Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nuclear transfer alters placental gene expression and associated histone modifications of the placental-specific imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2) in cattle

Daniel R. Arnold A D , Roberta C. Gaspar A , Carlos V. da Rocha Jr A , Juliano R. Sangalli B , Tiago H. C. de Bem B , Carolina A. P. Corrêa A , João C. T. Penteado C , Flavio V. Meirelles B and Flavia L. Lopes C E
+ Author Affiliations
- Author Affiliations

A São Paulo State University, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil.

B University of São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, 13635-900, Brazil.

C São Paulo State University, Faculdade de Medicina Veterinária, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil.

D Present adress: In Vitro Brasil S/A, Mogi Mirim, São Paulo, 13800-970, Brazil.

E Corresponding author. Email: flavialopes@fmva.unesp.br

Reproduction, Fertility and Development 29(3) 458-467 https://doi.org/10.1071/RD15132
Submitted: 7 April 2015  Accepted: 29 July 2015   Published: 21 August 2015

Abstract

Abnormal placental development is frequent in nuclear transfer (NT) pregnancies and is likely to be associated with altered epigenetic reprogramming. In the present study, fetal and placental measurements were taken on Day 60 of gestation in cows with pregnancies produced by AI, IVF and NT. Placentas were collected and subjected to histological evaluation, the expression of genes important in trophoblast differentiation and expression of the placental imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2), as well as chromatin immunoprecipitation (ChIP) for histone marks within the promoter of PHLDA2. Fewer binucleated cells were observed in NT cotyledons, followed by IVF and AI cotyledons (P < 0.05). Expression of heart and neural crest derivatives expressed 1 (HAND1), placental lactogen (PL), pregnancy-associated glycoprotein 9 (PAG-9) and PHLDA2 was elevated in NT cotyledons compared with AI cotyledons. Expression of PHLDA2 was higher in IVF than AI samples (P < 0.05). ChIP revealed an increase in the permissive mark dimethylation of lysine 4 on histone H3 (H3K4me2), surprisingly associated with the silent allele of PHLDA2, and a decrease in the inhibitory mark H3K9me2 in NT samples. Thus, genes critical for placental development were altered in NT placentas, including an imprinted gene. Allele-specific changes in the permissive histone mark in the PHLDA2 promoter indicate misregulation of imprinting in clones. Abnormal trophoblast differentiation could have resulted in lower numbers of binucleated cells following NT. These results suggest that the altered expression of imprinted genes associated with NT are also caused by changes in histone modifications.

Additional keywords: assisted reproductive technologies, bovine, cotyledons, H3K4me2, H3K9me2, mRNA.


References

Arnold, D. R., Bordignon, V., Lefebvre, R., Murphy, B. D., and Smith, L. C. (2006a). Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos. Reproduction 132, 279–290.
Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjs74%3D&md5=1ed52ed204c0f217acfac99d26e8fe9bCAS | 16885536PubMed |

Arnold, D. R., Lefebvre, R., and Smith, L. C. (2006b). Characterization of the placenta specific bovine mammalian achaete scute-like homologue 2 (Mash2) gene. Placenta 27, 1124–1131.
Characterization of the placenta specific bovine mammalian achaete scute-like homologue 2 (Mash2) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFGhurs%3D&md5=c9a4ae4f6e41d7b18a74860e7bdacc9cCAS | 16503349PubMed |

Arnold, D.R., Fortier, A.L., Lefebvre, R., Miglino, M.A., Pfarrer, C., and Smith, L.C. (2008). Placental insufficiencies in cloned animals: a workshop report. Placenta 29, S108–S110.
Placental insufficiencies in cloned animals: a workshop report.Crossref | GoogleScholarGoogle Scholar | 18281092PubMed |

Bordignon, V., Keyston, R., Lazaris, A., Bilodeau, A. S., Pontes, J. H., Arnold, D., Fecteau, G., Keefer, C., and Smith, L. C. (2003). Transgene expression of green fluorescent protein and germ line transmission in cloned calves derived from in vitro-transfected somatic cells. Biol. Reprod. 68, 2013–2023.
Transgene expression of green fluorescent protein and germ line transmission in cloned calves derived from in vitro-transfected somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ggs7s%3D&md5=7c6d325d55f0820c85183f45ee3cc7c5CAS | 12606490PubMed |

Campbell, K. H., Fisher, P., Chen, W. C., Choi, I., Kelly, R. D., Lee, J. H., and Xhu, J. (2007). Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68, S214–S231.
Somatic cell nuclear transfer: past, present and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbo%3D&md5=3574f711c09dd59c0a3ef11e92fbf8f1CAS | 17610946PubMed |

