Effect of intra-uterine growth restriction on long-term fertility in boars
Yan Lin A B D , Xu Cheng A , Peter Sutovsky B C , De Wu A , Lian-Qiang Che A , Zheng-Feng Fang A , Sheng-Yu Xu A , Bo Ren A and Hong-Jun Dong AA Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, 46 Xing-kang Road, Ya’an, 62500,China.
B Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA.
C Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA.
D Corresponding author. Email: linyan936@163.com
*These authors contributed equally to this work.
Reproduction, Fertility and Development 29(2) 374-382 https://doi.org/10.1071/RD15130
Submitted: 10 April 2015 Accepted: 18 July 2015 Published: 21 August 2015
Abstract
The present study assessed the effect of birthweight on reproductive performance, including a possible mechanism, in male pigs. Ten newborn male piglets, including five normal birthweight (NBW) piglets and five intra-uterine growth restricted (IUGR) piglets, were used in the study. All piglets were weaned on Day 28 and fed the same diet during the experiment (10 months). Average daily weight gain, feed intake and the feed conversion ratio were higher in NBW than IUGR piglets. Similarly, testis volume and the number of Leydig and Sertoli cells in the distal portion of the testes were higher in NBW than IUGR piglets (P < 0.05). Semen volume (P < 0.05) and the total number of spermatozoa per ejaculate (P = 0.08) were lower in IUGR boars. Testosterone concentrations on Day 141 and prostaglandin E2 concentrations on Days 82 and 141 were higher in IUGR than NBW boars (P < 0.05). The malondialdehyde content of seminal plasma was higher in IUGR boars, whereas sperm glutathione peroxidase activity was lower in IUGR versus NBW boars (P < 0.05). Expression of DNA methyltransferase (Dnmt) genes Dnmt1, Dnmt3a, histone-lysine N-methyltransferase (Suv39h2), and lysine (K)-specific demethylase Kdm4a was upregulated in testes from IUGR boars. These findings suggest that growth restriction affects sperm production via reproductive organ development and epigenetic regulation.
Additional keywords: epigenetic, normal birthweight, sperm, testis.
References
Agarwal, A., Tvrda, E., and Sharma, R. (2014). Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod. Biol. Endocrinol. 12, 45–52.| Relationship amongst teratozoospermia, seminal oxidative stress and male infertility.Crossref | GoogleScholarGoogle Scholar | 24884815PubMed |
Aitken, R. J., and Baker, M. A. (2013). Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. Int. J. Dev. Biol. 57, 265–272.
| Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVersbnO&md5=90ae3d246c4a6781cc7f900b1d845109CAS | 23784837PubMed |
Alisi, A., Panera, N., Agostoni, C., and Nobili, V. (2011). Intrauterine growth retardation and nonalcoholic fatty liver disease in children. Int. J. Endocrinol. 2011, 269853.
| Intrauterine growth retardation and nonalcoholic fatty liver disease in children.Crossref | GoogleScholarGoogle Scholar | 22190925PubMed |
Alvarenga, A. L., Chiarini-Garcia, H., Cardeal, P. C., Moreira, L. P., Foxcroft, G. R., Fontes, D. O., and Almeida, F. R. (2013). Intra-uterine growth retardation affects birth weight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits. Reprod. Fertil. Dev. 25, 387–395.
| Intra-uterine growth retardation affects birth weight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bos1Gltg%3D%3D&md5=cdb6e0d567e053b7ce47fc499a683574CAS | 22995207PubMed |
Awda, B. J., Mackenzie-Bell, M., and Buhr, M. M. (2009). Reactive oxygen species and boar sperm function. Biol. Reprod. 81, 553–561.
| Reactive oxygen species and boar sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zP&md5=7373d1c23561286263287ecb6d7a8cc9CAS | 19357363PubMed |
Bamba, K. (1988). Evaluation of acrosomal integrity of boar spermatozoa by bright field microscopy using an eosin–nigrosin stain. Theriogenology 29, 1245–1251.
