Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mammalian target of rapamycin/eukaryotic initiation factor 4F pathway regulates follicle growth and development of theca cells in mice

Chao Zhang A , Xiao-Ran Liu B , Yong-Chun Cao A , Jin-Ling Tian A , Di Zhen A , Xiao-Fei Luo A , Xin-Mei Wang A , Jian-Hui Tian C D and Jian-Ming Gao A D
+ Author Affiliations
- Author Affiliations

A Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.

B Galactophore Breast Clinic, Peking University School of Oncology, Beijing 100142, China.

C College of Animal Science and Technology, China Agricultural University, Beijing 100083, China.

D Corresponding author. Email: jianming.gao@hotmail.com

*These authors contributed equally to this work.

Reproduction, Fertility and Development 29(4) 768-777 https://doi.org/10.1071/RD15230
Submitted: 9 June 2015  Accepted: 26 November 2015   Published: 11 January 2016

Abstract

The aim of the present study was to clarify the roles of the mammalian target of rapamycin (mTOR) signalling pathway in follicular growth and development of thecal cells. Using in vivo-grown and in vitro-cultured ovaries, histological changes were evaluated using haematoxylin and eosin (HE) staining. Differentially expressed genes (DEGs) from 0 day post partum (d.p.p.) to 8 d.p.p. ovaries were screened by microarray and verified by quantitative real-time polymerase chain reaction. Forty-two DEGs related to cell proliferation and differentiation were screened out, with most DEGs being related to the to mTOR signalling pathway. Then, 3 d.p.p. ovaries were retrieved and used to verify the role of mTOR signalling in follicle and thecal cell development using its activators (Ras homologue enriched in brain (Rheb) and GTP) and inhibitor (rapamycin). The development of follicles and thecal cells was significantly impaired in ovaries cultured in vitro Day 3 to Day 8. In in vitro-cultured ovaries, Rheb and GTP (is 100 ng mL–1 Rheb and 500 ng mL–1 GTP for 48 h) significantly increased follicle diameter, the percentage of primary and secondary follicles and the umber of thecal cells, and upregulated expression of mTOR, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), eukaryotic initiation factor (eIF) 4F and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). Rapamycin (10 nM rapamycin for 24 h) had opposite effects to those of Rheb and GTP, and partly abrogated (significant) the effects of Rheb and GTP when added to the culture in combination with these drugs. Thus, mTOR signalling plays an important role in follicle growth and thecal cell development.

Additional keywords: 4EBP1, CYP17A1, follicular growth, GTP, mTOR pathway, ovary, Rheb, thecal cells.


References

Abdi, S., Salehnia, M., and Hosseinkhani, S. (2013). Steroid production and follicular development of neonatal mouse ovary during in vitro culture. Int. J. Fertil. Steril. 7, 181–186.
| 24520484PubMed |

Adhikari, D., and Liu, K. (2010). mTOR signaling in the control of activation of primordial follicles. Cell Cycle 9, 1673–1674.
mTOR signaling in the control of activation of primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12itr3O&md5=668bfcdd0f963810988589765aba1bc1CAS | 20404510PubMed |

Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Hämäläinen, T., Cooney, A. J., Huhtaniemi, I., Lan, Z. J., and Liu, K. (2010). Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet. 19, 397–410.
Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlah&md5=89cb6a2fe79f0671f60c87d2c2adb576CAS | 19843540PubMed |

Bhartiya, D., Sriraman, K., Gunjal, P., and Modak, H. (2012). Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J. Ovarian Res. 5, 32.
Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFCntbw%3D&md5=fee8198b6b941f9d13b60e288b07b943CAS | 23134576PubMed |

Eppig, J. J., and O’Brien, M. J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod. 54, 197–207.
Development in vitro of mouse oocytes from primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLjO&md5=61545d38a85789023b3585b896d432f3CAS | 8838017PubMed |

Gallardo, T. D., John, G. B., Shirley, L., Contreras, C. M., Akbay, E. A., Haynie, J. M., Ward, S. E., Shidler, M. J., and Castrillon, D. H. (2007). Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Genetics 177, 179–194.
Genomewide discovery and classification of candidate ovarian fertility genes in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaksLvI&md5=45cfe1e75d34f440c1a99f899f965708CAS | 17660561PubMed |

