Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Micromanipulation of equine blastocysts to allow vitrification

Katrin Hinrichs A B C and Young-Ho Choi A
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, 4466 TAMU, Texas A&M University, College Station, TX 77843-4466, USA.

B Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, 4475 TAMU, Texas A&M University, College Station, TX 77843-4475, USA.

C Corresponding author. Email: khinrichs@cvm.tamu.edu

Reproduction, Fertility and Development 28(8) 1092-1096 https://doi.org/10.1071/RD15389
Submitted: 2 October 2015  Accepted: 13 January 2016   Published: 25 February 2016

Abstract

Embryo cryopreservation presents an essential method for banking of valuable genetics. However, in equine species the cryopreservation of embryos is complicated by three interacting factors: (1) the late entry of the embryo into the uterus (~6 days after ovulation); (2) the rapid expansion of the blastocyst; and (3) the formation of the equine embryonic capsule, a glycoprotein membrane that forms between the embryo and zona. Efforts to freeze or vitrify equine expanded blastocysts were initially met with little success. In addition, it was thought that breaching the capsule led to loss of embryo viability. We found that micromanipulation with the Piezo drill to puncture the capsule and collapse the blastocyst before vitrification provided a means for successful cryopreservation of equine expanded blastocysts, and that this can be done successfully using a standard sperm injection pipette. Modification of cryoprotectants and methods for vitrification and warming resulted in a technique that allowed successful vitrification of expanded equine blastocysts up to 650 µm diameter, with pregnancy rates approaching those for fresh embryos. After blastocyst collapse, vitrification is performed with ethylene glycol and galactose as cryoprotectants, and the embryo is cooled in a low-volume micropipette tip. Vitrification of expanded equine blastocysts provides a valuable tool for use in exotic equids to preserve genetics.

Additional keywords: blastocoele collapse, cryopreservation, embryo, embryo transfer.


References

Allen, W. R. (2010). Sex, science and satisfaction: a heady brew. Anim. Reprod. Sci. 121, 262–278.
Sex, science and satisfaction: a heady brew.Crossref | GoogleScholarGoogle Scholar |

Barfield, J. P., McCue, P. M., Squires, E. L., and Seidel, G. E. (2009). Effect of dehydration prior to cryopreservation of large equine embryos. Cryobiology 59, 36–41.
Effect of dehydration prior to cryopreservation of large equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MvmtFSgug%3D%3D&md5=6df11758fc41748bab7ff8ecb773a343CAS | 19375416PubMed |

Bass, L. D., Denniston, D. J., Maclellan, L. J., McCue, P. M., Seidel, G. E., and Squires, E. L. (2004). Methanol as a cryoprotectant for equine embryos. Theriogenology 62, 1153–1159.
Methanol as a cryoprotectant for equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Kmsrw%3D&md5=24f9f166e896e261196ca0679e758c2bCAS | 15289054PubMed |

Battut, I., Colchen, S., Fieni, F., Tainturier, D., and Bruyas, J. F. (1998). Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine Vet. J. Suppl. 25, 60–62.
Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation.Crossref | GoogleScholarGoogle Scholar |

Betteridge, K. J. (2007). Equine embryology: an inventory of unanswered questions. Theriogenology 68, S9–S21.
Equine embryology: an inventory of unanswered questions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiurc%3D&md5=e29fac8e5587706e813c622dd938bc05CAS | 17532037PubMed |

Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P. F., and Bériault, R. (1982). Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209.
| 1:STN:280:DyaL3s%2FjtVGnsg%3D%3D&md5=527e8956e4c3510fb316b7a71feea23eCAS | 7130052PubMed |

Choi, Y. H., Chung, Y. G., Walker, S. C., Westhusin, M. E., and Hinrichs, K. (2003). In vitro development of equine nuclear transfer embryos: effects of oocyte maturation media and amino acid composition during embryo culture. Zygote 11, 77–86.
In vitro development of equine nuclear transfer embryos: effects of oocyte maturation media and amino acid composition during embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wgs70%3D&md5=c8c55d5c3c469573a2fcb9d1182c28a3CAS | 12625532PubMed |

Choi, Y. H., Hartman, D. L., Fissore, R. A., Bedford-Guaus, S. J., and Hinrichs, K. (2009). Effect of sperm extract injection volume, injection of PLCzeta cRNA, and tissue cell line on efficiency of equine nuclear transfer. Cloning Stem Cells 11, 301–308.
Effect of sperm extract injection volume, injection of PLCzeta cRNA, and tissue cell line on efficiency of equine nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Cis74%3D&md5=ac3ef05132102c1465d06d8d5a488eecCAS | 19508114PubMed |