| Evaluation of acrosomal integrity of boar spermatozoa by bright field microscopy using an eosin–nigrosin stain.Crossref | GoogleScholarGoogle Scholar |
Barker, D. J., and Thornburg, K. L. (2013). Placental programming of chronic diseases, cancer and lifespan. Cancer Epidemiol. 37, 321–323.
| Placental programming of chronic diseases, cancer and lifespan.Crossref | GoogleScholarGoogle Scholar | 23403130PubMed |
Beaulieu, A. D., Aalhus, J. L., Williams, N. H., and Patience, J. F. (2010). Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork. J. Anim. Sci. 88, 2767–2778.
| Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVOrt7o%3D&md5=e37387ad442e09cd071835bfc759427bCAS | 20418451PubMed |
Burdge, G. C., Slater-Jefferies, J., Torrens, C., Phillips, E. S., Hanson, M. A., and Lillycrop, K. A. (2007). Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br. J. Nutr. 97, 435–439.
| Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVSitbY%3D&md5=c98c3c19140f7999ab349be2930d1b70CAS | 17313703PubMed |
Cameron, N. M. (2011). Maternal programming of reproductive function and behavior in the female rat. Front. Evol. Neurosci. 3, 1–10.
| Maternal programming of reproductive function and behavior in the female rat.Crossref | GoogleScholarGoogle Scholar |
Chauhan, M. S., Kapila, R., Gandhi, K. K., and Anand, S. R. (1994). Acrosome damage and enzyme leakage of goat spermatozoa during dilution, cooling and freezing. Andrologia 26, 21–26.
| Acrosome damage and enzyme leakage of goat spermatozoa during dilution, cooling and freezing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVGit7g%3D&md5=c9a5f3bb78e1bed0bef7b73e77fca991CAS | 8185056PubMed |
D’Inca, R., Guen, G. C., Che, L., Sangild, P. T., and Le Huërou-Luron, I. (2011). Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99, 208–216.
| Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs.Crossref | GoogleScholarGoogle Scholar | 20881437PubMed |
Da Silva, P., Aitken, R. P., Rhind, S. M., Racey, P. A., and Wallace, J. M. (2002). Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses. Reproduction 123, 769–777.
| Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCiur8%3D&md5=1d627c207f7bf79414f7ee0c0512a3e8CAS | 12052231PubMed |
Echternkamp, S. E., and Lunstra, D. D. (1984). Relationship between LH and testicular development in progesterone-implanted prepubertal ram lambs. J. Anim. Sci. 59, 441–453.
| 1:CAS:528:DyaL2cXlsVCnu74%3D&md5=300fb348636309fc9f483ffb665aefaeCAS | 6480538PubMed |
Estienne, M. J., Harper, A. F., and Day, J. L. (2007). Characteristics of sperm motility in boar semen diluted in different extenders and stored for seven days at 18 degrees C. Reprod. Biol. 7, 221–231.
| 18059974PubMed |
Ford, J. J., McCoard, S. A., Wise, T. H., Lunstra, D. D., and Rohrer, G. A. (2006). Genetic variation in sperm production. Soc. Reprod. Fertil. Suppl. 62, 99–112.
| 1:STN:280:DC%2BD28vktlagug%3D%3D&md5=2054f109a8090b5f0c9d5d86080f4981CAS | 16866312PubMed |
Garcia-Gil, N., Pinart, E., Sancho, S., Badia, E., Bassols, J., Kadar, E., Briz, M., and Bonet, S. (2002). The cycle of the seminiferous epithelium in Landrace boars. Anim. Reprod. Sci. 73, 211–225.
| The cycle of the seminiferous epithelium in Landrace boars.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nlvVSlug%3D%3D&md5=ead5ad37c24c33389b7864deaca33d84CAS | 12363444PubMed |
Gatford, K. L., Simmons, R. A., De Blasio, M. J., Robinson, J. S., and Owens, J. A. (2010). Placental programming of postnatal diabetes and impaired insulin action after IUGR. Placenta 31, S60–S65.
