Potential effects of interferon regulatory factor 4 in a murine model of polyinosinic-polycytidylic acid-induced embryo resorption
Jing Wang A , Tailang Yin A , Yanqi Wen A , Fuju Tian B , Xiaojun He A , Danni Zhou A , Yi Lin B C and Jing Yang A CA Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P. R. China.
B Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
C Corresponding authors. Email: dryangjing108@163.com; yilinonline@126.com
Reproduction, Fertility and Development 28(10) 1631-1641 https://doi.org/10.1071/RD14499
Submitted: 15 December 2014 Accepted: 15 March 2015 Published: 15 April 2015
Abstract
Interferon regulatory factor (IRF) 4 has been reported to modulate Toll-like receptor (TLR) signalling. Polyinosinic-polycytidylic acid (poly(I:C)) can be specifically recognised by TLR3, triggering the innate immune response and subsequently resulting in pregnancy loss. In the present study, poly(I:C) was administered to mice with or without TLR3 blockade. Chemokine (C-X-C motif) receptor 4 (CXCR4) expression was measured with or without chemokine (C-X-C motif) ligand 12 (CXCL12) inhibition. In cultured murine splenic mononuclear cells, IRF4 was knocked down by a specific short interference (si) RNA. IRF4 mRNA and protein levels and T helper (Th) 17 cell frequencies in the poly(I:C)-treated group were significantly higher than in the phosphate-buffered saline (PBS)-treated control group, and were correlated with a significantly higher embryo resorption rate. Interleukin (IL)-17A and IL-21 levels were markedly lower in the IRF4 siRNA-treated group than in the non-specific siRNA- or vehicle control-treated groups. The CXCR4+ cell frequency was significantly higher among IRF4+ uterine mononuclear and granular cells (UMGCs) compared with IRF4– cells. Inhibition of CXCL12 significantly abrogated poly(I:C)-induced increases in the frequency of IRF4+CXCR4+ cells in UMGCs. IRF4 might play a critical role in TLR3 signalling, which mediates Th17 cell activation and upregulates the expression of IL-17A and IL-21, which results in pregnancy loss. CXCL12 may modulate IRF4+CXCR4+ cell migration at the fetomaternal interface. TLR3 and IRF4 blockade could potentially prevent spontaneous abortion under certain conditions.
Additional keywords: animal model, signal transduction, Th17 cell, Toll-like receptor 3.
References
Ahyi, A. N., Chang, H. C., Dent, A. L., Nutt, S. L., and Kaplan, M. H. (2009). IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J. Immunol. 183, 1598–1606.| IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCkurs%3D&md5=d4c484f1d43f5891938bd66ba8ef60e5CAS | 19592658PubMed |
Aldinucci, D., Celegato, M., Borghese, C., Colombatti, A., and Carbone, A. (2011). IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion. Br. J. Haematol. 152, 182–190.
| IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVGjtrY%3D&md5=81abd784b3874b67c9d7c0705e7fb27aCAS | 21114485PubMed |
Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738.
| Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFegsL0%3D&md5=dbfa42df7587fda53ab360922d88c2daCAS | 11607032PubMed |
Batten, M., Kljavin, N. M., Li, J., Walter, M. J., de Sauvage, F. J., and Ghilardi, N. (2008). IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells. J. Immunol. 180, 2752–2756.
| IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1Oltb0%3D&md5=edca25c8f8bba8bcb7aad57f5b3a8799CAS | 18292493PubMed |
Bettelli, E., Korn, T., and Kuchroo, V. K. (2007). Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19, 652–657.
| Th17: the third member of the effector T cell trilogy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCksb%2FO&md5=b54993c4f6f01c9f96ca80aabcf47aecCAS | 17766098PubMed |
Biswas, P. S., Bhagat, G., and Pernis, A. B. (2010). IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol. Rev. 233, 79–96.
| IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslarurg%3D&md5=6d0f0213a5027c444715233b7bb861eaCAS | 20192994PubMed |
Brüstle, A., Heink, S., Huber, M., Rosenplänter, C., Stadelmann, C., Yu, P., Arpaia, E., Mak, T. W., Kamradt, T., and Lohoff, M. (2007). The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966.
| The development of inflammatory TH-17 cells requires interferon-regulatory factor 4.Crossref | GoogleScholarGoogle Scholar | 17676043PubMed |
Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G., and Wahl, S. M. (2003). Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886.
| Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFaktLg%3D&md5=a16dbfe079a2034b1dcd6acceed99fa9CAS | 14676299PubMed |
Chen, Q., Yang, W., Gupta, S., Biswas, P., Smith, P., Bhagat, G., and Pernis, A. B. (2008). IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29, 899–911.
| IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlymsQ%3D%3D&md5=192415bad3cd85adfa4bb8822ee1e66bCAS | 19062315PubMed |
Chung, Y., Chang, S. H., Martinez, G. J., Yang, X. O., Nurieva, R., Kang, H. S., Ma, L., Watowich, S. S., Jetten, A. M., Tian, Q., and Dong, C. (2009). Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587.
