrogen receptor alpha expression in nuclei controlling estrous cyclicity. Reprod. Toxicol. 30, 625–634.
Exposure of neonatal female rats to bisphenol A disrupts hypothalamic LHRH pre-mRNA processing and estrogen receptor alpha expression in nuclei controlling estrous cyclicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2jtb7O&md5=1e35ae34c7b5c31bd752cc8528c63785CAS | 20951796PubMed |

Monosson, E., Kelce, W. R., Lambright, C., Ostby, J., and Gray, L. E. (1999). Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat. Toxicol. Ind. Health 15, 65–79.
Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3gsVSjtQ%3D%3D&md5=03ca58453f0ab24f54b792d4f3ec8669CAS | 10188192PubMed |

Mortimer, D., Pandya, I. J., and Sawers, R. S. (1986). Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro. J. Reprod. Fertil. 78, 93–102.
Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FhtFGmsg%3D%3D&md5=3fcf29bd1e2386748e7b0607bf07c4e8CAS | 3761279PubMed |

Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L., and Yeh, J. Z. (2010). Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pestic. Biochem. Physiol. 97, 149–152.
Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlCrsLc%3D&md5=9209d391fb00f9674f2ad1c862672310CAS | 20563240PubMed |

Negri-Cesi, P., Colciago, A., Pravettoni, A., Casati, L., Conti, L., and Celotti, F. (2008). Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences. J. Steroid Biochem. Mol. Biol. 109, 294–299.
Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeitLs%3D&md5=7b59d98687a0bd1704242a988844682dCAS | 18403198PubMed |

Neubert, D. (1997). Vulnerability of the endocrine system to xenobiotic influence. Regul. Toxicol. Pharmacol. 26, 9–29.
Vulnerability of the endocrine system to xenobiotic influence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms12rtb4%3D&md5=b9b5a8f81df7b86d61d28770ed1cd827CAS | 9339474PubMed |

O’Shaughnessy, P. J., Verhoeven, G., De Gendt, K., Monteiro, A., and Abel, M. H. (2010). Direct action through the Sertoli cells is essential for androgen stimulation of spermatogenesis. Endocrinology 151, 2343–2348.
Direct action through the Sertoli cells is essential for androgen stimulation of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFKgsLk%3D&md5=23e7b5925dbaf09900d0eb98e870ef87CAS | 20228170PubMed |

Ohi, M., Dalsenter, P. R., Andrade, A. J., and Nascimento, A. J. (2004). Reproductive adverse effects of fipronil in Wistar rats. Toxicol. Lett. 146, 121–127.
Reproductive adverse effects of fipronil in Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Witbo%3D&md5=acf3f78e375c340a287ec9aa943387eaCAS | 14643964PubMed |

Oliva, S. U., Messias, A. G., Silva, D. A. F., Pereira, O. C., Gerardin, D. C., and Kempinas, W. G. (2006). Impairment of adult male reproductive function in rats exposed to ethanol since puberty. Reprod. Toxicol. 22, 599–605.
Impairment of adult male reproductive function in rats exposed to ethanol since puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyitrjE&md5=12d1d20f3d0bf08d5b1ec484630b02f8CAS | 16777377PubMed |

Patisaul, H. B., and Polston, E. K. (2008). Influence of endocrine active compounds on the developing rodent brain. Brain Res. Rev. 57, 352–362.
Influence of endocrine active compounds on the developing rodent brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1Srtb0%3D&md5=efdd5a2dfdc20cccb5101c529c1aaa62CAS | 17822772PubMed |

Pereira, O. C., Bernardi, M. M., and Gerardin, D. C. (2006). Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats? Life Sci. 78, 2767–2771.
Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvValsLk%3D&md5=f1f1aedcfbabae294a8d74bdb33f1145CAS | 16316663PubMed |

Perobelli, J. E., Martinez, M. F., Franchi, C. A. S., Fernandez, C. D., Camargo, J. L., and Kempinas, W. G. (2010). Decreased sperm motility in rats orally exposed to single or mixed pesticides. J. Toxicol. Environ. Health A 73, 991–1002.
Decreased sperm motility in rats orally exposed to single or mixed pesticides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1yms7k%3D&md5=a1d84d99d62ce76620b25648cc82464cCAS | 20563933PubMed |

