Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Genomic expression profiles in cumulus cells derived from germinal vesicle and MII mouse oocytes

Li Shao A , Ri-Cheng Chian A B C , Yixin Xu A , Zhengjie Yan A , Yihui Zhang A , Chao Gao A , Li Gao A , Jiayin Liu A and Yugui Cui A C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.

B Department of Obstetrics and Gynecology, McGill University, 687 Pine Avenue West, Montreal H3A 1A1, Canada.

C Corresponding authors. Emails: ri-cheng.chian@mcgill.ca; cuiygnj@njmu.edu.cn

Reproduction, Fertility and Development 28(11) 1798-1809 https://doi.org/10.1071/RD15077
Submitted: 25 February 2015  Accepted: 21 April 2015   Published: 20 May 2015

Abstract

Cumulus cells (CCs) are distinct from other granulosa cells and the mutual communication between CCs and oocytes is essential for the establishment of oocyte competence. In the present study we assessed genomic expression profiles in mouse CCs before and after oocyte maturation in vitro. Microarray analysis revealed significant changes in gene expression in CCs between the germinal vesicle (GV) and metaphase II (MII) stages, with 2615 upregulated and 2808 downregulated genes. Genes related to epidermal growth factor, extracellular matrix (Ptgs2, Ereg, Tnfaip6 and Efemp1), mitochondrial metabolism (Fdx1 and Aifm2), gap junctions and the cell cycle (Gja1, Gja4, Ccnd2, Ccna2 and Ccnb2) were highlighted as being differentially expressed between the two development stages. Real-time polymerase chain reaction confirmed the validity and reproducibility of the results for the selected differentially expressed genes. Similar expression patterns were identified by western blot analysis for some functional proteins, including EFEMP1, FDX1, GJA1 and CCND2, followed by immunofluorescence localisation. These genes may be potential biomarkers for oocyte developmental competence following fertilisation and will be investigated further in future studies.

Additional keywords: biomarkers, developmental competence, in vitro maturation.


References

Albig, A. R., Neil, J. R., and Schiemann, W. P. (2006). Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res. 66, 2621–2629.
Fibulins 3 and 5 antagonize tumor angiogenesis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvV2hu78%3D&md5=985d28baff4d94f50da4418349e3e906CAS | 16510581PubMed |

Assidi, M., Dieleman, S. J., and Sirard, M. A. (2010). Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence. Reproduction 140, 835–852.
Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtb4%3D&md5=ba2109bdbfbef408017691efad906427CAS | 20724459PubMed |

Assidi, M., Montag, M., Van der Ven, K., and Sirard, M. A. (2011). Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J. Assist. Reprod. Genet. 28, 173–188.
Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study.Crossref | GoogleScholarGoogle Scholar | 20953827PubMed |

Assou, S., Anahory, T., Pantesco, V., Le Carrour, T., Pellestor, F., Klein, B., Reyftmann, L., Dechaud, H., De Vos, J., and Hamamah, S. (2006). The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719.
The human cumulus–oocyte complex gene-expression profile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Ont7s%3D&md5=92d6a3fcfc3f44f030117e58f5b68fafCAS | 16571642PubMed |

Assou, S., Haouzi, D., Mahmoud, K., Aouacheria, A., Guillemin, Y., Pantesco, V., Reme, T., Dechaud, H., De Vos, J., and Hamamah, S. (2008). A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol. Hum. Reprod. 14, 711–719.
A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2gtw%3D%3D&md5=dafc11a01bf61a1bab85bbd8f5c48bb6CAS | 19028806PubMed |

Assou, S., Haouzi, D., De Vos, J., and Hamamah, S. (2010). Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol. Hum. Reprod. 16, 531–538.
Human cumulus cells as biomarkers for embryo and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt70%3D&md5=6b2bbacff9ba144d4d2686c4fb832979CAS | 20435608PubMed |

Calder, M. D., Caveney, A. N., Westhusin, M. E., and Watson, A. J. (2001). Cyclooxygenase-2 and prostaglandin E(2)(PGE(2)) receptor messenger RNAs are affected by bovine oocyte maturation time and cumulus–oocyte complex quality, and PGE(2) induces moderate expansion of the bovine cumulus in vitro. Biol. Reprod. 65, 135–140.
Cyclooxygenase-2 and prostaglandin E(2)(PGE(2)) receptor messenger RNAs are affected by bovine oocyte maturation time and cumulus–oocyte complex quality, and PGE(2) induces moderate expansion of the bovine cumulus in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtLY%3D&md5=f30cb4be87a4de42da7d79671718ea83CAS | 11420233PubMed |