| Critical regulation of early Th17 cell differentiation by interleukin-1 signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Sqsr0%3D&md5=f11df6a1c1089ebf75b78e81e2532a56CAS | 19362022PubMed |
Gabriele, L., Fragale, A., Borghi, P., Sestili, P., Stellacci, E., Venditti, M., Schiavoni, G., Sanchez, M., Belardelli, F., and Battistini, A. (2006). IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. J. Leukoc. Biol. 80, 1500–1511.
| IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSisLfJ&md5=63afe6db93146cf7c317fa5e52bd9fc3CAS | 16966383PubMed |
Gay, N. J., and Gangloff, M. (2007). Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem. 76, 141–165.
| Structure and function of Toll receptors and their ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVehtb7J&md5=86d503431d7ee3312ec77819f75d3ae6CAS | 17362201PubMed |
Honma, K., Udono, H., Kohno, T., Yamamoto, K., Ogawa, A., Takemori, T., Kumatori, A., Suzuki, S., Matsuyama, T., and Yui, K. (2005). Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc. Natl Acad. Sci. USA 102, 16 001–16 006.
| Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wqsr7L&md5=5c778fb8ba08ea18a2974166f8d17329CAS |
Huber, M., Brüstle, A., Reinhard, K., Guralnik, A., Walter, G., Mahiny, A., von Löw, E., and Lohoff, M. (2008). IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl Acad. Sci. USA 105, 20 846–20 851.
| IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFSntg%3D%3D&md5=7ef0be87b49146b1e78506f8a7a591e2CAS |
Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jäger, A., Strom, T. B., Oukka, M., and Kuchroo, V. K. (2007). IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells. Nature 448, 484–487.
| IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFajurw%3D&md5=ca196e7bd8e9df574d5fcb61ad0e78bfCAS | 17581588PubMed |
Lin, Y., Zeng, Y., Zhao, J., Zeng, S., Huang, J., Feng, Z., Di, J., and Zhan, M. (2004). Murine CD45+CD86+ cells isolated from para-aortic lymph nodes in an abortion-prone model. J. Reprod. Immunol. 64, 133–143.
| Murine CD45+CD86+ cells isolated from para-aortic lymph nodes in an abortion-prone model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKksb%2FI&md5=545dae61cfa62a04e5afef8035dec384CAS | 15596232PubMed |
Lin, Y., Ren, L., Wang, W., Di, J., Zeng, S., and Saito, S. (2009a). Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice. J. Reprod. Immunol. 82, 12–23.
| Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnP&md5=a8686051460c64f171b899a468f4bcfcCAS | 19560213PubMed |
Lin, Y., Wang, H., Wang, W., Zeng, S., Zhong, Y., and Li, D.-J. (2009b). Prevention of embryo loss in non-obese diabetic mice using adoptive ITGA2+ISG20+ natural killer-cell transfer. Reproduction 137, 943–955.
| Prevention of embryo loss in non-obese diabetic mice using adoptive ITGA2+ISG20+ natural killer-cell transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgsbc%3D&md5=b01e78468fbc09339fc8d9f23a511e2dCAS | 19321657PubMed |
Lin, Y., Wang, W., Jin, H., Zhong, Y., Di, J., Zeng, S., and Saito, S. (2009c). Comparison of murine thymic stromal lymphopoietin- and polyinosinic polycytidylic acid-mediated placental dendritic cell activation. J. Reprod. Immunol. 79, 119–128.
| Comparison of murine thymic stromal lymphopoietin- and polyinosinic polycytidylic acid-mediated placental dendritic cell activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKisbY%3D&md5=d070f8d57a45d62d443b4b06548fb1cdCAS | 19081639PubMed |
Lin, Y., Xu, L., Jin, H., Zhong, Y., Di, J., and Lin, Q. (2009d). CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in NOD mice. Fertil. Steril. 91, 2687–2696.
| CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in NOD mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOmsLbK&md5=32b547387cc23d2f755aadad48f834adCAS | 18384776PubMed |
Lin, Y., Liu, X., Shan, B., Wu, J., Sharma, S., and Sun, Y. (2014). Prevention of CpG-induced pregnancy disruption by adoptive transfer of in vitro-induced regulatory T cells. PLoS ONE 9, e94702.
| Prevention of CpG-induced pregnancy disruption by adoptive transfer of in vitro-induced regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 24714634PubMed |
Lu, R. (2008). Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol. 29, 487–492.
| Interferon regulatory factor 4 and 8 in B-cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCksL%2FE&md5=a3f215bcf7c9cb34cccb300d02b9440eCAS | 18775669PubMed |
Lubberts, E., Koenders, M. I., Oppers-Walgreen, B., van den Bersselaar, L., Coenen-de Roo, C. J., Joosten, L. A., and van den Berg, W. B. (2004). Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50, 650–659.
| Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFeiu70%3D&md5=2308ffd288f038735e0a9932928698dfCAS | 14872510PubMed |
Mudter, J., Yu, J., Zufferey, C., Brüstle, A., Wirtz, S., Weigmann, B., Hoffman, A., Schenk, M., Galle, P. R., Lehr, H. A., Mueller, C., Lohoff, M., and Neurath, M. F. (2011). IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo. Inflamm. Bowel Dis. 17, 1343–1358.
| IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo.Crossref | GoogleScholarGoogle Scholar | 21305677PubMed |
Murphy, K. M., and Reiner, S. L. (2002). The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944.
| The lineage decisions of helper T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFKnu7g%3D&md5=0aec7a85874a6ea2a5cb77294c4d3c42CAS | 12461566PubMed |
National Research Council (US) Institute for Laboratory Animal Research (1996). ‘Guide for the Care and Use of Laboratory Animals.’ (National Academies Press: Washington, D. C.)
Nutt, S. L., and Tarlinton, D. M. (2011). Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat. Immunol. 12, 472–477.
| Germinal center B and follicular helper T cells: siblings, cousins or just good friends?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtF2luro%3D&md5=c77216b8ff3b8a194037507bf87df57aCAS | 21739669PubMed |
Ogasawara, M., Aoki, K., Katano, K., Aoyama, T., Kajiura, S., and Suzumori, K. (1999). Prevalence of autoantibodies in patients with recurrent miscarriages. Am. J. Reprod. Immunol. 41, 86–90.
| Prevalence of autoantibodies in patients with recurrent miscarriages.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7pslyltg%3D%3D&md5=42289cae34202a9946d0d9c8db75d8a5CAS | 10097791PubMed |
Ozato, K., Tailor, P., and Kubota, T. (2007). The interferon regulatory factor family in host defense: mechanism of action. J. Biol. Chem. 282, 20 065–20 069.
| The interferon regulatory factor family in host defense: mechanism of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFWntrw%3D&md5=b15c68979e84c974fe59b347661f82e2CAS |
Sun, Y., Qin, X., Shan, B., Wang, W., Zhu, Q., Sharma, S., Wu, J., and Lin, Y. (2013). Differential effects of the CpG–TLR9 axis on pregnancy outcome in nonobese diabetic mice and wild-type controls. Fertil. Steril. 99, 1759–1767.
| Differential effects of the CpG–TLR9 axis on pregnancy outcome in nonobese diabetic mice and wild-type controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOlu70%3D&md5=f8affe3f6e8f7bdd3f908102886d13b2CAS | 23414919PubMed |
Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14.
| Toll-like receptors in innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKru77P&md5=ef7674305d6454dbd9116f23d0342055CAS | 15585605PubMed |
Thaxton, J. E., Romero, R., and Sharma, S. (2009). TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J. Immunol. 183, 1144–1154.
| TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWgs78%3D&md5=c505c89241173f18ec737808a26ad097CAS | 19561095PubMed |
Tominaga, N., Ohkusu-Tsukada, K., Udono, H., Abe, R., Matsuyama, T., and Yui, K. (2003). Development of Th1 and not Th2 immune responses in mice lacking IFN-regulatory factor-4. Int. Immunol. 15, 1–10.
| Development of Th1 and not Th2 immune responses in mice lacking IFN-regulatory factor-4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVyhtA%3D%3D&md5=1b1ec56bf2634a16ad983ff8c8046a7cCAS | 12502720PubMed |
Tsuboi, K., Iida, S., Inagaki, H., Kato, M., Hayami, Y., Hanamura, I., Miura, K., Harada, S., Kikuchi, M., Komatsu, H., Banno, S., Wakita, A., Nakamura, S., Eimoto, T., and Ueda, R. (2000). MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia 14, 449–456.
| MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1aktrY%3D&md5=8b0339b5d5bf809baf4ec36fd0bce525CAS | 10720141PubMed |
Van, L. P., Bardel, E., Gregoire, S., Vanoirbeek, J., Schneider, E., Dy, M., and Thieblemont, N. (2011). Treatment with the TLR7 agonist R848 induces regulatory T-cell-mediated suppression of established asthma symptoms. Eur. J. Immunol. 41, 1992–1999.
| Treatment with the TLR7 agonist R848 induces regulatory T-cell-mediated suppression of established asthma symptoms.Crossref | GoogleScholarGoogle Scholar | 21480211PubMed |
Weaver, C. T., Hatton, R. D., Mangan, P. R., and Harrington, L. E. (2007). IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852.
| IL-17 family cytokines and the expanding diversity of effector T cell lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlans7s%3D&md5=55d24effaeb80c32c47ca3b288c99473CAS | 17201677PubMed |