Chavatte-Palmer, P., Camous, S., Jammes, H., Le Cleac’h, N., Guillomot, M., and Lee, R. S. (2012). Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta 33, S99–S104.
Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 22000472PubMed |

Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A., and Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258.
Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Gqt78%3D&md5=e4f56b8877eec9d23b84a6672b86c677CAS | 9596577PubMed |

Constant, F., Camous, S., Chavatte-Palmer, P., Heyman, Y., de Sousa, N., Richard, C., Beckers, J. F., and Guillomot, M. (2011). Altered secretion of pregnancy-associated glycoproteins during gestation in bovine somatic clones. Theriogenology 76, 1006–1021.
Altered secretion of pregnancy-associated glycoproteins during gestation in bovine somatic clones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaitLzE&md5=e8baa4e958dc098ebc142c55cbe071e0CAS | 21798586PubMed |

Correa, C. A. P., Arnold, D. R., Gaspar, R. C., Rocha Junior, C. V., Collado, M., and Lopes, F. L. (2013). Characterization of the histone H3R26me2 modification during in vitro development of bovine embryos. In ‘Proceedings of the 27th Annual Meeting of the Brazilian Embryo Technology Society (SBTE), August 29th to September 1st, 2013, Praia do Forte, BA, Brazil’. p. 560.

Cross, J. C., Flannery, M. L., Blanar, M. A., Steingrimsson, E., Jenkins, N. A., Copeland, N. G., Rutter, W. J., and Werb, Z. (1995). Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development 121, 2513–2523.
| 1:CAS:528:DyaK2MXnsFSgs70%3D&md5=c3e0fc2a1edc7d728cb984b50a8e01b6CAS | 7671815PubMed |

Dosogne, H., Massart-Leen, A. M., and Burvenich, C. (2000). Immunological aspects of pregnancy-associated glycoproteins. Adv. Exp. Med. Biol. 480, 295–305.
Immunological aspects of pregnancy-associated glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFSmsbo%3D&md5=5ef49e74ef5e52761944df70171ab4c3CAS | 10959437PubMed |

Driver, A. M., Huang, W., Kropp, J., Peñagaricano, F., and Khatib, H. (2013). Knockdown of CDKN1C (p57(kip2)) and PHLDA2 results in developmental changes in bovine pre-implantation embryos. PLoS One 8, e69490.
Knockdown of CDKN1C (p57(kip2)) and PHLDA2 results in developmental changes in bovine pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ejtbvJ&md5=bfdd1597a0c9d8eab52f651d94e669f8CAS | 23894493PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Ferguson-Smith, A. C. (2011). Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575.
Genomic imprinting: the emergence of an epigenetic paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyjtbs%3D&md5=b5bd96c98127a50022e94d6fed9855d6CAS | 21765458PubMed |

Fitzpatrick, G. V., Soloway, P. D., and Higgins, M. J. (2002). Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431.
Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Klsbw%3D&md5=8e568a24b71220c75c3ac67bba915222CAS | 12410230PubMed |

Frank, D., Fortino, W., Clark, L., Musalo, R., Wang, W., Saxena, A., Li, C. M., Reik, W., Ludwig, T., and Tycko, B. (2002). Placental overgrowth in mice lacking the imprinted gene Ipl. Proc. Natl Acad. Sci. USA 99, 7490–7495.
Placental overgrowth in mice lacking the imprinted gene Ipl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlCkur8%3D&md5=30fdb7aa4b61369ab5939faf42e89a06CAS | 12032310PubMed |

Gardner, D. K., Lane, M., Spitzer, A., and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ptFWisA%3D%3D&md5=43f76c2437603172743d672e15b6abdaCAS | 8142556PubMed |

Gaspar, R. C., Arnold, D. R., Corrêa, C. A., da Rocha, C. V., Penteado, J. C., Del Collado, M., Vantini, R., Garcia, J. M., and Lopes, F. L. (2015). Oxygen tension affects histone remodeling of in vitro-produced embryos in a bovine model. Theriogenology 83, 1408–1415.
Oxygen tension affects histone remodeling of in vitro-produced embryos in a bovine model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKru7k%3D&md5=d604ed7109c0eacf8e01418c21d70e4fCAS | 25777077PubMed |