Piffer, R. C., Garcia, P. C., and Pereira, O. C. (2009). Adult partner preference and sexual behavior of male rats exposed prenatally to betamethasone. Physiol. Behav. 98, 163–167.
Adult partner preference and sexual behavior of male rats exposed prenatally to betamethasone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotF2gtLY%3D&md5=051a244bae5d86f6b8773755cbbe2e16CAS | 19454291PubMed |

Ribeiro, C. M., and Pereira, O. C. M. (2005). 5Alpha-reductase 2 inhibition impairs brain defeminization of male rats: reproductive aspects. Pharmacol. Biochem. Behav. 82, 228–235.
5Alpha-reductase 2 inhibition impairs brain defeminization of male rats: reproductive aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyntL7E&md5=f2447b433c07e95974963c2a0d1a0ed5CAS | 16168471PubMed |

Robaire, B., Hinton, B., and Orgebin-Crist, M. C. (2006). The epididymis. In ‘Physiology of Reproduction’. (Eds E. Knobil and J. Neill.) pp. 1071–1148. (Elsevier: St Louis, MO.)

Robb, G. W., Amman, R. P., and Killian, G. J. (1978). Daily sperm production and epididymal sperm reserves of puberal and adult rats. J. Reprod. Fertil. 54, 103–107.
Daily sperm production and epididymal sperm reserves of puberal and adult rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FltVegtg%3D%3D&md5=6695c052b6e06324fe3c7f4a55a50b9aCAS | 712697PubMed |

Schwarz, J. M., and McCarthy, M. M. (2008). Steroid-induced sexual differentiation of the developing brain: multiple pathways, one goal. J. Neurochem. 105, 1561–1572.
Steroid-induced sexual differentiation of the developing brain: multiple pathways, one goal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVCks7k%3D&md5=06d5121b587a12bdcde64f6977473485CAS | 18384643PubMed |

Sengupta, P. (2013). The laboratory rat: relating its age with human’s. Int. J. Prev. Med. 4, 624–630.
| 23930179PubMed |

Sengupta, P., and Banerjee, R. (2014). Environmental toxins: alarming impacts of pesticides on male fertility. Hum. Exp. Toxicol. 33, 1017–1039.
Environmental toxins: alarming impacts of pesticides on male fertility.Crossref | GoogleScholarGoogle Scholar | 24347299PubMed |

Silva, M. R., Felicio, L. F., Nasello, A. G., and Bernardi, M. M. (1995). Is perinatal picrotoxin anxigenic? Braz. J. Med. Biol. Res. 28, 663–666.
| 1:CAS:528:DyaK2MXpsFGlu7k%3D&md5=1bcd317dcb3461da7386dd163efbe78aCAS | 8547849PubMed |

Silva, M. R., Oliveira, C. A., Felicio, L. F., Nasello, A. G., and Bernardi, M. M. (1998). Perinatal treatment with picrotoxin induces sexual, behavioral, and neuroendocrine changes in male rats. Pharmacol. Biochem. Behav. 60, 203–208.
Perinatal treatment with picrotoxin induces sexual, behavioral, and neuroendocrine changes in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVCjtLY%3D&md5=14cbec4b4be3fded8b2936e1c6477880CAS | 9610943PubMed |

Terçariol, P. R. G., and Godinho, A. F. (2011). Behavioral effects of acute exposure to the insecticide fipronil. Pestic. Biochem. Physiol. 99, 221–225.
Behavioral effects of acute exposure to the insecticide fipronil.Crossref | GoogleScholarGoogle Scholar |

Tingle, C. C. D., Rother, J. A., Dewhurst, C. F., Lauer, S., and King, W. J. (2003). Fipronil: environmental fate, ecotoxicology, and humam health concerns. Rev. Environ. Contam. Toxicol. 176, 1–66.
Fipronil: environmental fate, ecotoxicology, and humam health concerns.Crossref | GoogleScholarGoogle Scholar |

