Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development
Svetlana Bivol A B , Suzzanne J. Owen A and Roselyn B. Rose’Meyer A B CA School of Medical Sciences, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Qld 4222, Australia.
B Heart Foundation Research Centre, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Qld 4222, Australia.
C Corresponding author. Email: r.rosemeyer@griffith.edu.au
Reproduction, Fertility and Development 29(5) 845-854 https://doi.org/10.1071/RD15356
Submitted: 4 March 2015 Accepted: 21 December 2015 Published: 5 February 2016
Abstract
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Additional keywords: developmental origin of health and disease, glucocorticoid excess.
References
Akinloye, O., Obikoya, O. M., Jegede, A. I., Oparinde, D. P., and Arowojolu, A. O. (2013). Cortisol plays central role in biochemical changes during pregnancy. Int. J. Med. Biomed. Res. 2, 3–12.| Cortisol plays central role in biochemical changes during pregnancy.Crossref | GoogleScholarGoogle Scholar |
Albiston, A. L., Obeyesekere, V. R., Smith, R. E., and Krozowski, Z. S. (1994). Cloning and tissue distribution of the human 11β-hydroxysteroid dehydrogenase type 2 enzyme. Mol. Cell. Endocrinol. 105, R11–R17.
| Cloning and tissue distribution of the human 11β-hydroxysteroid dehydrogenase type 2 enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVWns7k%3D&md5=c77d54ecc47dcdb96a18ca4bb8eaa1d8CAS | 7859916PubMed |
Allen, L. H. (2001). Biological mechanisms that might underlie iron’s effects on fetal growth and preterm birth. J. Nutr. 131, 581S–589S.
| 1:CAS:528:DC%2BD3MXht1Kjt74%3D&md5=b34a4a3df9e3f6073428760713aa32cbCAS | 11160591PubMed |
Almawi, W. Y., and Melemedjian, O. K. (2002). Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J. Leukoc. Biol. 71, 9–15.
| 1:CAS:528:DC%2BD38Xlt1aksg%3D%3D&md5=44125f5c7a48cbaaf6f4c82b1af1260aCAS | 11781376PubMed |
Arafah, B. M. (2006). Review: hypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods. J. Clin. Endocrinol. Metab. 91, 3725–3745.
| Review: hypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjtLbE&md5=79582b139d19449100c88286d0a8c6a7CAS | 16882746PubMed |
Arlt, W., and Stewart, P. M. (2005). Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol. Metab. Clin. North Am. 34, 293–313.
| Adrenal corticosteroid biosynthesis, metabolism, and action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlOmsL0%3D&md5=6756f7dbc6291e7b32e159bb83e63bd9CAS | 15850843PubMed |
Bamberger, C. M., Bamberger, A. M., de Castro, M., and Chrousos, G. P. (1995). Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J. Clin. Invest. 95, 2435–2441.
| Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtV2ru7s%3D&md5=d78b67f69890c5ff255ad70a8d367890CAS | 7769088PubMed |
Barker, D. J. P. (2004). The developmental origins of adult disease. J. Am. Coll. Nutr. 23, 588S–595S.
| The developmental origins of adult disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2FhsVSgtA%3D%3D&md5=4823e1cbdb81642aba700860e75712ceCAS |
Barker, D. J. P., Osmond, C., Golding, J., Kuh, D., and Wadsworth, M. E. J. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298, 564–567.
| Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7psVGhuw%3D%3D&md5=8d6f9369670a4983e3fa9823012acd4aCAS |
Barker, D. J. P., Bull, A. R., Osmond, C., and Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. BMJ 301, 259–262.
| Fetal and placental size and risk of hypertension in adult life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czmtVSnsg%3D%3D&md5=a664d050f0baeeefe549b9352409c82cCAS |
Barnes, P. J. (1998). Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clinical Science (London, England: 1979) 94, 557–572.
| Anti-inflammatory actions of glucocorticoids: molecular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksV2qsL0%3D&md5=55957918ece2442eeb34ea31b5bf6bcaCAS |
Beger, C., Gerdes, K., Lauten, M., Tissing, W., Fernandez-Munoz, I., Schrappe, M., and Welte, K. (2003). Expression and structural analysis of glucocorticoid receptor isoform gamma in human leukaemia cells using an isoform-specific real-time polymerase chain reaction approach. Br. J. Haematol. 122, 245–252.
| Expression and structural analysis of glucocorticoid receptor isoform gamma in human leukaemia cells using an isoform-specific real-time polymerase chain reaction approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFGis7g%3D&md5=c78504de713d2fba925651f8fe251616CAS | 12846893PubMed |
Beitins, I. Z., Bayard, F., Ances, I. G., Kowarski, A., and Migeon, C. J. (1973). The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term. Pediatr. Res. 7, 509–519.
| The metabolic clearance rate, blood production, interconversion and transplacental passage of cortisol and cortisone in pregnancy near term.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s7nslKgug%3D%3D&md5=cbd11b2913f1b17c5013bc6f4867ac03CAS | 4704743PubMed |
Benediktsson, R., and Seckl, J. R. (1998). Understanding human parturition. Lancet 351, 913–914.
| Understanding human parturition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7osVeitA%3D%3D&md5=81e7f2e633d8521b4c68e72315698e0bCAS | 9525404PubMed |
Benešová, O., and Pavlík, A. (1989). Perinatal treatment with glucocorticoids and the risk of maldevelopment of the brain. Neuropharmacology 28, 89–97.