Green, J. A., Xie, S., Quan, X., Bao, B., Gan, X., Mathialagan, N., Beckers, J. F., and Roberts, R. M. (2000). Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy. Biol. Reprod. 62, 1624–1631.
Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsL8%3D&md5=7e1ca47786741c4d1fd343fde3dac233CAS | 10819764PubMed |

Guillomot, M., Taghouti, G., Constant, F., Degrelle, S., Hue, I., Chavatte-Palmer, P., and Jammes, H. (2010). Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta. Placenta 31, 482–490.
Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWruro%3D&md5=c0088447d22a06688033aceb3d6c0986CAS | 20381142PubMed |

Hashizume, K., Ishiwata, H., Kizaki, K., Yamada, O., Takahashi, T., Imai, K., Patel, O. V., Akagi, S., Shimizu, M., Takahashi, S., Katsuma, S., Shiojima, S., Hirasawa, A., Tsujimoto, G., Todoroki, J., and Izaike, Y. (2002). Implantation and placental development in somatic cell clone recipient cows. Cloning Stem Cells 4, 197–209.
Implantation and placental development in somatic cell clone recipient cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFSksrg%3D&md5=8f18cc0cb6177deac6628715eda5b2cfCAS | 12398801PubMed |

Hemberger, M. (2007). Epigenetic landscape required for placental development. Cell. Mol. Life Sci. 64, 2422–2436.
Epigenetic landscape required for placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2qtLnK&md5=8e09b27b9ca76cc9c174807ffcf78295CAS | 17585370PubMed |

Heyman, Y., Chavatte-Palmer, P., LeBourhis, D., Camous, S., Vignon, X., and Renard, J. P. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
Frequency and occurrence of late-gestation losses from cattle cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ymug%3D%3D&md5=7eb687b3bd6f009e517001134082173cCAS | 11751257PubMed |

Hill, J. R., Burghardt, R. C., Jones, K., Long, C. R., Looney, C. R., Shin, T., Spencer, T. E., Thompson, J. A., Winger, Q. A., and Westhusin, M. E. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtL4%3D&md5=101d2caf79ec39f64bca3e4621dd50abCAS | 11090450PubMed |

Jensen, A. B., Tunster, S. J., and John, R. M. (2014). The significance of elevated placental PHLDA2 in human growth restricted pregnancies. Placenta 35, 528–532.
The significance of elevated placental PHLDA2 in human growth restricted pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVanu7nE&md5=26f782832d256fb6820b067a6b48da68CAS | 24953163PubMed |

Jouneau, A., and Renard, J. P. (2003). Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13, 486–491.
Reprogramming in nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVOmu70%3D&md5=c8a0751d6bcd4ae2501dcd516ceb241aCAS | 14550413PubMed |

Kessler, M. A., and Schuler, L. A. (1991). Structure of the bovine placental lactogen gene and alternative splicing of transcripts. DNA Cell Biol. 10, 93–104.
Structure of the bovine placental lactogen gene and alternative splicing of transcripts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVOntLY%3D&md5=f66943dcc9fa3b94cae20ab0fd1c50e2CAS | 2003877PubMed |

Korostowski, L., Sedlak, N., and Engel, N. (2012). The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 8, e1002956.
The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVaktrrP&md5=6b128cdc887c1b23c47f0f6d0014b8b2CAS | 23028363PubMed |

Lewis, A., Mitsuya, K., Umlauf, D., Smith, P., Dean, W., Walter, J., Higgins, M., Feil, R., and Reik, W. (2004). Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36, 1291–1295.
Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWitLrI&md5=061dffcd0ce61997f59ed01978dfc5f8CAS | 15516931PubMed |

Miglino, M. A., Pereira, F. T., Visintin, J. A., Garcia, J. M., Meirelles, F. V., Rumpf, R., Ambrosio, C. E., Papa, P. C., Santos, T. C., Carvalho, A. F., Leiser, R., and Carter, A. M. (2007). Placentation in cloned cattle: structure and microvascular architecture. Theriogenology 68, 604–617.
Placentation in cloned cattle: structure and microvascular architecture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svktV2nsw%3D%3D&md5=6c7a13c51e8ae013fe13328d5fbdd118CAS | 17568663PubMed |

Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. (2005). Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.
Epigenetic reprogramming in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFeksb4%3D&md5=587478154ddc965309382e525bee62d9CAS | 15809273PubMed |

Oliveira, C. S., Saraiva, N. Z., Cruz, M. H., Mazeti, B., Oliveira, L. Z., Lopes, F. L., and Garcia, J. M. (2013). HDAC inhibition decreases XIST expression on female IVP bovine blastocysts. Reproduction 145, 9–17.
HDAC inhibition decreases XIST expression on female IVP bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisLc%3D&md5=4110235cd9b839efe5da02088ead275dCAS | 23104973PubMed |

