Detection of cross-sex chimerism in the common marmoset monkey (Callithrix jacchus) in interphase cells using fluorescence in situ hybridisation probes specific for the marmoset X and Y chromosomes
E. Wedi A E H , S. Müller B , M. Neusser B , P. H. Vogt C , O. Y. Tkachenko A F , J. Zimmer C , D. Smeets D , H. W. Michelmann G and P. L. Nayudu AA Department of Reproductive Biology, German Primate Centre, Goettingen, 37077, Germany.
B Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
C Reproduction Genetics Unit, Department of Gynaecological Endocrinology and Reproductive Medicine, University of Heidelberg, 69047, Germany.
D Institute for Anthropology and Human Genetics, Department Biology II, Biocenter, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
E Departments of Gastroenterology and Endoscopy, Novel Hôpital Civil (NHC), University Hospital Strasbourg, 67000, France.
F Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
G Department of Obstetrics and Gynecology, University of Goettingen, Goettingen, 37075, Germany.
H Corresponding author. Email: edris.wedi@chru-strasbourg.fr
Reproduction, Fertility and Development 29(5) 913-920 https://doi.org/10.1071/RD15321
Submitted: 6 August 2015 Accepted: 19 December 2015 Published: 15 February 2016
Abstract
Chimerism associated with placental sharing in marmosets has been traditionally analysed using conventional chromosome staining on metaphase spreads or polymerase chain reaction. However, the former technique requires the presence of proliferating cells, whereas the latter may be associated with possible blood cell contamination. Therefore, we aimed to develop a single-cell analysis technique for sexing marmoset cells. We applied fluorescent in situ hybridisation (FISH) to cell nuclei using differentially labelled X and Y chromosome-specific probes. Herein we present the validation of this method in metaphase cells from a marmoset lymphoblastoid cell line, as well as application of the method for evaluation of cross-sex chimerism in interphase blood lymphocytes and haematopoietic bone marrow cells from marmosets of same- and mixed-sex litters. The results show conclusively that haematopoietic cells of bone marrow and leucocytes from blood are cross-sex chimeric when the litter is mixed sex. In addition, single samples of liver and spleen cell suspensions from one individual were tested. Cross-sex chimerism was observed in the spleen but not in liver cells. We conclude that FISH is the method of choice to identify cross-sex chimerism, especially when combined with morphological identification of nuclei of different cell types, which will allow a targeted tissue-specific analysis.
Additional keywords: bone marrow cells, lymphocytes.
References
Aeckerle, N., Drummer, C., Debowski, K., Viebahn, C., and Behr, R. (2015). Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation. Mol. Hum. Reprod. 21, 66–80.| Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M7jtVaisA%3D%3D&md5=c47dc9c673e544afbfeb975c604bd881CAS | 25237007PubMed |
Benirschke, K., and Brownhill, L. E. (1962). Further observations on marrow chimerism in marmosets. Cytogenetics 1, 245–257.
| Further observations on marrow chimerism in marmosets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF387mt1aqsw%3D%3D&md5=7f9d0454bf775eb5c73b0d7d37919fd0CAS | 13970508PubMed |
Benirschke, K., and Driscoll, S. G. (1967). ‘Pathology of the Human Placenta.’ 1st edn. (Springer-Verlag: New York.)
Benirschke, K., and Layton, W. (1969). An early twin blastocyst of the golden lion marmoset, Leontocebus rosalia L. Folia Primatol. (Basel) 10, 131–138.
| An early twin blastocyst of the golden lion marmoset, Leontocebus rosalia L.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M3lvF2rtQ%3D%3D&md5=7f0b53d2378e5ff42f17cefe857efef6CAS | 4979356PubMed |
Chambers, P. L., and Hearn, J. P. (1985). Embryonic, foetal and placental development in the common marmoset monkey (Callithrix jacchus). J. Zool. 207, 545–561.
| Embryonic, foetal and placental development in the common marmoset monkey (Callithrix jacchus).Crossref | GoogleScholarGoogle Scholar |
Choi, D. H., Kwon, H., Lee, S. D., Moon, M. J., Yoo, E. G., Lee, K. H., Hong, Y. K., and Kim, G. (2013). Testicular hypoplasia in monochorionic dizygous twin with confined blood chimerism. J. Assist. Reprod. Genet. 30, 1487–1491.
| Testicular hypoplasia in monochorionic dizygous twin with confined blood chimerism.Crossref | GoogleScholarGoogle Scholar | 24091545PubMed |
Cremer, T., Landegent, J., Bruckner, A., Scholl, H. P., Schardin, M., Hager, H. D., Devilee, P., Pearson, P., and van der Ploeg, M. (1986). Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum. Genet. 74, 346–352.
| Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FotF2mtg%3D%3D&md5=432831970f9ebc3fb541794350037fc4CAS | 3793097PubMed |
Cremer, T., Lichter, P., Borden, J., Ward, D. C., and Manuelidis, L. (1988). Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet. 80, 235–246.
| Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2Fltlejtw%3D%3D&md5=04982ccad4b371a30139eace64c2acc3CAS | 3192213PubMed |
Delimitreva, S., Wedi, E., Bakker, J., Tkachenko, O. Y., Nikolova, V., and Nayudu, P. L. (2013). Numerical chromosome disorders in the common marmoset (Callithrix jacchus): comparison between two captive colonies. J. Med. Primatol. 42, 177–185.
| Numerical chromosome disorders in the common marmoset (Callithrix jacchus): comparison between two captive colonies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3srms1Cnsg%3D%3D&md5=8cb4757492ce3be01fcf53f1a06b5c9eCAS | 23600894PubMed |
Fereydouni, B., Drummer, C., Aeckerle, N., Schlatt, S., and Behr, R. (2014). The neonatal marmoset monkey ovary is very primitive exhibiting many oogonia. Reproduction 148, 237–247.
| The neonatal marmoset monkey ovary is very primitive exhibiting many oogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GgurvI&md5=48c1181a729eea04c8ad60c77c031257CAS | 24840529PubMed |
Gengozian, N., Batson, J. S., and Eide, P. (1964). Hematologic and cytogenic evidence for chimerism in the marmoset, Tamarinus nigricollis. Sam-Tdr-64-61. AMD TR Rep. Nov, 1–10.
Gengozian, N., Batson, J. S., Greene, C. T., and Gosslee, D. G. (1969). Hemopoietic chimerism in imported and laboratory-bred marmosets. Transplantation 8, 633–652.
| Hemopoietic chimerism in imported and laboratory-bred marmosets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M7mtFGnsA%3D%3D&md5=3bf5bf9e88f1d9626d022c3609dc26adCAS | 4994820PubMed |
Gilchrist, R. B., Nayudu, P. L., and Hodges, J. K. (1997). Maturation, fertilization, and development of marmoset monkey oocytes in vitro. Biol. Reprod. 56, 238–246.
| Maturation, fertilization, and development of marmoset monkey oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislWlsw%3D%3D&md5=57c8159dc52779657bdbd9d241fff272CAS | 9002655PubMed |
Hearn, J. P. (2001). Embryo implantation and embryonic stem cell development in primates. Reprod. Fertil. Dev. 13, 517–522.
| Embryo implantation and embryonic stem cell development in primates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383lvFyrsQ%3D%3D&md5=25c752091f9daa399f20dfb372364c99CAS | 11999301PubMed |
Isachenko, E. F., Nayudu, P. L., Isachenko, V. V., Nawroth, F., and Michelmann, H. W. (2002). Congenitally caused fused labia in the common marmoset (Callithrix jacchus). J. Med. Primatol. 31, 350–355.
| Congenitally caused fused labia in the common marmoset (Callithrix jacchus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FhtlKqsA%3D%3D&md5=4748fc1ce837facbe60a997fbc1ba924CAS | 12519214PubMed |
John, H. A., Birnstiel, M. L., and Jones, K. W. (1969). RNA–DNA hybrids at the cytological level. Nature 223, 582–587.
| RNA–DNA hybrids at the cytological level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXltF2ltr4%3D&md5=4adbd3ac797478ae3be026f20e984c2bCAS | 5799530PubMed |
Kowalzick, L., Artlett, C. M., Thoss, K., Baum, H. P., Ziegler, H., Mischke, D., Blum, R., Ponnighaus, J. M., and Quietzsch, J. (2005). Chronic graft-versus-host-disease-like dermopathy in a child with CD4+ cell microchimerism. Dermatology 210, 68–71.
| Chronic graft-versus-host-disease-like dermopathy in a child with CD4+ cell microchimerism.Crossref | GoogleScholarGoogle Scholar | 15604551PubMed |
Marmoset Genome Sequencing and Analysis Consortium (2014). The Marmoset Genome Sequencing and Analysis Consortium. The common marmoset genome provides insight into primate biology and evolution. Nat. Genet. 46, 850–857.
| The Marmoset Genome Sequencing and Analysis Consortium. The common marmoset genome provides insight into primate biology and evolution.Crossref | GoogleScholarGoogle Scholar | 25038751PubMed |
McLaren, A. (1976). ‘Mammalian Chimaeras.’ (Cambridge University Press: Cambridge.)
