Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro

Ricaurte Lopera-Vasquez A , Meriem Hamdi A , Veronica Maillo A , Valeriano Lloreda A , Pilar Coy B , Alfonso Gutierrez-Adan A , Pablo Bermejo-Alvarez A and Dimitrios Rizos A C
+ Author Affiliations
- Author Affiliations

A Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruna Km 5.9, Madrid, 28040, Spain.

B Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, 30071, Spain.

C Corresponding author. Email: drizos@inia.es

Reproduction, Fertility and Development 29(3) 621-629 https://doi.org/10.1071/RD15238
Submitted: 12 June 2015  Accepted: 2 September 2015   Published: 14 October 2015

Abstract

To evaluate the effect of bovine oviductal fluid (OF) supplementation during in vitro culture of bovine embryos on their development and quality, in vitro-produced zygotes were cultured in synthetic oviductal fluid (SOF; negative control; C) supplemented with OF or 5% fetal calf serum (positive control; C+). Embryo development was recorded on Days 7–9 after insemination and blastocyst quality was assessed through cryotolerance, differential cell counting of the inner cell mass and trophectoderm, and gene expression. OF was added to the culture medium at concentrations ranging from 0.625% to 25%. The higher OF concentrations (5%, 10% and 25%) had a detrimental effect on embryo development. Lower OF concentrations (1.25% and 0.625%) supported embryo development until Day 9 (27.5%) and produced higher-quality blastocysts, as reflected by their cryotolerance (53.6% and 57.7% survival at 72 h, respectively, vs 25.9% in C+) and total cell number (mean (± s.e.m.) 165.1 ± 4.7 and 156.2 ± 4.2, respectively, vs 127.7 ± 4.9 in C and 143.1 ± 4.9 in C+). Consistent with these data, upregulation of the water channel aquaporin 3 (AQP3) mRNA was observed in blastocysts supplemented with 1.25% OF compared with C and C+. Serum supplementation resulted in a reduction in the expression of glucose and lipid metabolism-related genes and downregulation of the epigenetic-related genes DNA methyltransferase 3A (DNMT3A) and insulin-like growth factor 2 receptor (IGF2R). In conclusion, in vitro culture with low concentrations of OF has a positive effect on the development and quality of bovine embryos.

Additional keywords: embryo culture, gene expression.


References

Aguilar, J., and Reyley, M. (2005). The uterine tubal fluid: secretion, composition and biological effects. Anim. Reprod. 2, 91–105.

Avilés, M., Gutiérrez-Adán, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
Oviductal secretions: will they be key factors for the future ARTs?Crossref | GoogleScholarGoogle Scholar | 20584881PubMed |

Aviles, M., Coy, P., and Rizos, D. (2015). The oviduct: a key organ for the success of early reproductive events. Anim. Front. 5, 25–31.
The oviduct: a key organ for the success of early reproductive events.Crossref | GoogleScholarGoogle Scholar |

Ballester, L., Romero-Aguirregomezcorta, J., Soriano-Úbeda, C., Matás, C., Romar, R., and Coy, P. (2014). Timing of oviductal fluid collection, steroid concentrations, and sperm preservation method affect porcine in vitro fertilization efficiency. Fertil. Steril. 102, 1762–1768.e1.
Timing of oviductal fluid collection, steroid concentrations, and sperm preservation method affect porcine in vitro fertilization efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1SqurrM&md5=904616b18102be0a0fc3e78dd88e3a58CAS | 25241366PubMed |

Bermejo-Álvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiol. Genomics 32, 264–272.
Epigenetic differences between male and female bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 17986520PubMed |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2010a). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl Acad. Sci. USA 107, 3394–3399.
Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtbo%3D&md5=22ce2e70c5491bb48bb12d6c72732255CAS | 20133684PubMed |

Bermejo-Álvarez, P., Lonergan, P., Rizos, D., and Gutiérrez-Adan, A. (2010b). Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod. Biomed. Online 20, 341–349.
Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis.Crossref | GoogleScholarGoogle Scholar | 20093090PubMed |

Bermejo-Alvarez, P., Rosenfeld, C. S., and Roberts, R. M. (2012). Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model. Hum. Reprod. 27, 3513–3522.
Effect of maternal obesity on estrous cyclicity, embryo development and blastocyst gene expression in a mouse model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrsLvF&md5=475d0027b1f8aa40daf87614a2040d8bCAS | 23001779PubMed |