Gatta, V., Tatone, C., Ciriminna, R., Vento, M., Franchi, S., d’Aurora, M., Sperduti, S., Cela, V., Borzì, P., Palermo, R., Stuppia, L., and Artini, P. G. (2013). Gene expression profiles of cumulus cells obtained from women treated with recombinant human luteinizing hormone + recombinant human follicle-stimulating hormone or highly purified human menopausal gonadotropin versus recombinant human follicle-stimulating hormone alone. Fertil. Steril. 99, 2000–2008.e1.
Gene expression profiles of cumulus cells obtained from women treated with recombinant human luteinizing hormone + recombinant human follicle-stimulating hormone or highly purified human menopausal gonadotropin versus recombinant human follicle-stimulating hormone alone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFyntrk%3D&md5=8da21323b4c3a446e2042912ae9b9ca5CAS | 23472943PubMed |

Hirshfield, A. N. (1991). Development of follicles in the mammalian ovary. Int. Rev. Cytol. 124, 43–101.
Development of follicles in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFSmsr4%3D&md5=cd9521e8ff1d52777a4c9cf678d5cbccCAS | 2001918PubMed |

Hsueh, A. J., Kawamura, K., Cheng, Y., and Fauser, B. C. (2015). Intraovarian control of early folliculogenesis. Endocr. Rev. 36, 1–24.
Intraovarian control of early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Shsrg%3D&md5=0585a6978e818c68a2b76f6b6a2d56dbCAS | 25202833PubMed |

Kayampilly, P. P., and Menon, K. M. (2007). Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology 148, 3950–3957.
Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OitLg%3D&md5=cfd2a6031d534c22dc294059df370898CAS | 17510244PubMed |

Kim, Y. M., Kang, M., Choi, J. H., Lee, B. H., Kim, G. H., Ohn, J. H., Kim, S. Y., Park, M. S., and Yoo, H. W. (2014). A review of the literature on common CYP17A1 mutations in adults with 17-hydroxylase/17,20-lyase deficiency, a case series of such mutations among Koreans and functional characteristics of a novel mutation. Metabolism 63, 42–49.
A review of the literature on common CYP17A1 mutations in adults with 17-hydroxylase/17,20-lyase deficiency, a case series of such mutations among Koreans and functional characteristics of a novel mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12ks7vK&md5=d4f1e1ea17976aa20f1350ec7f0041eeCAS | 24140098PubMed |

Kinsey, W. H. (2014). SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. Adv. Exp. Med. Biol. 759, 33–56.
SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFGksrY%3D&md5=3a37bc23c00b8cc1bbd7826e57928ff7CAS | 25030759PubMed |

Laplante, M., and Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell 149, 274–293.
mTOR signaling in growth control and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1eguro%3D&md5=b46f428f65e8ec7f77111fb67f9d3388CAS | 22500797PubMed |

Lei, L., Jin, S., Mayo, K. E., and Woodruff, T. K. (2010). The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis. Biol. Reprod. 82, 13–22.
The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wgsr3E&md5=ad8b38154a2cc052d7e0aec619133cfaCAS | 19641178PubMed |

Li, J., Kim, S. G., and Blenis, J. (2014). Rapamycin: one drug, many effects. Cell Metab. 19, 373–379.
Rapamycin: one drug, many effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2is7w%3D&md5=4b837db2ca0d001b512d0dbd2fc9fa43CAS | 24508508PubMed |

Liao, J. M., Zhang, Y., Liao, W., Zeng, S. X., Su, X., Flores, E. R., and Lu, H. (2013). IkappaB kinase beta (IKKbeta) inhibits p63 isoform gamma (TAp63gamma) transcriptional activity. J. Biol. Chem. 288, 18 184–18 193.
IkappaB kinase beta (IKKbeta) inhibits p63 isoform gamma (TAp63gamma) transcriptional activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVGmsro%3D&md5=2e87ced344ade034fd19a3b1d0f6cd1cCAS |