| Perinatal treatment with glucocorticoids and the risk of maldevelopment of the brain.Crossref | GoogleScholarGoogle Scholar | 2927582PubMed |
Blackburn, S. (2010). The hypothalamic–pituitary–adrenal axis during pregnancy. J. Perinat. Neonatal Nurs. 24, 10–11.
| The hypothalamic–pituitary–adrenal axis during pregnancy.Crossref | GoogleScholarGoogle Scholar | 20147825PubMed |
Breslin, M. B., Geng, C. D., and Vedeckis, W. V. (2001). Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids. Mol. Endocrinol. 15, 1381–1395.
| Multiple promoters exist in the human GR gene, one of which is activated by glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslSgsbY%3D&md5=df51a99c2d3f005a130a81cf97e62ec4CAS | 11463861PubMed |
Brown, R. W., Diaz, R., Robson, A. C., Kotelevtsev, Y. V., Mullins, J. J., Kaufman, M. H., and Seckl, J. R. (1996). The ontogeny of 11 beta-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137, 794–797.
| 1:CAS:528:DyaK28XntVCmtA%3D%3D&md5=a6e44c850373d5db6f75aaeff0974ff3CAS | 8593833PubMed |
Burnstein, K. L., Jewell, C. M., and Cidlowski, J. A. (1990). Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation. J. Biol. Chem. 265, 7284–7291.
| 1:CAS:528:DyaK3cXktFykurc%3D&md5=ca6e7a4382085a85fa48a6ba10f05698CAS | 1692020PubMed |
Burnstein, K. L., Bellingham, D. L., Jewell, C. M., Powell-Oliver, F. E., and Cidlowski, J. A. (1991). Autoregulation of glucocorticoid receptor gene expression. Steroids 56, 52–58.
| Autoregulation of glucocorticoid receptor gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFGhu74%3D&md5=37ef6055bcf55967ee7c155d3c102a50CAS | 2020978PubMed |
Celsi, G., Kistner, A., Aizman, R., Eklöf, A.-C., Ceccatelli, S., De Santiago, A., and Jacobson, S. H. (1998). Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr. Res. 44, 317–322.
| Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVaksLY%3D&md5=5dbc34e6e89deae029099666d7f8d337CAS | 9727707PubMed |
Chan, C. C. W., Lao, T. T., Ho, P. C., Sung, E. O. P., and Cheung, A. N. Y. (2003). The effect of mifepristone on the expression of steroid hormone receptors in human decidua and placenta: a randomized placebo-controlled double-blind study. J. Clin. Endocrinol. Metab. 88, 5846–5850.
| The effect of mifepristone on the expression of steroid hormone receptors in human decidua and placenta: a randomized placebo-controlled double-blind study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSgsr3F&md5=f32899f5ebb25c91b513985c06880179CAS |
Cidlowski, J. A., and Cidlowski, N. B. (1981). Regulation of glucocorticoid receptors by glucocorticoids in cultured HeLa S3 cells. Endocrinology 109, 1975–1982.
| Regulation of glucocorticoid receptors by glucocorticoids in cultured HeLa S3 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xmtlaisg%3D%3D&md5=a1119a156b87dde96da6d3380f00b6d4CAS | 7308136PubMed |
Clifton, V. L. (2010). Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31, S33–S39.
| Review: sex and the human placenta: mediating differential strategies of fetal growth and survival.Crossref | GoogleScholarGoogle Scholar | 20004469PubMed |
Clifton, V. L., and Murphy, V. E. (2004). Maternal asthma as a model for examining fetal sex-specific effects on maternal physiology and placental mechanisms that regulate human fetal growth. Placenta 25, S45–S52.
| Maternal asthma as a model for examining fetal sex-specific effects on maternal physiology and placental mechanisms that regulate human fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFKmur8%3D&md5=b9662e459d8626f9674c63ece49927b3CAS | 15033307PubMed |
Cole, T. J., Blendy, J. A., Monaghan, A. P., Krieglstein, K., Schmid, W., Aguzzi, A., Fantuzzi, G., Hummler, E., Unsicker, K., and Schutz, G. (1995a). Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 9, 1608–1621.
| Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFSrsrY%3D&md5=f4b4ff33e1f44657c97452afd5164914CAS | 7628695PubMed |
Cole, T. J., Blendy, J. A., Monaghan, A. P., Schmid, W., Aguzzi, A., and Schütz, G. (1995b). Molecular genetic analysis of glucocorticoid signaling during mouse development. Steroids 60, 93–96.
| Molecular genetic analysis of glucocorticoid signaling during mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFKnu7s%3D&md5=50ca22ef718ebb6323fe04b97e005539CAS | 7792824PubMed |
Cottrell, E. C., and Seckl, J. R. (2009). Prenatal stress, glucocorticoids and the programming of adult disease. Front. Behav. Neurosci. 3, 19.
| Prenatal stress, glucocorticoids and the programming of adult disease.Crossref | GoogleScholarGoogle Scholar | 19826624PubMed |
de Lange, P., Segeren, C. M., Koper, J. W., Wiemer, E. A. C., Sonneveld, P., Brinkmann, A. O., White, A., Brogan, I. J., de Jong, F. H., and Lamberts, S. W. J. (2001). Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells. Cancer Res. 61, 3937–3941.
| 1:CAS:528:DC%2BD3MXktVWqsLs%3D&md5=c6271eb2a26db10a5e7e97981c9b490dCAS | 11358809PubMed |
Demey-Ponsart, E., Foidart, J. M., Sulon, J., and Sodoyez, J. C. (1982). Serum CBG, free and total cortisol and circadian patterns of adrenal function in normal pregnancy. J. Steroid Biochem. 16, 165–169.