Besenfelder, U., Havlicek, V., and Brem, G. (2012). Role of the oviduct in early embryo development. Reprod. Domest. Anim. 47, 156–163.
Role of the oviduct in early embryo development.Crossref | GoogleScholarGoogle Scholar | 22827365PubMed |

Buhi, W. C. (2002). Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction 123, 355–362.
Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Clsr0%3D&md5=8032c2b64cec38a4e5cae96486174992CAS | 11882012PubMed |

Carrasco, L. C., Coy, P., Avilés, M., Gadea, J., and Romar, R. (2008). Glycosidase determination in bovine oviducal fluid at the follicular and luteal phases of the oestrous cycle. Reprod. Fertil. Dev. 20, 808–817.
Glycosidase determination in bovine oviducal fluid at the follicular and luteal phases of the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWmsLfK&md5=295f6cb0a0a98ee67e7d3e66ddf45f25CAS | 18842183PubMed |

Cebrian-Serrano, A., Salvador, I., García-Roselló, E., Pericuesta, E., Pérez-Cerezales, S., Gutierrez-Adán, A., Coy, P., and Silvestre, M. (2013). Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro-produced bovine blastocysts. Reprod. Domest. Anim. 48, 331–338.
Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro-produced bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlWqu7c%3D&md5=60f29f716d5d9d4ec506a2b783bff1dfCAS | 22908847PubMed |

Clemente, M., Lopez-Vidriero, I., O’Gaora, P., Mehta, J. P., Forde, N., Gutierrez-Adan, A., Lonergan, P., and Rizos, D. (2011). Transcriptome changes at the initiation of elongation in the bovine conceptus. Biol. Reprod. 85, 285–295.
Transcriptome changes at the initiation of elongation in the bovine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOnurg%3D&md5=331789df4189a3c1aadc671c79f881a0CAS | 21508349PubMed |

Cordova, A., Perreau, C., Uzbekova, S., Ponsart, C., Locatelli, Y., and Mermillod, P. (2014). Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development. Theriogenology 81, 1163–1173.
Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlWmurc%3D&md5=5ef9907067c387145428b73aea1b0fc5CAS | 24629595PubMed |

Coy, P., and Yanagimachi, R. (2015). Common and species-specific roles of oviductal proteins in mammalian fertilization and embryo development. Bioscience , .
Common and species-specific roles of oviductal proteins in mammalian fertilization and embryo development.Crossref | GoogleScholarGoogle Scholar |

Coy, P., Cánovas, S., Mondéjar, I., Saavedra, M. D., Romar, R., Grullón, L., Matás, C., and Avilés, M. (2008). Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc. Natl Acad. Sci. USA 105, 15 809–15 814.
Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yitrjL&md5=520d758ab7cc7b3f4425371e206039c0CAS |

Coy, P., García-Vázquez, F. A., Visconti, P. E., and Avilés, M. (2012). Roles of the oviduct in mammalian fertilization. Reproduction 144, 649–660.
Roles of the oviduct in mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOitb%2FP&md5=f4ad35eb2cf6ed6285da9676d3616de6CAS | 23028122PubMed |

de Antueno, R. J., Knickle, L. C., Smith, H., Elliot, M. L., Allen, S. J., Nwaka, S., and Winther, M. D. (2001). Activity of human Δ5 and Δ6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett. 509, 77–80.
Activity of human Δ5 and Δ6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVCitrs%3D&md5=4db4f03af279dc15b4a807f45686991aCAS | 11734209PubMed |

Ealy, A. D., and Yang, Q. E. (2009). Review article: control of interferon-tau expression during early pregnancy in ruminants. Am. J. Reprod. Immunol. 61, 95–106.
Review article: control of interferon-tau expression during early pregnancy in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOhu7s%3D&md5=7542a8d787991a12cdb36bbf59a42c0dCAS | 19143673PubMed |

Edashige, K., Yamaji, Y., Kleinhans, F. W., and Kasai, M. (2003). Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 68, 87–94.
Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2j&md5=143d2a891098fb7d60db725585530f2cCAS | 12493699PubMed |

Ellington, J. E. (1991). The bovine oviduct and its role in reproduction: a review of the literature. Cornell Vet. 81, 313–328.
| 1:STN:280:DyaK3MzkslKlsg%3D%3D&md5=f6594597897944a7b311b3eaea574e24CAS | 1879144PubMed |