Magoffin, D. A. (2005). Ovarian theca cell. Int. J. Biochem. Cell Biol. 37, 1344–1349.
Ovarian theca cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Wjsrc%3D&md5=4eee5adfa676a32fb655bc58a29cf788CAS | 15833266PubMed |

Magoffin, D. A., and Weitsman, S. R. (1993). Differentiation of ovarian theca-interstitial cells in vitro: regulation of 17 alpha-hydroxylase messenger ribonucleic acid expression by luteinizing hormone and insulin-like growth factor-I. Endocrinology 132, 1945–1951.
| 1:CAS:528:DyaK3sXkt1SktLo%3D&md5=789fa49cf3d132a1706a7dacfaf6302fCAS | 8477646PubMed |

Makker, A., Goel, M. M., and Mahdi, A. A. (2014). PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update. J. Mol. Endocrinol. 53, R103–R118.
PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtFKjuw%3D%3D&md5=179bbf3d4b0b26d1e389e5a92e013c49CAS | 25312969PubMed |

Mamluk, R., Greber, Y., and Meidan, R. (1999). Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells. Biol. Reprod. 60, 628–634.
Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFektL8%3D&md5=693ce4a37753e5da23cbe9652cae0c69CAS | 10026109PubMed |

Mani, A. M., Fenwick, M. A., Cheng, Z., Sharma, M. K., Singh, D., and Wathes, D. C. (2010). IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction 139, 139–151.
IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWmtw%3D%3D&md5=28441d24c1b7decde79b21cd6c25fa77CAS | 19819918PubMed |

Marsh, C. A., and Auchus, R. J. (2014). Fertility in patients with genetic deficiencies of cytochrome P450c17 (CYP17A1): combined 17-hydroxylase/17,20-lyase deficiency and isolated 17,20-lyase deficiency. Fertil. Steril. 101, 317–322.
Fertility in patients with genetic deficiencies of cytochrome P450c17 (CYP17A1): combined 17-hydroxylase/17,20-lyase deficiency and isolated 17,20-lyase deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFeltbY%3D&md5=8f230cc75ec584bdd371f897f9b28407CAS | 24485502PubMed |

Matsuda, F., Inoue, N., Manabe, N., and Ohkura, S. (2012). Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J. Reprod. Dev. 58, 44–50.
Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVOntr0%3D&md5=d4e867ba9f6695814b3f31d245b83a5bCAS | 22450284PubMed |

McGee, E. A., and Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–214.
| 1:STN:280:DC%2BD3c3ksVahsw%3D%3D&md5=8f84e11125e8971773b1655663a30badCAS | 10782364PubMed |

McLaughlin, E. A., and McIver, S. C. (2009). Awakening the oocyte: controlling primordial follicle development. Reproduction 137, 1–11.
Awakening the oocyte: controlling primordial follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgsL4%3D&md5=7af5e1f556872d2760f76cca1467643bCAS | 18827065PubMed |

Ojeda, S. R., Romero, C., Tapia, V., and Dissen, G. A. (2000). Neurotrophic and cell–cell dependent control of early follicular development. Mol. Cell. Endocrinol. 163, 67–71.
Neurotrophic and cell–cell dependent control of early follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvV2msrY%3D&md5=c81e693bbc579c9f5c4c37da7422082bCAS | 10963876PubMed |

Palaniappan, M., and Menon, K. M. (2010). Human chorionic gonadotropin stimulates theca–interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of AKT/mTORC1 signaling pathway. Mol. Endocrinol. 24, 1782–1793.
Human chorionic gonadotropin stimulates theca–interstitial cell proliferation and cell cycle regulatory proteins by a cAMP-dependent activation of AKT/mTORC1 signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlegsLfF&md5=387c791ea7fc38371a38e31a9d2137ecCAS | 20660299PubMed |

Palaniappan, M., and Menon, K. M. (2012). Luteinizing hormone/human chorionic gonadotropin-mediated activation of mTORC1 signaling is required for androgen synthesis by theca–interstitial cells. Mol. Endocrinol. 26, 1732–1742.
Luteinizing hormone/human chorionic gonadotropin-mediated activation of mTORC1 signaling is required for androgen synthesis by theca–interstitial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCmu7fM&md5=5b580cfba4ef69baa5671a09f177cd43CAS | 22827930PubMed |