| Serum CBG, free and total cortisol and circadian patterns of adrenal function in normal pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xktlemt70%3D&md5=33038c1241165080dd8d8bdebadec99eCAS | 7078155PubMed |
Di Renzo, G. C., Rosati, A., Sarti, R. D., Cruciani, L., and Cutuli, A. M. (2007). Does fetal sex affect pregnancy outcome? Gend. Med. 4, 19–30.
| Does fetal sex affect pregnancy outcome?Crossref | GoogleScholarGoogle Scholar | 17584623PubMed |
Driver, P. M., Kilby, M. D., Bujalska, I., Walker, E. A., Hewison, M., and Stewart, P. M. (2001). Expression of 11 beta-hydroxysteroid dehydrogenase isozymes and corticosteroid hormone receptors in primary cultures of human trophoblast and placental bed biopsies. Mol. Hum. Reprod. 7, 357–363.
| Expression of 11 beta-hydroxysteroid dehydrogenase isozymes and corticosteroid hormone receptors in primary cultures of human trophoblast and placental bed biopsies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFShs7g%3D&md5=ed865460fe2930f0a256bcd2eebfe91dCAS | 11279298PubMed |
Driver, P. M., Rauz, S., Walker, E. A., Hewison, M., Kilby, M. D., and Stewart, P. M. (2003). Characterization of human trophoblast as a mineralocorticoid target tissue. Mol. Hum. Reprod. 9, 793–798.
| Characterization of human trophoblast as a mineralocorticoid target tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVelt78%3D&md5=61d6619371df42df88dfe2a6018167ebCAS | 14614041PubMed |
Duma, D., Jewell, C. M., and Cidlowski, J. A. (2006). Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J. Steroid Biochem. Mol. Biol. 102, 11–21.
| Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmt7bO&md5=42f3c2def99e29a25d85ce79adb40e31CAS | 17070034PubMed |
Echeverría, P. C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Pilipuk, G. P., and Galigniana, M. D. (2009). Nuclear import of the glucocorticoid receptor–hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and Importin β. Mol. Cell. Biol. 29, 4788–4797.
| Nuclear import of the glucocorticoid receptor–hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and Importin β.Crossref | GoogleScholarGoogle Scholar | 19581287PubMed |
Encío, I. J., and Detera-Wadleigh, S. D. (1991). The genomic structure of the human glucocorticoid receptor. J. Biol. Chem. 266, 7182–7188.
| 1707881PubMed |
Exton, J. H. (1979). Regulation of gluconeogenesis by glucocorticoids. Monogr. Endocrinol. 12, 535–546.
| Regulation of gluconeogenesis by glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvVKqsL0%3D&md5=95d176f5f5a20c90664f91f023f9ef3aCAS | 386091PubMed |
Fall, C. H. D., Vijayakumar, M., Barker, D. J. P., Osmond, C., and Duggleby, S. (1995). Weight in infancy and prevalence of coronary heart disease in adult life. BMJ 310, 17–19.
| Weight in infancy and prevalence of coronary heart disease in adult life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7ivVahtw%3D%3D&md5=54038dfb32d115504733407bd4816aa6CAS |
Feng, X., Reini, S. A., Richards, E., Wood, C. E., and Keller-Wood, M. (2013). Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: differential effects of mineralocorticoid and glucocorticoid receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R343–R350.
| Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: differential effects of mineralocorticoid and glucocorticoid receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVehu7fF&md5=86a8f18c566062c148395793b321d51bCAS | 23785077PubMed |
Field, A. E., Field, A. E., Colditz, G. A., Colditz, G. A., Willett, W. C., Willett, W. C., Longcope, C., Longcope, C., McKinlay, J. B., and McKinlay, J. B. (1994). The relation of smoking, age, relative weight, and dietary intake to serum adrenal steroids, sex hormones, and sex hormone-binding globulin in middle-aged men. J. Clin. Endocrinol. Metab. 79, 1310–1316.
| 1:CAS:528:DyaK2MXit1eksL8%3D&md5=48717636fa89aea24682c245c43aa6cfCAS | 7962322PubMed |
Field, T., Diego, M., and Hernandez-Reif, M. (2010). Prenatal depression effects and interventions: a review. Infant Behav. Dev. 33, 409–418.
| Prenatal depression effects and interventions: a review.Crossref | GoogleScholarGoogle Scholar | 20471091PubMed |
Ford, S. P., Zhang, L., Zhu, M., Miller, M. M., Smith, D. T., Hess, B. W., Moss, G. E., Nathanielsz, P. W., and Nijland, M. J. (2009). Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R835–R843.
| Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrtbbJ&md5=81cff51ce95038ace2677d21f16346f0CAS | 19605766PubMed |
Galon, J., Franchimont, D., Hiroi, N., Frey, G., Boettner, A., Ehrhart-Bornstein, M., O’Shea, J. J., Chrousos, G. P., and Bornstein, S. R. (2002). Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16, 61–71.
| Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlslegsw%3D%3D&md5=9d9ab49433a27193b7a44b3ec47397cdCAS | 11772937PubMed |
Gitau, R., Cameron, A., Fisk, N. M., and Glover, V. (1998). Fetal exposure to maternal cortisol. Lancet 352, 707–708.
| Fetal exposure to maternal cortisol.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czpslaisw%3D%3D&md5=4d75c3ec943218b77ed63f7eadbcccabCAS | 9728994PubMed |
Gluckman, P. D., Hanson, M. A., and Pinal, C. (2005). The developmental origins of adult disease. Matern. Child Nutr. 1, 130–141.