Camaj, P., Seeliger, H., Ischenko, I., Krebs, S., Blum, H., De Toni, E. N., Faktorova, D., Jauch, K. W., and Bruns, C. J. (2009). EFEMP1 binds the EGF receptor and activates MAPK and Akt pathways in pancreatic carcinoma cells. Biol. Chem. 390, 1293–1302.
EFEMP1 binds the EGF receptor and activates MAPK and Akt pathways in pancreatic carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCit7rK&md5=67ee6a2263eacecf3c0a7ff3189f696dCAS | 19804359PubMed |

Carrette, O., Nemade, R. V., Day, A. J., Brickner, A., and Larsen, W. J. (2001). TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding. Biol. Reprod. 65, 301–308.
TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhurY%3D&md5=d786e49c149ce9702782111f94d5dd61CAS | 11420253PubMed |

Chen, J., Wei, D., Zhao, Y., Liu, X., and Zhang, J. (2013). Overexpression of EFEMP1 correlates with tumor progression and poor prognosis in human ovarian carcinoma. PLoS One 8, e78783.
Overexpression of EFEMP1 correlates with tumor progression and poor prognosis in human ovarian carcinoma.Crossref | GoogleScholarGoogle Scholar | 24236050PubMed |

Conneely, O. M., Lydon, J. P., De Mayo, F., and O’Malley, B. W. (2000). Reproductive functions of the progesterone receptor. J. Soc. Gynecol. Investig. 7, 25–32.
Reproductive functions of the progesterone receptor.Crossref | GoogleScholarGoogle Scholar |

Dai, X. N., Liu, S., Shao, L., Gao, C., Gao, L., Liu, J. Y., and Cui, Y. G. (2014). Expression of the SET protein in testes of mice at different developmental stages. Asian J. Androl. 16, 689–693.
Expression of the SET protein in testes of mice at different developmental stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsleqtLzI&md5=2dd18574b1109059af9895d157350d17CAS | 24923460PubMed |

de Vega, S., Iwamoto, T., and Yamada, Y. (2009). Fibulins: multiple roles in matrix structures and tissue functions. Cell. Mol. Life Sci. 66, 1890–1902.
Fibulins: multiple roles in matrix structures and tissue functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVGjs7Y%3D&md5=2e1ab88a80d7053867ad9e816ca03e49CAS | 19189051PubMed |

Emori, C., and Sugiura, K. (2014). Role of oocyte-derived paracrine factors in follicular development. Anim. Sci. J. 85, 627–633.
Role of oocyte-derived paracrine factors in follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVens7o%3D&md5=33f472c28e7ab53b8e19046e08b551b0CAS | 24717179PubMed |

Eppig, J. J., Schultz, R. M., O’Brien, M., and Chesnel, F. (1994). Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9.
Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3pvFSjtA%3D%3D&md5=9fe69aee2fd22d00cf74ec0c4a70cb45CAS | 8026614PubMed |

Fragouli, E., Wells, D., Iager, A. E., Kayisli, U. A., and Patrizio, P. (2012). Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Hum. Reprod. 27, 2559–2568.
Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFantrfM&md5=7948fc2083adcd565f30e137da9f8f8aCAS | 22617123PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=3650122d1da3428f7dec3c72b981b0baCAS | 18175787PubMed |

Huang, Z., and Wells, D. (2010). The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 16, 715–725.
The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyltrjF&md5=563881350eb128a7e70f8e9d6a209171CAS | 20435609PubMed |

Jamnongjit, M., Gill, A., and Hammes, S. R. (2005). Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc. Natl Acad. Sci. USA 102, 16 257–16 262.
Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgur3K&md5=c6a6d52abeb67d3c503190793232186bCAS |

Kind, K. L., Banwell, K. M., Gebhardt, K. M., Macpherson, A., Gauld, A., Russell, D. L., and Thompson, J. G. (2013). Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus–oocyte complexes. Reprod. Fertil. Dev. 25, 426–438.
Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslart7g%3D&md5=903d17d1c3f76d975086eafe2f0b32afCAS | 22950951PubMed |