Patel, O. V., Yamada, O., Kizaki, K., Takahashi, T., Imai, K., and Hashizume, K. (2004a). Quantitative analysis throughout pregnancy of placentomal and interplacentomal expression of pregnancy-associated glycoproteins-1 and -9 in the cow. Mol. Reprod. Dev. 67, 257–263.
Quantitative analysis throughout pregnancy of placentomal and interplacentomal expression of pregnancy-associated glycoproteins-1 and -9 in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlKis70%3D&md5=7b36a948c79b62ed28d8b0bf4510dda8CAS | 14735486PubMed |

Patel, O. V., Yamada, O., Kizaki, K., Takahashi, T., Imai, K., Takahashi, S., Izaike, Y., Schuler, L. A., Takezawa, T., and Hashizume, K. (2004b). Expression of trophoblast cell-specific pregnancy-related genes in somatic cell-cloned bovine pregnancies. Biol. Reprod. 70, 1114–1120.
Expression of trophoblast cell-specific pregnancy-related genes in somatic cell-cloned bovine pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Siu7Y%3D&md5=aae2f839f2911851ca4c445d6b9453cfCAS | 14681195PubMed |

Piedrahita, J. A., Mir, B., Dindot, S., and Walker, S. (2004). Somatic cell cloning: the ultimate form of nuclear reprogramming? J. Am. Soc. Nephrol. 15, 1140–1144.
Somatic cell cloning: the ultimate form of nuclear reprogramming?Crossref | GoogleScholarGoogle Scholar | 15100354PubMed |

Ravelich, S. R., Shelling, A. N., Ramachandran, A., Reddy, S., Keelan, J. A., Wells, D. N., Peterson, A. J., Lee, R. S., and Breier, B. H. (2004). Altered placental lactogen and leptin expression in placentomes from bovine nuclear transfer pregnancies. Biol. Reprod. 71, 1862–1869.
Altered placental lactogen and leptin expression in placentomes from bovine nuclear transfer pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsrzP&md5=f562691de7c373b332f0e3f6c82bdef7CAS | 15306554PubMed |

Riley, P., Anson-Cartwright, L., and Cross, J. C. (1998). The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat. Genet. 18, 271–275.
The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlKrtLc%3D&md5=1a42e5163c0004f0c3fce4b97f527ac9CAS | 9500551PubMed |

Robbins, K. M., Chen, Z., Wells, K. D., and Rivera, R. M. (2012). Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J. Biomed. Sci. 19, 95.
Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWqs7c%3D&md5=02a3be1f828c62f4d3defa61d1257cd9CAS | 23153226PubMed |

Roberts, R. M., Cross, J. C., and Leaman, D. W. (1992). Interferons as hormones of pregnancy. Endocr. Rev. 13, 432–452.
| 1:CAS:528:DyaK38XlvV2lurs%3D&md5=c8839b02a1ff1a99556f49ae1c58dcb0CAS | 1385108PubMed |

Rossant, J., and Cross, J. C. (2001). Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548.
Placental development: lessons from mouse mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVCksLc%3D&md5=b769235e6fb79c43c4e58d5a455e11f6CAS | 11433360PubMed |

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.
| 1:CAS:528:DyaK1MXmslKqsbo%3D&md5=210b3fd9b4243645aaae275c22dcda1eCAS | 10547847PubMed |

Salas, M., John, R., Saxena, A., Barton, S., Frank, D., Fitzpatrick, G., Higgins, M. J., and Tycko, B. (2004). Placental growth retardation due to loss of imprinting of Phlda2. Mech. Dev. 121, 1199–1210.
Placental growth retardation due to loss of imprinting of Phlda2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFyrtLc%3D&md5=09b47f3d4cca3237382dc186716740b7CAS | 15327781PubMed |

Salilew-Wondim, D., Tesfaye, D., Hossain, M., Held, E., Rings, F., Tholen, E., Looft, C., Cinar, U., Schellander, K., and Hoelker, M. (2013). Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos. Physiol. Genomics 45, 28–46.
Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVOrs7g%3D&md5=a84f28e376a6dfd80fa749eb35e64e0fCAS | 23092953PubMed |

Santos, F., Zakhartchenko, V., Stojkovic, M., Peters, A., Jenuwein, T., Wolf, E., Reik, W., and Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–1121.
Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1entrY%3D&md5=58133119c69fbabf4a58880d31016539CAS | 12842010PubMed |