| The developmental origins of adult disease.Crossref | GoogleScholarGoogle Scholar | 16881892PubMed |
Glynn, L. M., and Sandman, C. A. (2012). Sex moderates associations between prenatal glucocorticoid exposure and human fetal neurological development. Dev. Sci. 15, 601–610.
| Sex moderates associations between prenatal glucocorticoid exposure and human fetal neurological development.Crossref | GoogleScholarGoogle Scholar | 22925508PubMed |
Govindan, M. V., Pothier, F., Leclerc, S., Palaniswami, R., and Xie, B. (1991). Human glucocorticoid receptor gene promotor-homologous down regulation. J. Steroid Biochem. Mol. Biol. 40, 317–323.
| Human glucocorticoid receptor gene promotor-homologous down regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFyjsw%3D%3D&md5=cdfc02561b499b29a51a2bdc47f5f0e9CAS | 1958537PubMed |
Haarman, E. G., Kaspers, G. J. L., Pieters, R., Rottier, M. M. A., and Veerman, A. J. P. (2004). Glucocorticoid receptor alpha, beta and gamma expression vs in vitro glucocorticod resistance in childhood leukemia. Leukemia 18, 530–537.
| Glucocorticoid receptor alpha, beta and gamma expression vs in vitro glucocorticod resistance in childhood leukemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsV2qs7o%3D&md5=8c44f028615f7c5a1a373e128bfe8f12CAS | 14724649PubMed |
Hardy, D. B., and Yang, K. (2002). The expression of 11β-hydroxysteroid dehydrogenase type 2 is induced during trophoblast differentiation: effects of hypoxia. J. Clin. Endocrinol. Metab. 87, 3696–3701.
| 1:CAS:528:DC%2BD38XmtF2gtr4%3D&md5=eb5bf5ccff532d2ab7e2148a52e9b7fcCAS | 12161498PubMed |
Harris, A., and Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 59, 279–289.
| Glucocorticoids, prenatal stress and the programming of disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1WisLw%3D&md5=1ec991efd5b01c9fdd2c0831d049af8eCAS | 20591431PubMed |
Harvey, P. W., and Springall, C. (2008). ‘Adrenal Toxicology.’ (CRC Press: USA.)
Henley, D. E., and Lightman, S. L. (2011). New insights into corticosteroid-binding globulin and glucocorticoid delivery. Neuroscience 180, 1–8.
| New insights into corticosteroid-binding globulin and glucocorticoid delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2gsLk%3D&md5=9988bd3b58806b2e96650501e647c42eCAS | 21371536PubMed |
Hoeck, W., Rusconi, S., and Groner, B. (1989). Down-regulation and phosphorylation of glucocorticoid receptors in cultured cells. Investigations with a monospecific antiserum against a bacterially expressed receptor fragment. J. Biol. Chem. 264, 14 396–14 402.
| 1:CAS:528:DyaL1MXlt1Ohurg%3D&md5=d160edb47b2080a6f80b61fcb9b1f6c8CAS |
Hollenberg, S. M., Weinberger, C., Ong, E. S., Cerelli, G., Oro, A., Lebo, R., Thompson, E. B., Rosenfeld, M. G., and Evans, R. M. (1985). Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318, 635–641.
| Primary structure and expression of a functional human glucocorticoid receptor cDNA.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2Fpt1ajtA%3D%3D&md5=1188e3dc8995318656bd492402532924CAS | 2867473PubMed |
Johnson, R. F., Rennie, N., Murphy, V., Zakar, T., Clifton, V., and Smith, R. (2008). Expression of glucocorticoid receptor messenger ribonucleic acid transcripts in the human placenta at term. J. Clin. Endocrinol. Metab. 93, 4887–4893.
| Expression of glucocorticoid receptor messenger ribonucleic acid transcripts in the human placenta at term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyqtbjE&md5=1f48202a83da633611eb219da44b4ef6CAS | 18728163PubMed |
Jung, C., Ho, J. T., Torpy, D. J., Rogers, A., Doogue, M., Lewis, J. G., Czajko, R. J., and Inder, W. J. (2011). A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 96, 1533–1540.
| A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWnsb0%3D&md5=39c0b451d49a870aeb5c193e6b072097CAS | 21367926PubMed |
Kassel, O., Sancono, A., Krätzschmar, J., Kreft, B., Stassen, M., and Cato, A. C. B. (2001). Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 20, 7108–7116.
| Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFOk&md5=bdd7f10843f35e510675d8e3be2e0c75CAS | 11742987PubMed |
Kino, T., Manoli, I., Kelkar, S., Wang, Y., Su, Y. A., and Chrousos, G. P. (2009). Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem. Biophys. Res. Commun. 381, 671–675.
| Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVOqs7o%3D&md5=21f7a4171ee97062e45a24edae260e03CAS | 19248771PubMed |
Kitraki, E., Kittas, C., and Stylianopoulou, F. (1997). Glucocorticoid receptor gene expression during rat embryogenesis. An in situ hybridization study. Differentiation 62, 21–31.
| Glucocorticoid receptor gene expression during rat embryogenesis. An in situ hybridization study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1ygu7o%3D&md5=fd30617a14a9b619ee5cfa42741f54a1CAS | 9373944PubMed |
Krett, N. L., Pillay, S., Moalli, P. A., Greipp, P. R., and Rosen, S. T. (1995). A variant glucocorticoid receptor messenger RNA is expressed in multiple myeloma patients. Cancer Res. 55, 2727–2729.