McKenzie, L. J., Pangas, S. A., Carson, S. A., Kovanci, E., Cisneros, P., Buster, J. E., Amato, P., and Matzuk, M. M. (2004). Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–2874.
Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crotVyisA%3D%3D&md5=47b366039c5875c0dce8e8dbd703abbdCAS | 15471935PubMed |

Miller, W. L. (1988). Molecular biology of steroid hormone synthesis. Endocr. Rev. 9, 295–318.
Molecular biology of steroid hormone synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVemtbw%3D&md5=3d8c6c7694c4c68ee1b17fce1794f349CAS | 3061784PubMed |

Neganova, I., Al-Qassab, H., Heffron, H., Selman, C., Choudhury, A. I., Lingard, S. J., Diakonov, I., Patterson, M., Ghatei, M., Bloom, S. R., Franks, S., Huhtaniemi, I., Hardy, K., and Withers, D. J. (2007). Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol. Reprod. 76, 1045–1053.
Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFGms7k%3D&md5=7d62cff579bea3bf81621bd0db830571CAS | 17329594PubMed |

Ouandaogo, Z. G., Haouzi, D., Assou, S., Dechaud, H., Kadoch, I. J., De Vos, J., and Hamamah, S. (2011). Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One 6, e27179.
Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFemsb3P&md5=966e23a4f4d2c5dd8bcfedbae9c1748cCAS | 22087263PubMed |

Ouandaogo, Z. G., Frydman, N., Hesters, L., Assou, S., Haouzi, D., Dechaud, H., Frydman, R., and Hamamah, S. (2012). Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–2447.
Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFantrfJ&md5=6b5c0c83dceaff9aeed73686d77501ddCAS | 22617121PubMed |

Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L., and Conti, M. (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684.
EGF-like growth factors as mediators of LH action in the ovulatory follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKlsg%3D%3D&md5=5d954a7ad7a1fe0e2878c16ac4ee2563CAS | 14726596PubMed |

Patrizio, P., Fragouli, E., Bianchi, V., Borini, A., and Wells, D. (2007). Molecular methods for selection of the ideal oocyte. Reprod. Biomed. Online 15, 346–353.
Molecular methods for selection of the ideal oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCgt7jM&md5=ac0d81b15401d189424cd3456a939753CAS | 17854537PubMed |

Peng, X. R., Hsueh, A. J., LaPolt, P. S., Bjersing, L., and Ny, T. (1991). Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129, 3200–3207.
Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XjsVyhtg%3D%3D&md5=13e41d0bb75872b95d0c605d48744ac8CAS | 1954899PubMed |

Puard, V., Tranchant, T., Cadoret, V., Gauthier, C., Reiter, E., Guerif, F., and Royere, D. (2013). Semi-quantitative measurement of specific proteins in human cumulus cells using reverse phase protein array. Reprod. Biol. Endocrinol. 11, 100.
Semi-quantitative measurement of specific proteins in human cumulus cells using reverse phase protein array.Crossref | GoogleScholarGoogle Scholar | 24148967PubMed |

Richani, D., Ritter, L. J., Thompson, J. G., and Gilchrist, R. B. (2013). Mode of oocyte maturation affects EGF-like peptide function and oocyte competence. Mol. Hum. Reprod. 19, 500–509.
Mode of oocyte maturation affects EGF-like peptide function and oocyte competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOgt7fL&md5=9d1ef8022a5ee6d702988e0d0a848fc9CAS | 23594928PubMed |

Richard, S., and Baltz, J. M. (2014). Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus–oocyte complex. Biol. Reprod. 90, 137.
Prophase I arrest of mouse oocytes mediated by natriuretic peptide precursor C requires GJA1 (connexin-43) and GJA4 (connexin-37) gap junctions in the antral follicle and cumulus–oocyte complex.Crossref | GoogleScholarGoogle Scholar | 24804968PubMed |

Salhab, M., Dhorne-Pollet, S., Auclair, S., Guyader-Joly, C., Brisard, D., Dalbies-Tran, R., Dupont, J., Ponsart, C., Mermillod, P., and Uzbekova, S. (2013). In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol. Reprod. Dev. 80, 166–182.
In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eqs70%3D&md5=864d80268d34c35c313ec370522e64d3CAS | 23280668PubMed |