Palma, G. A., Argañaraz, M. E., Barrera, A. D., Rodler, D., Mutto, A. Á., and Sinowatz, F. (2012). Biology and biotechnology of follicle development. ScientificWorldJournal 2012, 938138.
Biology and biotechnology of follicle development.Crossref | GoogleScholarGoogle Scholar | 22666170PubMed |

Parrott, J. A., and Skinner, M. K. (1999). Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140, 4262–4271.
| 1:CAS:528:DyaK1MXlslSru7k%3D&md5=b75c6c76d53feeb6174e47f5b5458ad6CAS | 10465300PubMed |

Parrott, J. A., and Skinner, M. K. (2000). Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol. Reprod. Dev. 55, 55–64.
Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFyntrs%3D&md5=77adcc886e92e2976b19e632fb7bfc78CAS | 10602274PubMed |

Reddy, P., Zheng, W., and Liu, K. (2010). Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol. Metab. 21, 96–103.
Mechanisms maintaining the dormancy and survival of mammalian primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ymt70%3D&md5=3347e28e5d7e77bb65afc112b1314c49CAS | 19913438PubMed |

Ryan, K. E., Glister, C., Lonergan, P., Martin, F., Knight, P. G., and Evans, A. C. (2008). Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep. J. Ovarian Res. 1, 2.
Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 19014654PubMed |

Skory, R. M., Bernabé, B. P., Galdones, E., Broadbelt, L. J., Shea, L. D., and Woodruff, T. K. (2013). Microarray analysis identifies COMP as the most differentially regulated transcript throughout in vitro follicle growth. Mol. Reprod. Dev. 80, 132–144.
Microarray analysis identifies COMP as the most differentially regulated transcript throughout in vitro follicle growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1emu7w%3D&md5=d23f4e9b3d188608a3b6c8857d0c6c1bCAS | 23242557PubMed |

Sun, X., Su, Y., He, Y., Zhang, J., Liu, W., Zhang, H., Hou, Z., Liu, J., and Li, J. (2015). New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle 14, 721–731.
New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFyksLzO&md5=fea8380b3d4d53d3bb01834f43d43f86CAS | 25590233PubMed |

Taniguchi, F., Couse, J. F., Rodriguez, K. F., Emmen, J. M., Poirier, D., and Korach, K. S. (2007). Estrogen receptor-alpha mediates an intraovarian negative feedback loop on thecal cell steroidogenesis via modulation of Cyp17a1 (cytochrome P450, steroid 17alpha-hydroxylase/17,20 lyase) expression. FASEB J. 21, 586–595.
Estrogen receptor-alpha mediates an intraovarian negative feedback loop on thecal cell steroidogenesis via modulation of Cyp17a1 (cytochrome P450, steroid 17alpha-hydroxylase/17,20 lyase) expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslGqt7k%3D&md5=77e9762f3f9f2af9d6a4f83f27563aa0CAS | 17158782PubMed |

Thomas, F. H., and Vanderhyden, B. C. (2006). Oocyte–granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod. Biol. Endocrinol. 4, 19.
Oocyte–granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth.Crossref | GoogleScholarGoogle Scholar | 16611364PubMed |

Yaba, A., Bianchi, V., Borini, A., and Johnson, J. (2008). A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod. Sci. 15, 128–138.
A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1elu7w%3D&md5=3a46d81820d8d6924bdbfba0d8241e73CAS | 18276949PubMed |

Young, J. M., and McNeilly, A. S. (2010). Theca: the forgotten cell of the ovarian follicle. Reproduction 140, 489–504.
Theca: the forgotten cell of the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCqurrM&md5=4bfac4ab3682b8889eac0b474f841a55CAS | 20628033PubMed |

Yu, J., Yaba, A., Kasiman, C., Thomson, T., and Johnson, J. (2011). mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 6, e21415.
mTOR controls ovarian follicle growth by regulating granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Grt70%3D&md5=8ef01821864d49dc7c0cf19cc4ff6acbCAS | 21750711PubMed |