| 1:CAS:528:DyaK2MXmsFyksr4%3D&md5=1bbcfd5fc134c23dae6ebdaf5059ce54CAS | 7796394PubMed |
Lacroix, A., Bonnard, G. D., and Lippman, M. E. (1984). Modulation of glucocorticoid receptors by mitogenic stimuli, glucocorticoids and retinoids in normal human cultured T cells. J. Steroid Biochem. 21, 73–80.
| Modulation of glucocorticoid receptors by mitogenic stimuli, glucocorticoids and retinoids in normal human cultured T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlt1egs7s%3D&md5=a9323a1f0559d0fca69365abf21d9498CAS | 6611455PubMed |
Lee, M.-J., Wang, Z., Yee, H., Ma, Y., Swenson, N., Yang, L., Kadner, S. S., Baergen, R. N., Logan, S. K., Garabedian, M. J., and Guller, S. (2005). Expression and regulation of glucocorticoid receptor in human placental villous fibroblasts. Endocrinology 146, 4619–4626.
| Expression and regulation of glucocorticoid receptor in human placental villous fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGqur7P&md5=e7fe23ce516da589c2cd2f35a23b0dfeCAS | 16055431PubMed |
Lesage, J., Blondeau, B., Grino, M., Breant, B., and Dupouy, J. P. (2001). Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamopituitary adrenal axis in the newborn rat. Endocrinology 142, 1692–1702.
| 1:CAS:528:DC%2BD3MXjt1aktrs%3D&md5=de3a0799ee27eb3ce00ec32341aba431CAS | 11316731PubMed |
Lewis, J. G., Bagley, C. J., Elder, P. A., Bachmann, A. W., and Torpy, D. J. (2005). Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clin. Chim. Acta 359, 189–194.
| Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnslyhsb4%3D&md5=3db7bb690dd72df10813e6e4144d492aCAS | 15904907PubMed |
Lewis-Tuffin, L. J., Jewell, C. M., Bienstock, R. J., Collins, J. B., and Cidlowski, J. A. (2007). Human glucocorticoid receptor β binds RU-486 and is transcriptionally active. Mol. Cell. Biol. 27, 2266–2282.
| Human glucocorticoid receptor β binds RU-486 and is transcriptionally active.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSrtrs%3D&md5=6d86c6291924386a39a3777ea92e2418CAS | 17242213PubMed |
Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6, 141–150.
| The role of cortisol in preparing the fetus for birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFKjs7w%3D&md5=12e60bee53cfcd673bfbb07acabeb5edCAS | 7991781PubMed |
Lindsay, J. R., and Nieman, L. K. (2005). The hypothalamic–pituitary–adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr. Rev. 26, 775–799.
| The hypothalamic–pituitary–adrenal axis in pregnancy: challenges in disease detection and treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyitLjE&md5=0c618e9d375f7fcea526a4fca9ca516bCAS | 15827110PubMed |
Lu, N. Z., and Cidlowski, J. A. (2005). Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell 18, 331–342.
| Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Cgtbg%3D&md5=3c734e5cca7adb055d3b2eefc6209f3aCAS | 15866175PubMed |
Lu, N. Z., Collins, J. B., Grissom, S. F., and Cidlowski, J. A. (2007). Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol. Cell. Biol. 27, 7143–7160.
| Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKjsb%2FK&md5=a1c9973b155586d6d200f49665df7569CAS | 17682054PubMed |
Malkoski, S. P., and Dorin, R. I. (1999). Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol. Endocrinol. 13, 1629–1644.
| Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Omtr8%3D&md5=560c8956258367771dee6442b547cda7CAS | 10517666PubMed |
Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R. M. (1995). The nuclear receptor superfamily: the 2nd decade. Cell 83, 835–839.
| The nuclear receptor superfamily: the 2nd decade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSnu7nJ&md5=85fa6a66c6c0c4abcd7ac7d5544626f1CAS | 8521507PubMed |
Mark, P. J., and Waddell, B. J. (2006). P-Glycoprotein restricts access of cortisol and dexamethasone to the glucocorticoid receptor in placental BeWo cells. Endocrinology 147, 5147–5152.
| P-Glycoprotein restricts access of cortisol and dexamethasone to the glucocorticoid receptor in placental BeWo cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgsL3I&md5=5086e358e7675c7639e858cea4367c92CAS | 16873536PubMed |
Matthews, S. G., Owen, D., Banjanin, S., and Andrews, M. H. (2002). Glucocorticoids, hypothalamo–pituitary–adrenal (HPA) development, and life after birth. Endocr. Res. 28, 709–718.
| Glucocorticoids, hypothalamo–pituitary–adrenal (HPA) development, and life after birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSgtLc%3D&md5=bf1271c3baeba32ba43321e39a680263CAS | 12530687PubMed |
Mayhew, T. M., Jenkins, H., Todd, B., and Clifton, V. L. (2008). Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex. Placenta 29, 366–373.
| Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3gsFentQ%3D%3D&md5=ee90a2744eb00db33f13e9e247a84aa7CAS | 18328557PubMed |
McIntyre, W. R., and Samuels, H. H. (1985). Triamcinolone acetonide regulates glucocorticoid-receptor levels by decreasing the half-life of the activated nuclear-receptor form. J. Biol. Chem. 260, 418–427.
| 1:CAS:528:DyaL2MXptVamsA%3D%3D&md5=e910df4e6646f54ba5651d5fe4de57b4CAS | 3965455PubMed |
Meagher, L. C., Cousin, J. M., Seckl, J. R., and Haslett, C. (1996). Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J. Immunol. (Baltimore, Md.: 1950) 156, 4422–4428.
| 1:CAS:528:DyaK28XjtFCmsrk%3D&md5=3ad7595901eb288efeb909b823b7fb60CAS |
Moalli, P. A., Pillay, S., Krett, N. L., and Rosen, S. T. (1993). Alternatively spliced glucocorticoid receptor messenger RNAs in glucocorticoid-resistant human multiple myeloma cells. Cancer Res. 53, 3877–3879.
| 1:CAS:528:DyaK3sXmsVKqtbw%3D&md5=ae1170ff57109ce3fb8bb73b701ae168CAS | 8358712PubMed |
Molina, P. E. (2006). ‘Endocrine Physiology.’ (McGraw-Hill Professional Publishing: Blacklick, OH.)