| Placental programming of postnatal diabetes and impaired insulin action after IUGR.Crossref | GoogleScholarGoogle Scholar | 20096455PubMed |
Gonzales, G. F., and Villena, A. (2001). True corrected seminal fructose level: a better marker of the function of seminal vesicles in infertile men. Int. J. Androl. 24, 255–260.
| True corrected seminal fructose level: a better marker of the function of seminal vesicles in infertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVOnsro%3D&md5=3d81451e95bbc121d423172554dda980CAS | 11554981PubMed |
Guthrie, H. D., and Welch, G. R. (2012). Effects of reactive oxygen species on sperm function. Theriogenology 78, 1700–1708.
| Effects of reactive oxygen species on sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFCgsLw%3D&md5=50ec2227bf319852d8cab900bf51832dCAS | 22704396PubMed |
Hales, C. N., and Ozanne, S. E. (2003). For debate: fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure. Diabetologia 46, 1013–1019.
| For debate: fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szmtlSgsQ%3D%3D&md5=e52a1be2f9474b969e9d22dfeb4ce6e1CAS | 12827239PubMed |
Herrero, M. B., Viggiano, J. M., Boquet, M., and Gimeno, M. A. (1997). Prostaglandin modulation of mouse and human sperm capacitation. Prostaglandins Leukot. Essent. Fatty Acids 57, 279–284.
| Prostaglandin modulation of mouse and human sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFSntbw%3D&md5=d519a830f1f0bbf57d310e59c68984a2CAS | 9384517PubMed |
Huang, Y. T., and Johnson, R. K. (1996). Effect of selection for size of testes in boars on semen and testis traits. J. Anim. Sci. 74, 750–760.
| 1:CAS:528:DyaK28XitlCitb4%3D&md5=372c8b57a3fa6170d50ddd16328cfbb7CAS | 8727995PubMed |
Ibáñez, L., Potau, N., Ferrer, A., Rodriguez-Hierro, F., Marcos, M. V., and de Zegher, F. (2002). Reduced ovulation rate in adolescent girls born small for gestational age. J. Clin. Endocrinol. Metab. 87, 3391–3393.
| Reduced ovulation rate in adolescent girls born small for gestational age.Crossref | GoogleScholarGoogle Scholar | 12107255PubMed |
Kao, S. H., Chao, H. T., Chen, H. W., Hwang, T. I. S., Liao, T. L., and Wei, Y. H. (2008). Increase of oxidative stress in human sperm with lower motility. Fertil. Steril. 89, 1183–1190.
| Increase of oxidative stress in human sperm with lower motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ylsr7I&md5=b4e5e14bb150cbec1596c967e95f380eCAS | 17669405PubMed |
Kotsampasi, B., Balaskas, C., Papadomichelakis, G., and Chadio, S. E. (2009). Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero. Anim. Reprod. Sci. 114, 135–147.
| Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1yqu7c%3D&md5=f0276842a3381bd7f9cc6cdbec4e09abCAS | 18814977PubMed |
La Salle, S., and Trasler, J. M. (2006). Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse. Dev. Biol. 296, 71–82.
| Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntV2lsL4%3D&md5=1a4463866f9dff32be69cd4afb73a6bfCAS | 16725135PubMed |
Lee, T. C., and Ho, H. C. (2011). Effects of prostaglandin E2 and vascular endothelial growth factor on sperm might lead to endometriosis-associated infertility. Fertil. Steril. 95, 360–362.
| Effects of prostaglandin E2 and vascular endothelial growth factor on sperm might lead to endometriosis-associated infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFynu7bK&md5=32d5b577327761a38f0c82d64e8ed6a2CAS | 20864099PubMed |
Léonhardt, M., Lesage, J., Croix, D., Dutriez-Casteloot, I., Beauvillain, J. C., and Dupouy, J. P. (2003). Effects of perinatal maternal food restriction on pituitary-gonadal axis and plasma leptin level in rat pup at birth and weaning and on timing of puberty. Biol. Reprod. 68, 390–400.
