The morphological and functional development of the stria vascularis in miniature pigs
Weiwei Guo A , Haijin Yi A B , Zhang Yan A , Lili Ren A , Lei Chen C , Li Dong Zhao A , Yu Ning A , David Z. Z. He D and Shi-Ming Yang A EA Department of Otolaryngology–Head and Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, No. 28, FuXing Road, Haidian District, Beijing 100853, China.
B Department of Otolaryngology–Head Neck Surgery, Beijing Tiantan Hospital, Capital University of Medical Science, No. 6, Tiantann Xili, Dongcheng District, Beijing 100050, China.
C State Key Laboratory for Agro-Biotechnology, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China.
D Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
E Corresponding author. Email: yangsm301@263.net
*These authors contributed equally to this work.
Reproduction, Fertility and Development 29(3) 585-593 https://doi.org/10.1071/RD15183
Submitted: 8 February 2015 Accepted: 29 August 2015 Published: 1 October 2015
Abstract
The purpose of this study was to examine the morphological and functional development of the lateral wall of the scala media of the cochlea in miniature pigs; light and transmission electron microscopy and electrophysiology were used for this purpose. We showed that the lateral wall of the scala media of the cochlea appears at embryonic Day 21 (E21) when the cochlear duct begins to form. From E28 to E49, the lateral wall can be distinguished according to its position along the cochlea. At E56, cells in the lateral wall begin to differentiate into three different types. At E70, three cell types, marginal, intermediate and basal, can be clearly distinguished. At E91, the stria vascularis is adult-like and the organ of Corti is also morphologically mature. The average endocochlear potential measured from the second turn of the cochlea (at E98, postnatal Day 1 (P1), P13 and P30) was 71.4 ± 2.5 (n = 7), 78.8 ± 1.5 (n = 10), 77.3 ± 2.3 (n = 10) and 78.0 ± 2.1 mV (n = 10), respectively. Our results suggest that in miniature pigs the stria vascularis develops during the embryonic period, concurrent with maturation of the organ of Corti. The magnitude of the endocochlear potential reached its mature level when the stria vascularis was morphologically adult-like at E98. These findings provide a morphological and functional basis for future animal studies using the miniature pig model concerning the pathogenesis of various inner-ear diseases.
Additional keyword: endocochlear potential.
References
Coppens, A. G., Salmo, I., Heizmann, C. W., Kiss, R., and Poncelet, L. (2003). Postnatal maturation of the dog stria vascularis: an immunohistochemical study. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 270A, 82–92.| Postnatal maturation of the dog stria vascularis: an immunohistochemical study.Crossref | GoogleScholarGoogle Scholar |
Fernández, C., and Hinojosa, R. (1974). Postnatal development of endocochlear potential and stria vascularis in the cat. Acta Otolaryngol. 78, 173–186.
| Postnatal development of endocochlear potential and stria vascularis in the cat.Crossref | GoogleScholarGoogle Scholar | 4432741PubMed |
Grisanti, G. (1957). Embryological development of stria vascularis in rabbits. Minerva Otorinolaringol. 7, 139–150.
| 1:STN:280:DyaG1c%2Fjs1Sisg%3D%3D&md5=fe40a1eff0236d3b62dd99900b236703CAS | 13493256PubMed |
Guo, W., Yi, H., Ren, L., Chen, L., Li, D. Z., Sun, W., and Yang, S. (2015). The morphology and electrophysiology of the cochlea of the miniature pig. Anat. Rec. (Hoboken) 298, 494–500.
| The morphology and electrophysiology of the cochlea of the miniature pig.Crossref | GoogleScholarGoogle Scholar | 25394601PubMed |
Hoffstetter, M., Lugauer, F., Kundu, S., Wacker, S., Perea-Saveedra, H., Lenarz, T., Hoffstetter, P., Schreyer, A. G., and Wintermantel, E. (2011). Middle ear of human and pig: a comparison of structures and mechanics. Biomed. Tech. (Berl.) 56, 159–165.