Monder, C., Miroff, Y., Marandici, A., and Hardy, M. P. (1994). 11Beta-hydroxysteroid dehydrogenase alleviates glucocorticoid-mediated inhibition of steroidogenesis in rat Leydig cells. Endocrinology 134, 1199–1204.
| 1:CAS:528:DyaK2cXitVyrsbs%3D&md5=f921940be6c3d4963502ecb35ab93d33CAS | 8119160PubMed |
Murphy, V. E., and Clifton, V. L. (2003). Alterations in human placental 11β-hydroxysteroid dehydrogenase Type 1 and 2 with gestational age and labour. Placenta 24, 739–744.
| Alterations in human placental 11β-hydroxysteroid dehydrogenase Type 1 and 2 with gestational age and labour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1eisr4%3D&md5=a57278f1bc7adb6c344360fb95911df5CAS | 12852864PubMed |
Murphy, V. E., Zakar, T., Smith, R., Giles, W. B., Gibson, P. G., and Clifton, V. L. (2002). Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J. Clin. Endocrinol. Metab. 87, 1660–1668.
| 1:CAS:528:DC%2BD38XivFKltLc%3D&md5=14e844f3b7261b3d77ea0e5b025c31f4CAS | 11932298PubMed |
Murphy, V. E., Gibson, P. G., Giles, W. B., Zakar, T., Smith, R., Bisits, A. M., Kessell, C. G., and Clifton, V. L. (2003). Maternal asthma is associated with reduced female fetal growth. Am. J. Respir. Crit. Care Med. 168, 1317–1323.
| Maternal asthma is associated with reduced female fetal growth.Crossref | GoogleScholarGoogle Scholar | 14500261PubMed |
Newton, R. (2000). Molecular mechanisms of glucocorticoid action: what is important? Thorax 55, 603–613.
| Molecular mechanisms of glucocorticoid action: what is important?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czhs1ahtw%3D%3D&md5=cb76a304c67b594c8c74ae8b945af86bCAS | 10856322PubMed |
O’Connell, B. A., Moritz, K. M., Roberts, C. T., Walker, D. W., and Dickinson, H. (2011). The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol. Reprod. 85, 1040–1047.
| The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2is7fI&md5=f7ce96252766181bd319a4702ef4be5eCAS | 21795670PubMed |
O’Donnell, K. J., Bugge Jensen, A., Freeman, L., Khalife, N., O’Connor, T. G., and Glover, V. (2012). Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology 37, 818–826.
| Maternal prenatal anxiety and downregulation of placental 11β-HSD2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFaktLc%3D&md5=a2516e97d3080e60d4da9ed14272d4b4CAS | 22001010PubMed |
Oakley, R. H., and Cidlowski, J. A. (2011). Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 286, 3177–3184.
| Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKks7w%3D&md5=ca071fb540e0a61afee78d697f07cd0dCAS | 21149445PubMed |
Oakley, R. H., Sar, M., and Cidlowski, J. A. (1996). The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J. Biol. Chem. 271, 9550–9559.
| The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFSmu7c%3D&md5=7ff3108d92b2216c592eeab78142e8f5CAS | 8621628PubMed |
Oakley, R. H., Webster, J. C., Sar, M., Parker, J. C. R., and Cidlowski, J. A. (1997). Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology 138, 5028–5038.
| 1:CAS:528:DyaK2sXmslGqsL4%3D&md5=f33179fbae5609e05119b29bce65d60eCAS | 9348235PubMed |
Oakley, R. H., Jewell, C. M., Yudt, M. R., Bofetiado, D. M., and Cidlowski, J. A. (1999a). The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem. 274, 27 857–27 866.
| The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlOkt7g%3D&md5=1d46de6de7ed954d0fbc1e5b37527dd7CAS |
Oakley, R. H., Webster, J. C., Jewell, C. M., Sar, M., and Cidlowski, J. A. (1999b). Immunocytochemical analysis of the glucocorticoid receptor alpha isoform (GR alpha) using a GR alpha-specific antibody. Steroids 64, 742–751.
| Immunocytochemical analysis of the glucocorticoid receptor alpha isoform (GR alpha) using a GR alpha-specific antibody.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVCnsLY%3D&md5=02d45811e39888615dee3736d352a5f2CAS | 10498033PubMed |
Oken, E., and Gillman, M. W. (2003). Fetal origins of obesity. Obes. Res. 11, 496–506.
| Fetal origins of obesity.Crossref | GoogleScholarGoogle Scholar | 12690076PubMed |
Parry, S., and Zhang, J. (2007). Multidrug resistance proteins affect drug transmission across the placenta. Am. J. Obstet. Gynecol. 196, 476.e1–476.e6.
| Multidrug resistance proteins affect drug transmission across the placenta.Crossref | GoogleScholarGoogle Scholar |
Patel, F. A., Funder, J. W., and Challis, J. R. G. (2003). Mechanism of cortisol/progesterone antagonism in the regulation of 15-hydroxyprostaglandin dehydrogenase activity and messenger ribonucleic acid levels in human chorion and placental trophoblast cells at term. J. Clin. Endocrinol. Metab. 88, 2922–2933.