| Effects of perinatal maternal food restriction on pituitary-gonadal axis and plasma leptin level in rat pup at birth and weaning and on timing of puberty.Crossref | GoogleScholarGoogle Scholar | 12533401PubMed |
Liu, Z., Zhou, S., Liao, L., Chen, X., Meistrich, M., and Xu, J. (2010). Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J. Biol. Chem. 285, 2758–2770.
| Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFCrtw%3D%3D&md5=1ca73c799e5eb6c20231a95e92200e70CAS | 19910458PubMed |
Louis, G. F., Lewis, A. J., Weldon, W. C., Miller, P. S., Kittok, R. J., and Stroup, W. W. (1994). The effect of protein intake on boar libido, semen characteristics, and plasma hormone concentrations. J. Anim. Sci. 72, 2038–2050.
| 1:CAS:528:DyaK2MXktFOitg%3D%3D&md5=3bae78af8718e2e076aeb371a78898b2CAS | 7982833PubMed |
Mahmoud, A. M., Geslevich, J., Kint, J., Depuydt, C., Huysse, L., Zalata, A., and Comhaire, F. H. (1998). Seminal plasma α-glucosidase activity and male infertility. Hum. Reprod. 13, 591–595.
| Seminal plasma α-glucosidase activity and male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFyqtL4%3D&md5=6b23e89c41e73af4519328547af1ee44CAS | 9572418PubMed |
Marques, C. J., Francisco, T., Sousa, S., Carvalho, F., Barros, A., and Sousa, M. (2010). Methylation defects of imprinted genes in human testicular spermatozoa. Fertil. Steril. 94, 585–594.
| Methylation defects of imprinted genes in human testicular spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFansLc%3D&md5=a824d1182e72790ac1b84ed722af5303CAS | 19338988PubMed |
Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, Martínez, (2014). In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation. Cell. Metab. 19, 941–951.
| In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation.Crossref | GoogleScholarGoogle Scholar | 24794974PubMed |
Mehrotra, A., Katiyar, D. K., Agarwal, A., Das, V., and Pant, K. K. (2013). Role of total antioxidant capacity and lipid peroxidation in fertile and infertile men. Biomed. Res. 24, 347–352.
| 1:CAS:528:DC%2BC3sXhtFars7rE&md5=fff5b56e01c0c4daec2935daf613581cCAS |
Messerschmidt, D. M., Knowles, B. B., and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828.
| DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVamuro%3D&md5=4aa4dd48a87a842df4bdf81f27baae70CAS | 24736841PubMed |
Myrie, S. B., McKnight, L. L., Van Vliet, B. N., and Bertolo, R. F. (2011). Low birth weight is associated with reduced nephron number and increased blood pressure in adulthood in a novel spontaneous intrauterine growth-restricted model in Yucatan miniature Swine. Neonatology 100, 380–386.
| Low birth weight is associated with reduced nephron number and increased blood pressure in adulthood in a novel spontaneous intrauterine growth-restricted model in Yucatan miniature Swine.Crossref | GoogleScholarGoogle Scholar | 21791929PubMed |
National Research Council (2012). ‘Nutrient Requirements of Swine, 10th ed.’ (National Academy Press: Washington, DC.)