| Middle ear of human and pig: a comparison of structures and mechanics.Crossref | GoogleScholarGoogle Scholar | 21657989PubMed |
Jin, Z., Mannström, P., Järlebark, L., and Ulfendahl, M. (2007). Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig. Cell Tissue Res. 328, 257–270.
| Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig.Crossref | GoogleScholarGoogle Scholar | 17252244PubMed |
Kikuchi, K., and Hilding, D. A. (1966). The development of the stria vascularis in the mouse. Acta Otolaryngol. 62, 277–291.
| The development of the stria vascularis in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s%2Fot1Shuw%3D%3D&md5=5a78ce80951ac38d5ccf74ca1d14c069CAS | 5956511PubMed |
Lavigne-Rebillard, M., and Bagger-Sjöbäck, D. (1992). Development of the human stria vascularis. Hear. Res. 64, 39–51.
| Development of the human stria vascularis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7ks12iuw%3D%3D&md5=cb49a6fa8fc1e17777a2d6ac7f837392CAS | 1490899PubMed |
Lee, J. H., Kim, S. J., Jung, S. J., Lim, W., Kim, K. W., and Kim, J. (2000). Voltage-dependent K(+) currents in spiral prominence epithelial cells of rat cochlea. Hear. Res. 146, 7–16.
| Voltage-dependent K(+) currents in spiral prominence epithelial cells of rat cochlea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVOlsrw%3D&md5=cc6f96b67b8acfbd03f4f03ccd6bd324CAS | 10913879PubMed |
Nin, F., Hibino, H., Doi, K., Suzuki, T., Hisa, Y., and Kurachi, Y. (2008). The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc. Natl. Acad. Sci. USA 105, 1751–1756.
| The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFaltLY%3D&md5=6c76f6208a8bcc2607e6cf23e86a0a14CAS | 18218777PubMed |
Patuzzi, R. (2011). Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hear. Res. 277, 4–19.
| Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential.Crossref | GoogleScholarGoogle Scholar | 21329750PubMed |
Romeis, B. (1989). Romeis Mikroskopische Technik. (Urban und Schwarzenberg: Munich.)
Sagara, T., Furukawa, H., Makishima, K., and Fujimoto, S. (1995). Differentiation of the rat stria vascularis. Hear. Res. 83, 121–132.
| Differentiation of the rat stria vascularis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2Mzjt1Wjuw%3D%3D&md5=940c358569d324430d10d16e3700ae6cCAS | 7607978PubMed |
Santi, P. A. (1986). Organ of Corti surface preparations for computer-assisted morphometry. Hear. Res. 24, 179–187.
| Organ of Corti surface preparations for computer-assisted morphometry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FotlWksw%3D%3D&md5=d2a1d295b753354556bb7742819a0b29CAS | 3539902PubMed |
Santi, P. A., Lease, M. K., Harrison, R. G., and Wicker, E. M. (1990). Ultrastructure of proteoglycans in the tectorial membrane. J. Electron Microsc. Tech. 15, 293–300.
| Ultrastructure of proteoglycans in the tectorial membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFarsro%3D&md5=accba058eafc5019ef143824e3b868c2CAS | 2374036PubMed |
Sawada, S., Takeda, T., Kitano, H., Takeuchi, S., Okada, T., Ando, M., Suzuki, M., and Kakigi, A. (2003). Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea. Hear. Res. 181, 15–19.
| Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltF2gsrw%3D&md5=0972298ed8fb7fda4c49a5cb35b3b139CAS | 12855358PubMed |
Yi, H. J., Guo, W., Wu, N., Li, J. N., Liu, H. Z., Ren, L. L., Liu, P. N., and Yang, S. M. (2014). The temporal bone microdissection of miniature pigs as a useful large animal model for otologic research. Acta Otolaryngol. 134, 26–33.
| The temporal bone microdissection of miniature pigs as a useful large animal model for otologic research.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c%2FjsVKitQ%3D%3D&md5=aed124f27f826dfe93cb5b0cfc0cd0f8CAS | 24102225PubMed |