Udo, M. S. B., Sandini, T. M., Reis, T. M., Bernardi, M. M., and Spinosa, H. S. (2014). Prenatal exposure to a low fipronil dose disturbs maternal behavior and reflex development in rats. Neurotoxicol. Teratol. 45, 27–33.
Prenatal exposure to a low fipronil dose disturbs maternal behavior and reflex development in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Oqur%2FO&md5=ae2625a15d265d00be337fad86541383CAS |

United States Environmental Protection Agency (2015). ‘Reduced risk and organophosphate alternative decisions for conventional pesticides.’ Available at https://www.epa.gov/pesticide-registration/reduced-risk-and-organophosphate-alternative-decisions-conventional [verified 18 April 2016]

Vega Matuszczyk, J., and Larsson, K. (1995). Sexual preference and feminine and masculine sexual behavior of male rats prenatally exposed to antiandrogen or antiestrogen. Horm. Behav. 29, 191–206.
Sexual preference and feminine and masculine sexual behavior of male rats prenatally exposed to antiandrogen or antiestrogen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FitlKisg%3D%3D&md5=28509b984a7b386fb2a0a17f06e6c15cCAS | 7557922PubMed |

Viluksela, M., Heikkinen, P., Van der Ven, L. T., Rendel, F., Roos, R., Esteban, J., Korkalainen, M., Lensu, S., Miettinen, H. M., Savolainen, K., Sankari, S., Lilienthal, H., Adamsson, A., Toppari, J., Herlin, M., Finnilä, M., Tuukkanen, J., Leslie, H. A., Hamers, T., Hamscher, G., Al-Anati, L., Stenius, U., Dervola, K. S., Bogen, I. L., Fonnum, F., Andersson, P. L., Schrenk, D., Halldin, K., and Håkansson, H. (2014). Toxicological profile of ultrapure 2,2′,3,4,4′,5,5′-heptachlorbiphenyl (PCB 180) in adult rats. PLoS One 9, e104639.
Toxicological profile of ultrapure 2,2′,3,4,4′,5,5′-heptachlorbiphenyl (PCB 180) in adult rats.Crossref | GoogleScholarGoogle Scholar | 25137063PubMed |

Vornberger, W., Prins, G., Musto, N. A., and Suarez-Quian, C. A. (1994). Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology 134, 2307–2316.
| 1:CAS:528:DyaK2cXivFSgt7k%3D&md5=023a33fd580ce94ddbe2fb9eb66e7afeCAS | 8156934PubMed |

Wang, R. S., Yeh, S., Tzeng, C. R., and Chang, C. (2009). Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr. Rev. 30, 119–132.
Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice.Crossref | GoogleScholarGoogle Scholar | 19176467PubMed |

Weibel, E. R. (1963). Principles and methods for the morphometric study of the lung and other organs. Lab. Invest. 12, 131–155.
| 1:STN:280:DyaF387ptFequw%3D%3D&md5=32961ac29d7118292464e255cfdbf87cCAS | 13999512PubMed |

Williams, E. D. (1995). Mechanisms and pathogenesis of thyroid cancer in animals and man. Mutat. Res. 333, 123–129.
Mechanisms and pathogenesis of thyroid cancer in animals and man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvV2gsLw%3D&md5=c4882b02a420aca5d4c4a4e7163d4122CAS | 8538619PubMed |

Yasuhara, F., Kempinas, W. G., and Pereira, O. C. (2005). Reproductive and sexual behavior changes in male rats exposed perinatally to picrotoxin. Reprod. Toxicol. 19, 541–546.
Reproductive and sexual behavior changes in male rats exposed perinatally to picrotoxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2rsbk%3D&md5=60741de89c745374cc1ab203c5d94093CAS | 15749269PubMed |

Zenick, H., Clegg, E. D., Perreault, S. D., Klinefelter, G. R., and Gray, L. E. (1994). Assessment of male reproductive toxicity: a risk assessment approach. In ‘Principles and Methods of Toxicology’. (Ed. W. Hayes.) pp. 937–988. (Raven Press: New York.)

Zhao, X., Yeh, J. Z., Salgado, V. L., and Narahashi, T. (2004). Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J. Pharmacol. Exp. Ther. 310, 192–201.
Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVOjsLw%3D&md5=23418388120dba96cb1b8601c79c286cCAS | 15014137PubMed |