| Mechanism of cortisol/progesterone antagonism in the regulation of 15-hydroxyprostaglandin dehydrogenase activity and messenger ribonucleic acid levels in human chorion and placental trophoblast cells at term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslCrtrs%3D&md5=1b28547e6ecffaf09bd60980e55a76acCAS | 12788907PubMed |
Pepin, M.-C., Pothier, F., and Barden, N. (1992). Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature 355, 725–728.
| Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs1Kmsr4%3D&md5=f7974629a2f8a4535bbf6a6552b2f303CAS | 1741058PubMed |
Pratt, W. B., and Toft, D. O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360.
| 1:CAS:528:DyaK2sXktV2qsrs%3D&md5=2b330e49ad4a18739c967015cc10984aCAS | 9183567PubMed |
Pujols, L., Mullol, J., Roca-Ferrer, J., Torrego, A., Xaubet, A., Cidlowski, J. A., and Picado, C. (2002). Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues. Am. J. Physiol. Cell Physiol. 283, C1324–C1331.
| Expression of glucocorticoid receptor α- and β-isoforms in human cells and tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotV2rur8%3D&md5=a74b09ffcb0e6f19dd0c273d54b7d0a0CAS | 12225995PubMed |
Reynolds, R. M. (2013). Glucocorticoid excess and the developmental origin of disease: two decades of testing the hypothesis. 2012 Curt Richter Award Winner. Psychoneuroendocrinology 38, 1–11.
| Glucocorticoid excess and the developmental origin of disease: two decades of testing the hypothesis. 2012 Curt Richter Award Winner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2jtb3P&md5=3f374151c69a61894743f279f23bc51dCAS | 22998948PubMed |
Ricketts, M. L., Verhaeg, J. M., Bujalska, I., Howie, A. J., Rainey, W. E., and Stewart, P. M. (1998). Immunohistochemical localization of type-1 11β-hydroxysteroid dehydrogenase in human tissues. J. Clin. Endocrinol. Metab. 83, 1325–1335.
| 1:CAS:528:DyaK1cXitlyntLc%3D&md5=4082f3298cb231a557fa043fd29ac206CAS | 9543163PubMed |
Roberts, D., and Dalziel, S. (2006). Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 3, CD004454.
| 16856047PubMed |
Rosewicz, S., McDonald, A. R., Maddux, B. A., Goldfine, I. D., Miesfeld, R. L., and Logsdon, C. D. (1988). Mechanism of glucocorticoid receptor down-regulation by glucocorticoids. J. Biol. Chem. 263, 2581–2584.
| 1:CAS:528:DyaL1cXht1CktrY%3D&md5=0d65dff092e35a9432372eb327c1d7acCAS | 3343225PubMed |
Saif, Z., Hodyl, N. A., Hobbs, E., Tuck, A. R., Butler, M. S., Osei-Kumah, A., and Clifton, V. L. (2014). The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta 35, 260–268.
| The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFCitLk%3D&md5=6e6a4bae097309a680a6b5d6f5f171c9CAS | 24559727PubMed |
Sakai, D. D., Helms, S., Carlstedt-Duke, J., Gustafsson, J. A., Rottman, F. M., and Yamamoto, K. R. (1988). Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev. 2, 1144–1154.
| Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1eksLY%3D&md5=45976ae95424729732b7ffade5832094CAS | 3192076PubMed |
Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89.
| 1:CAS:528:DC%2BD3cXhs12hu78%3D&md5=ad69f3abb8718cae04596f9fae372bfdCAS | 10696570PubMed |
Schaaf, M. J. M., and Cidlowski, J. A. (2002). Molecular mechanisms of glucocorticoid action and resistance. J. Steroid Biochem. Mol. Biol. 83, 37–48.
| Molecular mechanisms of glucocorticoid action and resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFahsrw%3D&md5=71b27ba9f738f6b17a3510f3c4abe681CAS |
Schüle, R., Rangarajan, P., Kliewer, S., Ransone, L. J., Bolado, J., Yang, N., Verma, I. M., and Evans, R. M. (1990). Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62, 1217–1226.
| Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor.Crossref | GoogleScholarGoogle Scholar | 2169353PubMed |
Schwartz, L. B. (1997). Understanding human parturition. Lancet 350, 1792–1793.
| Understanding human parturition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FovFynug%3D%3D&md5=2a0086aa865c65f71d2bf2cf5f0331dfCAS | 9428247PubMed |
Seckl, J. R., and Holmes, M. C. (2007). Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat. Clin. Pract. Endocrinol. Metab. 3, 479–488.
| Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFGrs78%3D&md5=81268b3ef83b23bf5b5b8d22617c80a1CAS | 17515892PubMed |
Seckl, J. R., Kelly, P. A., and Sharkey, J. (1991). Glycyrrhetinic acid, an inhibitor of 11 beta-hydroxysteroid dehydrogenase, alters local cerebral glucose utilization in vivo. J. Steroid Biochem. Mol. Biol. 39, 777–779.
| Glycyrrhetinic acid, an inhibitor of 11 beta-hydroxysteroid dehydrogenase, alters local cerebral glucose utilization in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFyhsA%3D%3D&md5=a4d7c49b2629991d8edf7f7d1be00025CAS | 1958512PubMed |
Shams, M., Kilby, M. D., Somerset, D. A., Howie, A. J., Gupta, A., Wood, P. J., Afnan, M., and Stewart, P. M. (1998). 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum. Reprod. 13, 799–804.