Fair, T., Lonergan, P., Dinnyes, A., Cottell, D. c., Hyttel, P., Ward, F. a., and Boland, M. p. (2001). Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production. Mol. Reprod. Dev. 58, 186–195.
Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslOiug%3D%3D&md5=288b31649d0a53732f7d77f6eb281693CAS | 11139231PubMed |

Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., Miller, D. J., Watkins, A. J., and Eckert, J. J. (2004). The embryo and its future. Biol. Reprod. 71, 1046–1054.
The embryo and its future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrg%3D&md5=a7b10ebbc94aeed769f1e48615b3860aCAS | 15215194PubMed |

Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., Held, E., Dufort, I., Sirard, M.-A., Schellander, K., and Tesfaye, D. (2012). Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol. Reprod. 87, 100.
Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.Crossref | GoogleScholarGoogle Scholar | 22811576PubMed |

Gandolfi, F., and Moor, R. M. (1987). Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J. Reprod. Fertil. 81, 23–28.
Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FjsFyhtg%3D%3D&md5=1071d7a0b67a5fc4e6d9d864c76dd7f7CAS | 3668954PubMed |

Ghersevich, S., Massa, E., and Zumoffen, C. (2015). Oviductal secretion and gamete interaction. Reproduction 149, R1–R14.
Oviductal secretion and gamete interaction.Crossref | GoogleScholarGoogle Scholar | 25190504PubMed |

Holm, P., Booth, P. J., Schmidt, M. H., Greve, T., and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGnsw%3D%3D&md5=78f16a98be261621a31e1ca228d2a082CAS | 10734366PubMed |

Hugentobler, S. A., Diskin, M. G., Leese, H. J., Humpherson, P. G., Watson, T., Sreenan, J. M., and Morris, D. G. (2007). Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74, 445–454.
Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtLg%3D&md5=de4c7693190c178cf73bdc82b9df9244CAS | 16998855PubMed |

Hunter, R. H. F. (2012). Components of oviduct physiology in eutherian mammals. Biol. Rev. Camb. Philos. Soc. 87, 244–255.
Components of oviduct physiology in eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387htFKitw%3D%3D&md5=f188947b15a93b3b38691ce6b8c1eb5bCAS |

Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160.
Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ot1yjsg%3D%3D&md5=eabe1e9bc61bf7a3b327b80c4c305b71CAS | 7372895PubMed |

Jin, B., Kawai, Y., Hara, T., Takeda, S., Seki, S., Nakata, Y.-i., Matsukawa, K., Koshimoto, C., Kasai, M., and Edashige, K. (2011). Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos. Biol. Reprod. 85, 834–847.
Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ht7rI&md5=22f4b262f8d5afd602401c585df5a6a5CAS | 21677305PubMed |

Killian, G. (2011). Physiology and Endocrinology Symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock. J. Anim. Sci. 89, 1315–1322.
Physiology and Endocrinology Symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Oitbs%3D&md5=1ed484b42abc0eea9a46c8b6ff920350CAS | 20935135PubMed |

Lazzari, G., Wrenzycki, C., Herrmann, D., Duchi, R., Kruip, T., Niemann, H., and Galli, C. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol. Reprod. 67, 767–775.
Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsV2js7Y%3D&md5=596f0bd100ff38f31be18a66075c17bfCAS | 12193383PubMed |

Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
The formation and function of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3gtVWitA%3D%3D&md5=3c0758c4e403edde24c76153b7b0d2aaCAS | 3283349PubMed |

Leese, H. J., Tay, J. I., Reischl, J., and Downing, S. J. (2001). Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction 121, 339–346.
Formation of fallopian tubal fluid: role of a neglected epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFSquro%3D&md5=688ab46e3ad627db407656c90d99b174CAS | 11226059PubMed |

Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
| 1:CAS:528:DC%2BD1cXisFCis7g%3D&md5=722eb63ceb4d70d2a35b095b0e8388faCAS | 18154692PubMed |

Lepesheva, G. I., and Waterman, M. R. (2004). CYP51: the omnipotent P450. Mol. Cell. Endocrinol. 215, 165–170.
CYP51: the omnipotent P450.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFCgs70%3D&md5=76c3eecfa4f4f18282a8e0e38954eb27CAS | 15026190PubMed |

