Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Developmental potential of 2n/3n mixoploid mouse embryos produced by fusion of individual second polar bodies and blastomeres of 2-cell embryos

Toshiaki Hino A B and Hiroyuki Tateno A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan.

B Corresponding author. Email: hino@asahikawa-med.ac.jp

Reproduction, Fertility and Development 28(12) 1982-1989 https://doi.org/10.1071/RD15081
Submitted: 27 February 2015  Accepted: 2 June 2015   Published: 8 July 2015

Abstract

Using 2n/3n mixoploid mouse embryos produced by fusion of individual second polar bodies (PB2s) with individual blastomeres of 2-cell embryos, the dynamics of PB2 nuclei in the host blastomeres during mitosis were examined and the fate of the 3n cell line in the mixoploid embryos was followed. Most of the PB2 nuclei were synchronised with the cell cycle of the host blastomeres and all chromosomes were incorporated into a single mitotic spindle. The majority of the mixoploid embryos developed to blastocysts with 3n cells. In conceptuses at Day 11.5 and Day 18.5 of gestation, 3n cells were recognised in both of the embryonic/fetal and placental tissues. When green fluorescent protein (GFP)-transgenic mice were used as a donor of PB2, GFP-positive 3n cells were found in more than 40% of morulae and blastocysts, indicating that the PB2 genome can be reactivated during the pre-implantation stage. GFP-positive 3n cells were non-randomly allocated in trophectoderm in blastocysts. These findings may explain the production mechanism of 2n/3n mixoploid human embryos, that is, a PB2 is incorporated into one daughter blastomere during the early cleavage period.

Additional keywords: chromosome, embryo manipulation, mosaicism, zygote.


References

Alonso, L., Melaragno, I., Bortolai, A., Takeno, S., and Brunoni, D. (2002). Tetraploid/diploid mosaicism: case report and review of the literature. Ann. Génét. 45, 177–180.
Tetraploid/diploid mosaicism: case report and review of the literature.Crossref | GoogleScholarGoogle Scholar | 12668163PubMed |

Azuma, S., Fukuda, Y., and Toyoda, Y. (1991a). Studies on the production of 2n↔3n chimeric mouse embryos. I. Pre-implantation development. Jpn. J. Animal Reprod. 37, 71–77.
Studies on the production of 2n↔3n chimeric mouse embryos. I. Pre-implantation development.Crossref | GoogleScholarGoogle Scholar |

Azuma, S., Fukuda, Y., and Toyoda, Y. (1991b). Studies on the production of 2n↔3n chimeric mouse embryos II. Post-implantation development. Jpn. J. Animal Reprod. 37, 79–87.
Studies on the production of 2n↔3n chimeric mouse embryos II. Post-implantation development.Crossref | GoogleScholarGoogle Scholar |

Beck, F., Erler, T., Russell, A., and James, R. (1995). Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev. Dyn. 204, 219–227.
Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFSk&md5=b73a99720d4a747baa99684fdcc3fa32CAS | 8573715PubMed |

Bielanska, M., Tan, S. L., and Ao, A. (2002). High rate of mixoploidy among human blastocysts cultured in vitro. Fertil. Steril. 78, 1248–1253.
High rate of mixoploidy among human blastocysts cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 12477520PubMed |

Boonen, S. E., Hoffman, A. L., Donnai, D., Tümer, Z., and Ravn, K. (2011). Diploid/triploid mosaicism: a rare event or an under-diagnosed syndrome? Eur. J. Med. Genet. 54, 374–375.
Diploid/triploid mosaicism: a rare event or an under-diagnosed syndrome?Crossref | GoogleScholarGoogle Scholar | 21252005PubMed |

Brems, H., Vogels, A., Ribai, P., de Raedt, T., Fryns, J. P., and Legius, E. (2003). Second polar body inclusion results in diploid/triploid mixoploidy. Genet. Couns. 14, 425–429.
| 1:STN:280:DC%2BD2c%2FjvVWrug%3D%3D&md5=f04203eab519a0d76e4110a4b85442a5CAS | 14738117PubMed |

Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzkt1emtA%3D%3D&md5=65ba4755f6f559da250dc9354f215a46CAS | 2760894PubMed |

Coppola, G., Alexander, B., Berardino, D. D., St John, E., Basrur, P. K., and King, W. A. (2007). Use of cross-species in situ hybridisation (ZOO-FISH) to assess chromosome abnormalities in Day-6 in vivo- or in vitro-produced sheep embryos. Chromosome Res. 15, 399–408.
Use of cross-species in situ hybridisation (ZOO-FISH) to assess chromosome abnormalities in Day-6 in vivo- or in vitro-produced sheep embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2jtrg%3D&md5=da44c8200a592c334c0b485ce35f118aCAS | 17429747PubMed |

Daniel, A., Wu, Z., Bennetts, B., Slater, H., Osborn, R., Jackson, J., Pupko, V., Nelson, J., Watson, G., Cooke-Yarborough, C., and Loo, C. (2001). Karyotype, phenotype and parental origin in 19 cases of triploidy. Prenat. Diagn. 21, 1034–1048.
Karyotype, phenotype and parental origin in 19 cases of triploidy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnpvVOnsQ%3D%3D&md5=70ba79216d28215e2479ead78e245750CAS | 11746161PubMed |

Daniel, A., Wu, Z., Darmanian, A., Collins, F., and Jackson, J. (2003). Three different origins for apparent triploid/diploid mosaics. Prenat. Diagn. 23, 529–534.
Three different origins for apparent triploid/diploid mosaics.Crossref | GoogleScholarGoogle Scholar | 12868076PubMed |

Edwards, M. J., Park, J. P., Wurster-Hill, D. H., and Graham, J. M. (1994). Mixoploidy in humans: two surviving cases of diploid-tetraploid mixoploidy and comparison with diploid-triploid mixoploidy. Am. J. Med. Genet. 52, 324–330.
Mixoploidy in humans: two surviving cases of diploid-tetraploid mixoploidy and comparison with diploid-triploid mixoploidy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7gvFGksw%3D%3D&md5=2a53f2d8f201a4c1382d26a76f039a6aCAS | 7810564PubMed |

Everett, C. A., and West, J. D. (1996). The influence of ploidy on the distribution of cells in chimaeric mouse blastocyst. Zygote 4, 59–66.
The influence of ploidy on the distribution of cells in chimaeric mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zivFahug%3D%3D&md5=7d22eeb5f4255b9c9bd842de099819e2CAS | 8735371PubMed |

Everett, C. A., and West, J. D. (1998). Evidence for selection against tetraploid cells in tetraploid↔diploid mouse chimaeras before the late blastocyst stage. Genet. Res. 72, 225–228.
Evidence for selection against tetraploid cells in tetraploid↔diploid mouse chimaeras before the late blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7ls1Sgsg%3D%3D&md5=367aa641009cd9c59635d29408be5449CAS | 10036979PubMed |

Everett, C. A., Keighren, M. A., Flockhart, J. H., and West, J. D. (2007). Evaluation of triploid↔diploid mouse chimeras as models for investigating how lineage restriction occurs in confined placental mosaicism. Reproduction 134, 799–809.
Evaluation of triploid↔diploid mouse chimeras as models for investigating how lineage restriction occurs in confined placental mosaicism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1ehtQ%3D%3D&md5=0bf343e6eb91ade0973f0737e92e63abCAS | 18042637PubMed |

Fabian, D., Čikoš, Š., Rehák, P., and Koppel, J. (2014). Do embryonic polar bodies commit suicide? Zygote 22, 10–17.
Do embryonic polar bodies commit suicide?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXit1eisg%3D%3D&md5=95362211daba808fa58b5668ff7da6a9CAS | 22784386PubMed |