Tamada, H., and Kikyo, N. (2004). Nuclear reprogramming in mammalian somatic cell nuclear cloning. Cytogenet. Genome Res. 105, 285–291.
Nuclear reprogramming in mammalian somatic cell nuclear cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsV2js78%3D&md5=5d879b076f12824afbaa916d846e407bCAS | 15237217PubMed |

Tanaka, M., Gertsenstein, M., Rossant, J., and Nagy, A. (1997). Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev. Biol. 190, 55–65.
Mash2 acts cell autonomously in mouse spongiotrophoblast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVertr8%3D&md5=c1a514fea090397958c29cc9cd2275a5CAS | 9331331PubMed |

Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A., and Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075.
Promotion of trophoblast stem cell proliferation by FGF4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVOqsrk%3D&md5=c09caf969726ad3b38609f6ac10a2833CAS | 9851926PubMed |

Tunster, S. J., Tycko, B., and John, R. M. (2010). The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol. Cell. Biol. 30, 295–306.
The imprinted Phlda2 gene regulates extraembryonic energy stores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVKht7Y%3D&md5=c048b576177748b2c84786e36a8c8e28CAS | 19884348PubMed |

Tunster, S. J., Van De Pette, M., and John, R. M. (2014). Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice. Dis. Model. Mech. 7, 1185–1191.
Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice.Crossref | GoogleScholarGoogle Scholar | 25085993PubMed |

Umlauf, D., Goto, Y., Cao, R., Cerqueira, F., Wagschal, A., Zhang, Y., and Feil, R. (2004). Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296–1300.
Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWitLrO&md5=c8adcb77e006a737c804a01a751b00ddCAS | 15516932PubMed |

Vu, L. P., Luciani, L., and Nimer, S. D. (2013). Histone-modifying enzymes: their role in the pathogenesis of acute leukemia and their therapeutic potential. Int. J. Hematol. 97, 198–209.
Histone-modifying enzymes: their role in the pathogenesis of acute leukemia and their therapeutic potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFGitL0%3D&md5=4f02bd1ef302f2da198c878e8183f48dCAS | 23288492PubMed |

Wee, G., Koo, D. B., Song, B. S., Kim, J. S., Kang, M. J., Moon, S. J., Kang, Y. K., Lee, K. K., and Han, Y. M. (2006). Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J. Biol. Chem. 281, 6048–6057.
Inheritable histone H4 acetylation of somatic chromatins in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVeisr8%3D&md5=4bd7302ef3bcbbeb4d959540945a9f8eCAS | 16371357PubMed |

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=b342bc4ed2627defdfde20d0e99d7404CAS | 9039911PubMed |

Wooding, F. B. (1981). Localization of ovine placental lactogen in sheep placentomes by electron microscope immunocytochemistry. J. Reprod. Fertil. 62, 15–19.
Localization of ovine placental lactogen in sheep placentomes by electron microscope immunocytochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitVKju7c%3D&md5=361df7c53337edff712bb4b242a6f572CAS | 7014856PubMed |

Wooding, F. B., and Wathes, D. C. (1980). Binucleate cell migration in the bovine placentome. J. Reprod. Fertil. 59, 425–430.
Binucleate cell migration in the bovine placentome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M%2FkvFahtQ%3D%3D&md5=5e8a5cebba53b4d9869e634c4012bdf3CAS | 7431300PubMed |

Wu, X., Li, Y., Xue, L., Wang, L., Yue, Y., Li, K., Bou, S., Li, G. P., and Yu, H. (2011). Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos. Zygote 19, 31–45.
Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVSgtw%3D%3D&md5=1a10057b9cb39d6c3d3823addaa34375CAS | 20609268PubMed |

Yamada, O., Kohsaka, T., Shimizu, M., Akagi, S., Takahashi, S., Geshi, M., Imai, K., Takahashi, T., Takezawa, T., and Hashizume, K. (2001). Morphological difference of placentome formation by somatic cell nuclear transferred embryo. Biol. Reprod. 64, 594.

Zoli, A. P., Demez, P., Beckers, J. F., Reznik, M., and Beckers, A. (1992). Light and electron microscopic immunolocalization of bovine pregnancy-associated glycoprotein in the bovine placentome. Biol. Reprod. 46, 623–629.
Light and electron microscopic immunolocalization of bovine pregnancy-associated glycoprotein in the bovine placentome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFWmsb4%3D&md5=d7863b701a78f46424158efe67572ac4CAS | 1576259PubMed |