| 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gtLo%3D&md5=3e453494cc2bb88d4e13bba65257a069CAS | 9619527PubMed |
Silva, C. M., Powell-Oliver, F. E., Jewell, C. M., Sar, M., Allgood, V. E., and Cidlowski, J. A. (1994). Regulation of the human glucocorticoid receptor by long-term and chronic treatment with glucocorticoid. Steroids 59, 436–442.
| Regulation of the human glucocorticoid receptor by long-term and chronic treatment with glucocorticoid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVSitrw%3D&md5=b8329ea07c68338856ad72e71b7e476eCAS | 7974528PubMed |
Singh, R. R., Cuffe, J. S. M., and Moritz, K. M. (2012). Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development. Clin. Exp. Pharmacol. Physiol. 39, 979–989.
| Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOqurnF&md5=93c22197d35db5d130085c4433a60fddCAS | 22971052PubMed |
Stark, M. J., Hodyl, N. A., Wright, I. M. R., and Clifton, V. L. (2011). Influence of sex and glucocorticoid exposure on preterm placental pro-oxidant-antioxidant balance. Placenta 32, 865–870.
| Influence of sex and glucocorticoid exposure on preterm placental pro-oxidant-antioxidant balance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagtL%2FO&md5=4b934c74a716c091987f801b73e7aceaCAS | 21903264PubMed |
Stewart, P. M., Whorwood, C. B., and Mason, J. I. (1995). Type 2 11 beta-hydroxysteroid dehydrogenase in foetal and adult life. J. Steroid Biochem. Mol. Biol. 55, 465–471.
| Type 2 11 beta-hydroxysteroid dehydrogenase in foetal and adult life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktF2quw%3D%3D&md5=e1ba6acca038c76fc15a7362df0b609cCAS | 8547171PubMed |
Stroupe, S. D., Gray, R. D., and Westphal, U. (1978). Steroid–protein interactions. Kinetics of binding of cortisol and progesterone to human corticosteroid-binding globulin. FEBS Lett. 86, 61–64.
| Steroid–protein interactions. Kinetics of binding of cortisol and progesterone to human corticosteroid-binding globulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFGmt7w%3D&md5=8e91b24977300f45d8faeb87288633c6CAS | 620830PubMed |
Svec, F., and Rudis, M. (1981). Glucocorticoids regulate the glucocorticoid receptor in the AtT-20 cell. J. Biol. Chem. 256, 5984–5987.
| 1:CAS:528:DyaL3MXkvFWht70%3D&md5=9c933b42c615505972207f42c7f546e5CAS | 7240188PubMed |
Tasker, J. G., and Herman, J. P. (2011). Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic–pituitary–adrenal axis. Stress 14, 398–406.
| 1:CAS:528:DC%2BC3MXntlOmu7o%3D&md5=643e0b57ae4d2e856584d0fa49507ebbCAS | 21663538PubMed |
Tuckey, R. C. (2005). Progesterone synthesis by the human placenta. Placenta 26, 273–281.
| Progesterone synthesis by the human placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVyrt7o%3D&md5=7b91772b7cd2052869fbf65cff5578aaCAS | 15823613PubMed |
Turner, J. D., Schote, A. B., Keipes, M., and Muller, C. P. (2007). A new transcript splice variant of the human glucocorticoid receptor. Ann. N. Y. Acad. Sci. 1095, 334–341.
| A new transcript splice variant of the human glucocorticoid receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Gkurw%3D&md5=6363a91ddcf67e87c2a6338ee695e54fCAS | 17404046PubMed |
Urizar, G. G., and Muñoz, R. F. (2011). Impact of a prenatal cognitive-behavioral stress management intervention on salivary cortisol levels in low-income mothers and their infants. Psychoneuroendocrinology 36, 1480–1494.
| Impact of a prenatal cognitive-behavioral stress management intervention on salivary cortisol levels in low-income mothers and their infants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOgu7bP&md5=74bc3f8d02202afb2cf2106492fd1c57CAS | 21641117PubMed |
Vatten, L. J., and Skjærven, R. (2004). Offspring sex and pregnancy outcome by length of gestation. Early Hum. Dev. 76, 47–54.
| Offspring sex and pregnancy outcome by length of gestation.Crossref | GoogleScholarGoogle Scholar | 14729162PubMed |
Vedeckis, W. V., Ali, M., and Allen, H. R. (1989). Regulation of glucocorticoid receptor protein and mRNA levels. Cancer Res. 49, 2295s–2302s.
| 1:CAS:528:DyaL1MXhvVKhtbg%3D&md5=1ac99c09d366cc60bef8cd00406b7c29CAS | 2702670PubMed |
Wallace, A. D., and Cidlowski, J. A. (2001). Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276, 42 714–42 721.
| Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlemu74%3D&md5=a7a9531eba8e690424c4b0cc12e0b03bCAS |
Whorwood, C. B., Ricketts, M. L., and Stewart, P. M. (1994). Epithelial cell localization of type 2 11 beta-hydroxysteroid dehydrogenase in rat and human colon. Endocrinology 135, 2533–2541.
| 1:CAS:528:DyaK2MXisFWqtLw%3D&md5=7941baadb540c0c6798957bf8fb47d80CAS | 7988441PubMed |
Wikstrom, A. C. (2003). Glucocorticoid action and novel mechanisms of steroid resistance: role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness. J. Endocrinol. 178, 331–337.
| Glucocorticoid action and novel mechanisms of steroid resistance: role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness.Crossref | GoogleScholarGoogle Scholar | 12967326PubMed |