Golubovsky, M. D. (2003). Postzygotic diploidisation of triploids as a source of unusual cases of mosaicism, chimaerism and twinning. Hum. Reprod. 18, 236–242.
Postzygotic diploidisation of triploids as a source of unusual cases of mosaicism, chimaerism and twinning.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2Fosl2jtQ%3D%3D&md5=5349897da089ef3de2861b1666576a97CAS | 12571155PubMed |

Goto, Y., Matsui, J., and Takagi, N. (2002). Developmental potential of mouse tetraploid cells in diploid↔tetraploid chimeric embryos. Int. J. Dev. Biol. 46, 741–745.
| 12216986PubMed |

Hertig, A. T., Rock, J., and Adams, E. C. (1956). A description of three human ova within the first 17 days of development. Am. J. Anat. 98, 435–493.
A description of three human ova within the first 17 days of development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG2s%2FgvVWrtg%3D%3D&md5=206d9b605e2fd4c1f80bbd67402debc6CAS | 13362122PubMed |

Hino, T., Kusakabe, H., and Tateno, H. (2013). Chromosomal stability of second polar bodies in mouse embryos. J. Assist. Reprod. Genet. 30, 91–98.
Chromosomal stability of second polar bodies in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 23224636PubMed |

Hornak, M., Oracova, E., Hulinska, P., Urbankova, L., and Rubes, J. (2012). Aneuploidy detection in pigs using comparative genomic hybridisation: from the oocytes to blastocysts. PLoS One 7, e30335.
Aneuploidy detection in pigs using comparative genomic hybridisation: from the oocytes to blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFensLw%3D&md5=226f6658ad891ea6b158e703c18d834aCAS | 22291937PubMed |

James, R. M., Klerkx, A. E. M., Keighren, M., Flockhart, J. H., and West, J. D. (1995). Restricted distribution of tetraploid cells in mouse tetraploid↔diploid chimaeras. Dev. Biol. 167, 213–226.
Restricted distribution of tetraploid cells in mouse tetraploid↔diploid chimaeras.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1eksL8%3D&md5=76de38f917dc6fcdf1c5d81735b8f50cCAS | 7851644PubMed |

King, W. A. (2008). Chromosome variation in the embryos of domestic animals. Cytogenet. Genome Res. 120, 81–90.
Chromosome variation in the embryos of domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czgs1yltA%3D%3D&md5=113c707c0cac646ca753ee206c1e5ef1CAS | 18467828PubMed |

MacKay, G. E., and West, J. D. (2005). Fate of tetraploid cells in 4n↔2n chimeric mouse blastocysts. Mech. Dev. 122, 1266–1281.
Fate of tetraploid cells in 4n↔2n chimeric mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12ku77N&md5=ae6b4ce39d696863cdbd027623d726c4CAS | 16274964PubMed |

Mikamo, K., and Kamiguchi, Y. (1983). A new assessment system for chromosomal mutagenicity using oocytes and early zygotes of the Chinese hamster. In ‘Radiation-Induced Chromosome Damage in Man’. (Eds T. Ishihara and M. S. Sasaki.) pp. 411–432. (Alan R Liss: New York.)

Müller, U., Weber, J. L., Berry, P., and Kupke, K. G. (1993). Second polar body incorporation into a blastomere results in 46, XX/69, XXX mixoploidy. J. Med. Genet. 30, 597–600.
Second polar body incorporation into a blastomere results in 46, XX/69, XXX mixoploidy.Crossref | GoogleScholarGoogle Scholar | 8411035PubMed |

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=9a478dd2bd2facd0ee174019c3f4a0a5CAS | 9814708PubMed |

Olgun-Erdemir, E., Yıldırım, M. S., and Karşıyaka, M. (2010). Generalised aggressive periodontitis in a child with 92,XXYY/46,XY mosaicism: report of a second case. Turk. J. Pediatr. 52, 94–96.
| 20402075PubMed |

Rambags, B. P. B., Krijtenburg, P. J., van Drie, H. F., Lazzari, G., Galli, C., Pearson, P. L., Colenbrander, B., and Stout, T. A. E. (2005). Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol. Reprod. Dev. 72, 77–87.
Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlClsL4%3D&md5=1bef0fdd69e6a6a4d68533a79897d616CAS |