Choi, Y. H., Gustafson-Seabury, A., Velez, I. C., Hartman, D. L., Bliss, S., Riera, F. L., Roldan, J. E., Chowdhary, B., and Hinrichs, K. (2010). Viability of equine embryos after puncture of the capsule and biopsy for preimplantation genetic diagnosis. Reproduction 140, 893–902.
Viability of equine embryos after puncture of the capsule and biopsy for preimplantation genetic diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtbs%3D&md5=d64b7acf60d77720e9a39680883068c8CAS | 20843896PubMed |

Choi, Y. H., Velez, I. C., Riera, F. L., Roldan, J. E., Hartman, D. L., Bliss, S. B., Blanchard, T. L., Hayden, S. S., and Hinrichs, K. (2011). Successful cryopreservation of expanded equine blastocysts. Theriogenology 76, 143–152.
Successful cryopreservation of expanded equine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKitbg%3D&md5=ba1fa18499b172aebaada298554e975aCAS | 21458049PubMed |

Choi, Y. H., Velez, I. C., Macias-Garcia, B., and Hinrichs, K. (2013). Application of an open device to vitrify equine in vitro-produced embryos. Reprod. Fertil. Dev. 25, 178.
Application of an open device to vitrify equine in vitro-produced embryos.Crossref | GoogleScholarGoogle Scholar |

Eldridge-Panuska, W. D., Caracciolo di Brienza, V., Seidel, G. E., Squires, E. L., and Carnevale, E. M. (2005). Establishment of pregnancies after serial dilution or direct transfer by vitrified equine embryos. Theriogenology 63, 1308–1319.
Establishment of pregnancies after serial dilution or direct transfer by vitrified equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fps1Witw%3D%3D&md5=f3d6154233be280c65be18a0118bd270CAS | 15725439PubMed |

Enders, A. C., and Liu, I. K. M. (1991). Lodgement of the equine blastocyst in the uterus from fixation through endometrial cup formation. J. Reprod. Fertil. Suppl. 44, 427–438.
| 1:STN:280:DyaK387nslamsg%3D%3D&md5=1bdc8e7dc56025a1db1b8c6407f8e4cfCAS | 1795287PubMed |

Flood, P. F., Betteridge, K. J., and Diocee, M. S. (1982). Transmission electron microscopy of horse embryos 3–16 days after ovulation. J. Reprod. Fertil. Suppl. 32, 319–327.
| 1:STN:280:DyaL3s7mtl2ltw%3D%3D&md5=90c37c6017aca8c38ea744d34d77f5bcCAS | 6962867PubMed |

Freeman, D. A., Weber, J. A., Geary, R. T., and Woods, G. L. (1991). Time of embryo transport through the mare oviduct. Theriogenology 36, 823–830.
Time of embryo transport through the mare oviduct.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFyitg%3D%3D&md5=a1570a8ab2b7013aa3d620627471df60CAS | 16727051PubMed |

Hiraoka, K., Hiraoka, K., Kinutani, M., and Kinutani, K. (2004). Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human Day 5 and 6 expanded blastocysts. Hum. Reprod. 19, 2884–2888.
Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human Day 5 and 6 expanded blastocysts.Crossref | GoogleScholarGoogle Scholar | 15347597PubMed |

Legrand, E., Bencharif, D., Barrier-Battut, I., Delajarraud, H., Corniere, P., Fieni, F., Tainturier, D., and Bruyas, J. F. (2002). Comparison of pregnancy rates for Days 7–8 equine embryos frozen in glycerol with or without previous enzymatic treatment of their capsule. Theriogenology 58, 721–723.
Comparison of pregnancy rates for Days 7–8 equine embryos frozen in glycerol with or without previous enzymatic treatment of their capsule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFymt70%3D&md5=939e2a7f4950b0910d1312bd5326db91CAS |

Lin, L., Du, Y., Kragh, P. M., Li, J., Bolund, L., Yang, H., Zhang, X., Kuwayama, M., and Vajta, G. (2008). Induced blastocoel collapse improves survival rates of porcine blastocysts after vitrification. Reprod. Fertil. Dev. 20, 121.
Induced blastocoel collapse improves survival rates of porcine blastocysts after vitrification.Crossref | GoogleScholarGoogle Scholar |