O’Carroll, D., Scherthan, H., Peters, A. H., Opravil, S., Haynes, A. R., Laible, G., Rea, S., Schmid, M., Lebersorger, A., Jerratsch, M., Sattler, L., Mattei, M. G., Denny, P., Brown, S. D., Schweizer, D., and Jenuwein, T. (2000). Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20, 9423–9433.
| Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2Fnsl2ntQ%3D%3D&md5=1a15b1e72321698e61a41d9bc4462529CAS | 11094092PubMed |
Ojeda, N. B., Royals, T. P., Black, J. T., Dasinger, J. H., Johnson, J. M., and Alexander, B. T. (2010). Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1421–R1427.
| Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Klsbg%3D&md5=41c25f8654dc22603aa757eb5b4980f5CAS | 20219873PubMed |
Okada, Y., Scott, G., Ray, M. K., Mishina, Y., and Zhang, Y. (2007). Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450, 119–123.
| Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CgtbbM&md5=c2f1a213360be7c19505ff21a3915645CAS | 17943087PubMed |
Rhind, S. M., Rae, M. T., and Brooks, A. N. (2001). Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction 122, 205–214.
| Effects of nutrition and environmental factors on the fetal programming of the reproductive axis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWjtLw%3D&md5=b0851c2ccabefb21c5b47cd4312b764aCAS | 11467971PubMed |
Rios, M., Carreño, D. V., Oses, C., Barrera, N., Kerr, B., and Villalón, M. (2014). Low physiological levels of prostaglandins E2 and F2α improve human sperm functions. Reprod. Fertil. Dev. , .
| Low physiological levels of prostaglandins E2 and F2α improve human sperm functions.Crossref | GoogleScholarGoogle Scholar | 25123052PubMed |
Roe, J. H. (1934). A colorimetric method for the determination of fructose in blood and urine. J. Biol. Chem. 107, 15–22.
| 1:CAS:528:DyaA2MXos12g&md5=82d99061e89d1598b193bf5317efebe4CAS |
Said, L., Galeraud-Denis, I., Carreau, S., and Saâd, A. (2009). Relationship between semen quality and seminal plasma components: alpha-glucosidase, fructose and citrate in infertile men compared with a normospermic population of Tunisian men. Andrologia 41, 150–156.
| Relationship between semen quality and seminal plasma components: alpha-glucosidase, fructose and citrate in infertile men compared with a normospermic population of Tunisian men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVerur0%3D&md5=f278a8693f1c0179045ed92eec8860a8CAS | 19400848PubMed |
Sanders, M. W., Fazzi, G. E., Janssen, G. M., Blanco, C. E., and De Mey, J. G. (2005). High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats. Hypertension 46, 71–75.
| High sodium intake increases blood pressure and alters renal function in intrauterine growth-retarded rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Wltb0%3D&md5=967a5b0221d0b6eef7169ba8dd529c18CAS | 15956110PubMed |
Shirakata, Y., Hiradate, Y., Inoue, H., Sato, E., and Tanemura, K. (2014). Histone h4 modification during mouse spermatogenesis. J. Reprod. Dev. 60, 383–387.
| Histone h4 modification during mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVeitbbP&md5=56f4f4f33943b07d40d2efa8ec521946CAS | 25087733PubMed |
Shiva, M., Gautam, A. K., Verma, Y., Shivgotra, V., Doshi, H., and Kumar, S. (2011). Association between sperm quality, oxidative stress, and seminal antioxidant activity. Clin. Biochem. 44, 319–324.
| Association between sperm quality, oxidative stress, and seminal antioxidant activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVyrsb4%3D&md5=74bb4deda2fca4701186cc5a5935f879CAS | 21145315PubMed |
Strzeżek, R., and Janowski, T. (2005). Efficacy of enzyme markers for assessing dog prostate function following finasteride administration. Med. Weter. 61, 896–899.
Teixeira, C. V., Silandre, D., de Souza Santos, A. M., Delalande, C., Sampaio, F. J., Carreau, S., and da Fonte Ramos, C. (2007). Effects of maternal undernutrition during lactation on aromatase, estrogen, and androgen receptors expression in rat testis at weaning. J. Endocrinol. 192, 301–311.
| Effects of maternal undernutrition during lactation on aromatase, estrogen, and androgen receptors expression in rat testis at weaning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Wgs7g%3D&md5=8aecda780e8c45d75716c7789f07c545CAS | 17283230PubMed |
Thompson, R. F., Fazzari, M. J., Niu, H., Barzilai, N., Simmons, R. A., and Greally, J. M. (2010). Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J. Biol. Chem. 285, 15111–15118.
| Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslSru7o%3D&md5=7148936f3eb19ee55f32953912f2d08cCAS | 20194508PubMed |
Toledo, F. C., Perobelli, J. E., Pedrosa, F. P., Anselmo-Franci, J. A., and Kempinas, W. D. (2011). In utero protein restriction causes growth delay and alters sperm parameters in adult male rats. Reprod. Biol. Endocrinol. 9, 94–102.
| In utero protein restriction causes growth delay and alters sperm parameters in adult male rats.Crossref | GoogleScholarGoogle Scholar | 21702915PubMed |
Ushijima, Y., Inoue, Y. H., Konishi, T., Kitazawa, D., Yoshida, H., Shimaji, K., Kimura, H., and Yamaguchi, M. (2012). Roles of histone H3K9 methyltransferases during Drosophila spermatogenesis. Chromosome Res. 20, 319–331.
| Roles of histone H3K9 methyltransferases during Drosophila spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Oqtbg%3D&md5=3982a454b956d59100a146d4688f004dCAS | 22476432PubMed |
Valsamakis, G., Kanaka-Gantenbein, C., Malamitsi-Puchner, A., and Mastorakos, G. (2006). Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann. N. Y. Acad. Sci. 1092, 138–147.
| Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlajtr4%3D&md5=74e84b29857421640f98de503bae5f0aCAS | 17308140PubMed |
Venkatesh, S., Deecaraman, M., Kumar, R., Shamsi, M. B., and Dada, R. (2009). Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutations in male infertility. Indian J. Med. Res. 129, 127–137.
| 1:CAS:528:DC%2BD1MXksVGqsLY%3D&md5=987ad265852727d8a307cb525aada90dCAS | 19293438PubMed |
Walters, E. M., and Prather, R. S. (2013). Advancing swine models for human health and diseases. Mo. Med. 110, 212–215.
| 23829105PubMed |
Wang, X., Lin, G., Liu, C., Feng, C., Zhou, H., Wang, T., Li, D., Wu, G., and Wang, J. (2014). Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. J. Nutr. Biochem. 25, 785–795.
| Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVWktLo%3D&md5=73fadbeb3651a73161ecad56598fa406CAS | 24794015PubMed |
Yamazaki, K., Endo, T., Kitajima, Y., Manase, K., Nagasawa, K., Honnma, H., Hayashi, T., Kudo, R., and Saito, T. (2006). Elevation of both cyclooxygenase-2 and prostaglandin E2 receptor EP3 expressions in rat placenta after uterine artery ischemia-reperfusion. Placenta 27, 395–401.
| Elevation of both cyclooxygenase-2 and prostaglandin E2 receptor EP3 expressions in rat placenta after uterine artery ischemia-reperfusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVakt70%3D&md5=086dade8fb28ccd5c094b0cd63993addCAS | 15990166PubMed |
Zalata, A. A., Ahmed, A. H., Allamaneni, S. S., Comhaire, F. H., and Agarwal, A. (2004). Relationship between acrosin activity of human spermatozoa and oxidative stress. Asian J. Androl. 6, 313–318.
| 1:CAS:528:DC%2BD2MXjslWjsQ%3D%3D&md5=0d35d53f2272423f4a0458a8a94aa0f7CAS | 15546022PubMed |
Zambrano, E., Rodríguez-González, G. L., Guzmán, C., García-Becerra, R., Boeck, L., Díaz, L., Menjivar, M., Larrea, F., and Nathanielsz, P. W. (2005). A maternal low protein diet during gestation and lactation in the rat male reproductive development. J. Physiol. 563, 275–284.
| A maternal low protein diet during gestation and lactation in the rat male reproductive development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSnuro%3D&md5=d8f501b56b299182e72aa1cc61e01425CAS | 15611025PubMed |