Sánchez, F., and Smitz, J. (2012). Molecular control of oogenesis. Biochim. Biophys. Acta 1822, 1896–1912.
Molecular control of oogenesis.Crossref | GoogleScholarGoogle Scholar | 22634430PubMed |

Sen, A., and Caiazza, F. (2013). Oocyte maturation: a story of arrest and release. Front. Biosci. (Schol. Ed.) S5, 451–477.
Oocyte maturation: a story of arrest and release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2nt77N&md5=16cefdadd6728af54ede34ea71909816CAS |

Shimada, M., Hernandez-Gonzalez, I., Gonzalez-Robayna, I., and Richards, J. S. (2006). Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 20, 1352–1365.
Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlSrsb8%3D&md5=ad79a247f77c76a270922ac73fba667dCAS | 16543407PubMed |

Sicinski, P., Donaher, J. L., Geng, Y., Parker, S. B., Gardner, H., Park, M. Y., Robker, R. L., Richards, J. S., McGinnis, L. K., Biggers, J. D., Eppig, J. J., Bronson, R. T., Elledge, S. J., and Weinberg, R. A. (1996). Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384, 470–474.
Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFWqurc%3D&md5=f9da2a7fa5d51ec656da146875b2f382CAS | 8945475PubMed |

Su, Y. Q., Wu, X., O’Brien, M. J., Pendola, F. L., Denegre, J. N., Matzuk, M. M., and Eppig, J. J. (2004). Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte–cumulus cell complex in mice: genetic evidence for an oocyte–granulosa cell regulatory loop. Dev. Biol. 276, 64–73.
Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte–cumulus cell complex in mice: genetic evidence for an oocyte–granulosa cell regulatory loop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVOlur0%3D&md5=c766f71c9837338de09652d8419ab667CAS | 15531364PubMed |

Su, Y. Q., Sugiura, K., and Eppig, J. J. (2009). Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 27, 32–42.
Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntr0%3D&md5=40ce46476fb0069c2f28e3aa5665e469CAS | 19197803PubMed |

Šutovský, P., Flechon, J. E., and Pavlok, A. (1995). F-actin is involved in control of bovine cumulus expansion. Mol. Reprod. Dev. 41, 521–529.
F-actin is involved in control of bovine cumulus expansion.Crossref | GoogleScholarGoogle Scholar | 7576620PubMed |

Uyar, A., Torrealday, S., and Seli, E. (2013). Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99, 979–997.
Cumulus and granulosa cell markers of oocyte and embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlGnsLc%3D&md5=66db1e5abd6f81df904e7ba36d39305bCAS | 23498999PubMed |

Vanderhyden, B. C., Macdonald, E. A., Nagyova, E., and Dhawan, A. (2003). Evaluation of members of the TGFbeta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod. Suppl. 61, 55–70.
| 1:CAS:528:DC%2BD3sXptFKhsLo%3D&md5=c7c536443994966d419d02ce01014172CAS | 14635927PubMed |

Varnosfaderani, Sh. R., Ostadhosseini, S., Hajian, M., Hosseini, S. M., Khashouei, E. A., Abbasi, H., Hosseinnia, P., and Nasr-Esfahani, M. H. (2013). Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep. Theriogenology 80, 470–478.
Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep.Crossref | GoogleScholarGoogle Scholar |

Vigone, G., Merico, V., Prigione, A., Mulas, F., Sacchi, L., Gabetta, M., Bellazzi, R., Redi, C. A., Mazzini, G., Adjaye, J., Garagna, S., and Zuccotti, M. (2013). Transcriptome based identification of mouse cumulus cell markers that predict the developmental competence of their enclosed antral oocytes. BMC Genomics 14, 380.
Transcriptome based identification of mouse cumulus cell markers that predict the developmental competence of their enclosed antral oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKrtrjF&md5=c5afee37085deccbd59d93ec89a70373CAS | 23758669PubMed |

Zhang, Y., Shao, L., Xu, Y., Cui, Y., Liu, J., and Chian, R. C. (2014). Effect of anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro. PLoS One 9, e99393.
Effect of anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro.Crossref | GoogleScholarGoogle Scholar | 24932501PubMed |