Mitchell, R. T., Cowan, G., Morris, K. D., Anderson, R. A., Fraser, H. M., McKenzie, K. J., Wallace, W. H., Kelnar, C. J., Saunders, P. T., and Sharpe, R. M. (2008). Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human. Hum. Reprod. 23, 2755–2765.
| Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWmt77F&md5=26db950f38715e4522df1d29370b7322CAS | 18694875PubMed |
Moore, H. D., Gems, S., and Hearn, J. P. (1985). Early implantation stages in the marmoset monkey (Callithrix jacchus). Am. J. Anat. 172, 265–278.
| Early implantation stages in the marmoset monkey (Callithrix jacchus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7ps1SmsA%3D%3D&md5=2640d7523926fd25c7878134b9461226CAS | 3922211PubMed |
Neusser, M., Stanyon, R., Bigoni, F., Wienberg, J., and Muller, S. (2001). Molecular cytotaxonomy of New World monkeys (Platyrrhini): comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet. Cell Genet. 94, 206–215.
| Molecular cytotaxonomy of New World monkeys (Platyrrhini): comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlGlsbc%3D&md5=4df149d0e70dbb63d35cc1719a9733c1CAS | 11856883PubMed |
Neusser, M., Schubel, V., Koch, A., Cremer, T., and Muller, S. (2007). Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116, 307–320.
| Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates.Crossref | GoogleScholarGoogle Scholar | 17318634PubMed |
Padula, A. M. (2005). The freemartin syndrome: an update. Anim. Reprod. Sci. 87, 93–109.
| The freemartin syndrome: an update.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3ks1ChtQ%3D%3D&md5=0794b4837aaa8caf6dca7f957980cf36CAS | 15885443PubMed |
Pardue, M. L., and Gall, J. G. (1970). Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358.
| Chromosomal localization of mouse satellite DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXksFemtbk%3D&md5=cbd81419aa31144d24d1425357f4f254CAS | 5462793PubMed |
Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J., and Gray, J. (1988). Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA 85, 9138–9142.
| Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovFykuw%3D%3D&md5=a70962e48818cc3fbf823d4e0ad39e4fCAS | 2973607PubMed |
Plohl, M., Mestrovic, N., and Mravinac, B. (2012). Satellite DNA evolution. Genome Dyn. 7, 126–152.
| Satellite DNA evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GiurzI&md5=2aac0a8156ed355068559a7aff538c51CAS | 22759817PubMed |
Rohen, J. W., and Lütjen-Drecoll, E. (2002). ‘Funktionelle Embryologie: Die Entwicklung der Funktionssysteme des menschlichen Organismus.’ (Schattauer: Stuttgart.)
Ross, C. N., French, J. A., and Orti, G. (2007). Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proc. Natl. Acad. Sci. USA 104, 6278–6282.
| Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1aru7w%3D&md5=08a6b14ff60f1805ca8bdf57405af732CAS | 17389380PubMed |
Sherlock, J. K., Griffin, D. K., Delhanty, J. D., and Parrington, J. M. (1996). Homologies between human and marmoset (Callithrix jacchus) chromosomes revealed by comparative chromosome painting. Genomics 33, 214–219.
| Homologies between human and marmoset (Callithrix jacchus) chromosomes revealed by comparative chromosome painting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1ensb4%3D&md5=1ee21d34988280e544370e31823f4508CAS | 8660970PubMed |
Solovei, I., Grasser, F., and Lanctot, C. (2007). FISH on histological sections. CSH Protoc. 2007, pdb.prot4729.
| FISH on histological sections.Crossref | GoogleScholarGoogle Scholar | 21357074PubMed |
Souter, V. L., Parisi, M. A., Nyholt, D. R., Kapur, R. P., Henders, A. K., Opheim, K. E., Gunther, D. F., Mitchell, M. E., Glass, I. A., and Montgomery, G. W. (2007). A case of true hermaphroditism reveals an unusual mechanism of twinning. Hum. Genet. 121, 179–185.
| A case of true hermaphroditism reveals an unusual mechanism of twinning.Crossref | GoogleScholarGoogle Scholar | 17165045PubMed |
Sweeney, C. G., Curran, E., Westmoreland, S. V., Mansfield, K. G., and Vallender, E. J. (2012). Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. BMC Genomics 13, 98.
| Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins.Crossref | GoogleScholarGoogle Scholar | 22429831PubMed |
The ENCODE Project Consortium (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.
| Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.Crossref | GoogleScholarGoogle Scholar | 17571346PubMed |
Vabres, P., and Bonneau, D. (2005). Childhood dermatosis due to microchimerism. Dermatology 211, 388–389.
| Childhood dermatosis due to microchimerism.Crossref | GoogleScholarGoogle Scholar | 16286760PubMed |
Wolff, D. J., Bagg, A., Cooley, L. D., Dewald, G. W., Hirsch, B. A., Jacky, P. B., Rao, K. W., Rao, P. N., Association for Molecular Pathology Clinical Practice Committee, and American College of Medical Genetics Laboratory Quality Assurance Committee (2007). Guidance for fluorescence in situ hybridization testing in hematologic disorders. J. Mol. Diagn. 9, 134–143.
| Guidance for fluorescence in situ hybridization testing in hematologic disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt12rtbw%3D&md5=30901a1356c899562dcde2616a3bb1e1CAS | 17384204PubMed |