Lloyd, R. E., Romar, R., Matás, C., Gutiérrez-Adán, A., Holt, W. V., and Coy, P. (2009). Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reproduction 137, 679–687.
Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2ntbw%3D&md5=2598a29a65ebcd8fa8f95573a9d4c71cCAS | 19153191PubMed |

Martus, N. S., Verhage, H. G., Mavrogianis, P. A., and Thibodeaux, J. K. (1997). Enhanced in vitro development of bovine embryos in the presence of a bovine oviductal specific glycoprotein. Theriogenology 47, 334.
Enhanced in vitro development of bovine embryos in the presence of a bovine oviductal specific glycoprotein.Crossref | GoogleScholarGoogle Scholar |

Mondéjar, I., Martínez-Martínez, I., Avilés, M., and Coy, P. (2013). Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals. Biol. Reprod. 89, 67.
Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.Crossref | GoogleScholarGoogle Scholar | 23863406PubMed |

Perry, G. (2014). 2013 statistics of embryo collection and transfer in domestic farm animals. Embryo Transfer Newsl. 32, 14–26.

Rizos, D., Lonergan, P., Boland, M. P., Arroyo-García, R., Pintado, B., Fuente, J. l., and Gutiérrez-Adán, A. (2002a). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol. Reprod. 66, 589–595.
Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitLo%3D&md5=f1e8ff9c4886ecc0210ffa3997126194CAS | 11870062PubMed |

Rizos, D., Ward, F., Duffy, P., Boland, M. P., and Lonergan, P. (2002b). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Giug%3D%3D&md5=00324f56c44b413ab24b73818dece8b1CAS | 11803560PubMed |

Rizos, D., Gutiérrez-Adán, A., Pérez-Garnelo, S., Fuente, J. l., Boland, M. P., and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWj&md5=7eac6d4191c91ddad2567e3bfaf367f2CAS | 12493719PubMed |

Rizos, D., Clemente, M., Bermejo-Alvarez, P., De La Fuente, J., Lonergan, P., and Gutiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reprod. Domest. Anim. 43, 44–50.
Consequences of in vitro culture conditions on embryo development and quality.Crossref | GoogleScholarGoogle Scholar | 18803756PubMed |

Rizos, D., Ramirez, M. A., Pintado, B., Lonergan, P., and Gutierrez-Adan, A. (2010). Culture of bovine embryos in intermediate host oviducts with emphasis on the isolated mouse oviduct. Theriogenology 73, 777–785.
Culture of bovine embryos in intermediate host oviducts with emphasis on the isolated mouse oviduct.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7ot1Gmug%3D%3D&md5=0611b34a156915d0e078e35078361eb9CAS | 19939442PubMed |

Schmaltz-Panneau, B., Cordova, A., Dhorne-Pollet, S., Hennequet-Antier, C., Uzbekova, S., Martinot, E., Doret, S., Martin, P., Mermillod, P., and Locatelli, Y. (2014). Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim. Reprod. Sci. 149, 103–116.
Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlartbrI&md5=00afce5dcf072718e5a00a0c98ae34efCAS | 25113901PubMed |

Sturmey, R. G., Bermejo-Alvarez, P., Gutierrez-Adan, A., Rizos, D., Leese, H. j., and Lonergan, P. (2010). Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol. Reprod. Dev. 77, 285–296.
| 1:CAS:528:DC%2BC3cXotFSmuw%3D%3D&md5=e95dd21b2c1d7b3b02318a8323bd5bd9CAS | 20058302PubMed |

Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M., and Trounson, A. O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–29.
Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 12513888PubMed |

Trigal, B., Gómez, E., Díez, C., Caamaño, J. N., Martín, D., Carrocera, S., and Muñoz, M. (2011). In vitro development of bovine embryos cultured with activin A. Theriogenology 75, 584–588.
In vitro development of bovine embryos cultured with activin A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1KmtA%3D%3D&md5=0da190c16cca780f0944d5272f4baf8aCAS | 21040964PubMed |

Wrenzycki, C., Herrmann, D., and Niemann, H. (2007). Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68, S77–S83.
Messenger RNA in oocytes and embryos in relation to embryo viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiurk%3D&md5=135bf3c4556bed96c9419f79723d3ae0CAS | 17524469PubMed |

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGktL8%3D&md5=c65829986653ffe791fcf55227fbe680CAS | 11175780PubMed |