Maclellan, L. J., Carnevale, E. M., Coutinho da Silva, M. A., McCue, P. M., Seidel, G. E., and Squires, E. L. (2002). Cryopreservation of small and large equine embryos pre-treated with cytochalasin-B and/or trypsin. Theriogenology 58, 717–720.
Cryopreservation of small and large equine embryos pre-treated with cytochalasin-B and/or trypsin.Crossref | GoogleScholarGoogle Scholar |

McDowell, K. J., Sharp, D. C., Peck, L. S., and Cheves, L. L. (1985). Short report: effect of restricted conceptus mobility on maternal recognition of pregnancy in mares. Equine Vet. J. 17, 23–24.
Short report: effect of restricted conceptus mobility on maternal recognition of pregnancy in mares.Crossref | GoogleScholarGoogle Scholar |

McKinnon, A. O., Carnevale, E. M., Squires, E. L., Carney, N. J., and Seidel, G. E. (1989). Bisection of equine embryos. Equine Vet. J. Suppl. 21, 129–133.
Bisection of equine embryos.Crossref | GoogleScholarGoogle Scholar |

Mukaida, T., Oka, C., Goto, T., and Takahashi, K. (2006). Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts. Hum. Reprod. 21, 3246–3252.
Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtb7P&md5=9b69a3c8534d51c048156d336cbc1df9CAS | 16936299PubMed |

Müller, Z., and Cikryt, P. (1989). A simple method for bisecting horse embryos. Equine Vet. J. Suppl. 21, 123–125.
A simple method for bisecting horse embryos.Crossref | GoogleScholarGoogle Scholar |

Skidmore, J., Boyle, M. S., Cran, D., and Allen, W. R. (1989). Micromanipulation of equine embryos to produce monozygotic twins. Equine Vet. J. 21, 126–128.
Micromanipulation of equine embryos to produce monozygotic twins.Crossref | GoogleScholarGoogle Scholar |

Slade, N. P., Takeda, T., Squires, E. L., Elsden, R. P., and Seidel, G. E. (1985). A new procedure for the cryopreservation of equine embryos. Theriogenology 24, 45–58.
A new procedure for the cryopreservation of equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyhtw%3D%3D&md5=f870cfa2c94d9b66b25f06c14feb4b87CAS | 16726058PubMed |

Spate, L. D., Murphy, C. N., and Prather, R. S. (2013). High-throughput cryopreservation of in vivo-derived swine embryos. PLoS One 8, e65545.
High-throughput cryopreservation of in vivo-derived swine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSku7zN&md5=0317e159ac89fd6a45dfba2ecba85674CAS | 23762391PubMed |

Stout, T. A., Meadows, S., and Allen, W. R. (2005). Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo. Anim. Reprod. Sci. 87, 269–281.
Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mvVWitQ%3D%3D&md5=65ab12d2386c62e3cd1a3deffb00eaaeCAS | 15911176PubMed |

Stringfellow, D. A., and Givens, M. D. (eds) (2010). ‘Manual of the International Embryo Transfer Society, 4th ed.’ (International Embryo Transfer Society: Champaign, IL.)

Summers, P. M., Shephard, A. M., Hodges, J. K., Kydd, J., Boyle, M. S., and Allen, W. R. (1987). Successful transfer of the embryos of Przewalski’s horses (Equus przewalskii) and Grant’s zebra (E. burchelli) to domestic mares (E. caballus). J. Reprod. Fertil. 80, 13–20.
Successful transfer of the embryos of Przewalski’s horses (Equus przewalskii) and Grant’s zebra (E. burchelli) to domestic mares (E. caballus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3lsVSjuw%3D%3D&md5=466f70f52bd3cb6fba264a8efd1c7913CAS | 3598950PubMed |

Sun, X., Li, Z., Yi, Y., Chen, J., Leno, G. H., and Engelhardt, J. F. (2008). Efficient term development of vitrified ferret embryos using a novel pipette chamber technique. Biol. Reprod. 79, 832–840.
Efficient term development of vitrified ferret embryos using a novel pipette chamber technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLrJ&md5=4eab174d19e78a8bd20eaa41a87d142aCAS | 18633142PubMed |

Young, C. A., Squires, E. L., Seidel, G. E., Kato, H., and McCue, P. M. (1997). Cryopreservation procedures for Day 7–8 equine embryos. Equine Vet. J. Suppl. 29, 98–102.
Cryopreservation procedures for Day 7–8 equine embryos.Crossref | GoogleScholarGoogle Scholar |