Rittinger, O., Kronberger, G., Pfeifenberger, A., Kotzot, D., and Fauth, C. (2008). The changing phenotype in diploid/triploid mosaicism may mimic genetic syndromes with aberrant genomic imprinting: follow-up in a 14-year-old girl. Eur. J. Med. Genet. 51, 573–579.
The changing phenotype in diploid/triploid mosaicism may mimic genetic syndromes with aberrant genomic imprinting: follow-up in a 14-year-old girl.Crossref | GoogleScholarGoogle Scholar | 18706534PubMed |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=ce9c51ef214d402134d8000ffbe72399CAS | 11784103PubMed |

Suwińska, A., Ożdżeński, W., Waksmundzka, M., and Tarkowski, A. K. (2005). Experimentally produced diploid(-)triploid mouse chimaeras develop up to adulthood. Mol. Reprod. Dev. 72, 362–376.
Experimentally produced diploid(-)triploid mouse chimaeras develop up to adulthood.Crossref | GoogleScholarGoogle Scholar | 16094614PubMed |

Tang, P.-C., Ritchie, W. A., Wilmut, I., and West, J. D. (2000). The effects of cell size and ploidy on cell allocation in mouse chimaeric blastocysts. Zygote 8, 33–43.
The effects of cell size and ploidy on cell allocation in mouse chimaeric blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvjtlGltQ%3D%3D&md5=e59492bcd89c8a95cb64f5d62e86bb97CAS | 10840872PubMed |

Tarkowski, A. K., Witkowska, A., and Opas, J. (1977). Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J. Embryol. Exp. Morphol. 41, 47–64.
| 1:STN:280:DyaE1c%2FmvVSgsA%3D%3D&md5=e1bb6478e33e6a18fff2355b644714b1CAS | 591878PubMed |

Tatewaki, R., Otani, H., Tanaka, O., and Kitada, J. (1989). Chromosome analysis in pre-implantation-stage embryos of non-obese diabetic (NOD) mice. Congenit. Anom. (Kyoto) 29, 7–13.
Chromosome analysis in pre-implantation-stage embryos of non-obese diabetic (NOD) mice.Crossref | GoogleScholarGoogle Scholar |

Toyoda, Y., Yokoyama, M., and Hosi, T. (1971). Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilisation of eggs by fresh epididymal spermatozoa. Jpn. J. Animal Reprod. 16, 147–151.
Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilisation of eggs by fresh epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Tözüm, T. F., Berker, E., Akincibay, H., Ozer, O., Aktaş, D., Tezcan, I., Sekerci, S. C., El, H., Eratalay, K., and Tunçbilek, E. (2005). Tetraploid/diploid mosaicism with generalised aggressive periodontitis. J. Periodontol. 76, 1567–1571.
Tetraploid/diploid mosaicism with generalised aggressive periodontitis.Crossref | GoogleScholarGoogle Scholar | 16171449PubMed |

van de Laar, I., Rabelink, G., Hochstenbach, R., Tuerlings, J., Hoogeboom, J., and Giltay, J. (2002). Diploid/triploid mosaicism in dysmorphic patients. Clin. Genet. 62, 376–382.
Diploid/triploid mosaicism in dysmorphic patients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nntV2rsA%3D%3D&md5=6d30ddc368a1497607c10d45d532d500CAS | 12431252PubMed |

Wilson, G. N., Vekemans, M. J., and Kaplan, P. (1988). MCA/MR syndrome in a female infant with tetraploidy mosaicism: review of the human polyploidy phenotype. Am. J. Med. Genet. 30, 953–961.
MCA/MR syndrome in a female infant with tetraploidy mosaicism: review of the human polyploidy phenotype.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FkslGltg%3D%3D&md5=da1287ad7b14bc365d9651e5684df195CAS | 3055989PubMed |