Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders

Heide Schatten A C and Qing-Yuan Sun B
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA.

B State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China.

C Corresponding author. Email: schattenh@missouri.edu

Reproduction, Fertility and Development 27(6) 934-943 https://doi.org/10.1071/RD14493
Submitted: 12 December 2014  Accepted: 18 March 2015   Published: 23 April 2015

Abstract

The effects of oocyte aging on meiotic spindle dynamics have been well recognised, but the mechanisms underlying the effects are not well understood. In this paper we review the role of centrosomes and the microtubule cytoskeleton in meiotic spindle formation and maintenance, and the impact of oocyte aging on spindle integrity resulting in centrosome and microtubule dysfunctions that are associated with aneuploidy. Loss of spindle integrity includes dispersion of proteins from the centrosome core structure and loss of attachment of microtubules to centrosomes and kinetochores, which will result in abnormal chromosome separation. The inability of centrosomal proteins to accurately associate with the centrosome structure may be the result of destabilisation of the core structure itself or of microtubule destabilisation at the centrosome-facing microtubule areas that are acetylated in fresh oocytes but may not be acetylated in aging oocytes. Microtubule destabilisation prevents accurate motor-driven transport of centrosomal proteins along microtubules to form and maintain a functional centrosome. Other factors to form and maintain the MII spindle include signal transductions that affect microtubule dynamics and stability. Understanding the mechanisms underlying centrosome and microtubule dysfunctions during oocyte aging will allow diagnosis and analysis of oocyte quality and abnormalities as important aspects for targeted treatment of aging oocytes to extend or restore viability and developmental capacity. New therapeutic approaches will allow improvements in reproductive success rates in IVF clinics, as well as improvements in reproductive success rates in farm animals. This review is focused on: (1) centrosome and microtubule dynamics in fresh and aging oocytes; (2) regulation of centrosome and/or microtubule dynamics and function; and (3) possible treatments to extend the oocyte’s reproductive capacity and viability span.

Additional keywords: aging, aneuploidy, IVF, meiosis, oocytes.


References

Akella, J. S., Wloga, D., Kim, J., Starostina, N. G., Lyons-Abbott, S., Morrissette, N. S., Dougan, S. T., Kipreos, E. T., and Gaertig, J. (2010). MEC-17 is an alpha-tubulin acetyltransferase. Nature 467, 218–222.
MEC-17 is an alpha-tubulin acetyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFegtr%2FM&md5=2085bfa4396971188eb76f1df9e6eb68CAS | 20829795PubMed |

Alvarez Sedó, C., Schatten, H., Combelles, C. M., and Rawe, V. Y. (2011). The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos. Mol. Hum. Reprod. 17, 392–398.
The nuclear mitotic apparatus protein NuMA: localization and dynamics in human oocytes, fertilization and early embryos.Crossref | GoogleScholarGoogle Scholar | 21297155PubMed |

Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., and Mann, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574.
Proteomic characterization of the human centrosome by protein correlation profiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVejtrg%3D&md5=a3d92ee328ef2dcfd9dd69485f357e81CAS | 14654843PubMed |

Asthana, J., Kapoor, S., Mohan, R., and Panda, D. (2013). Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J. Biol. Chem. 288, 22 516–22 526.
Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Whsr%2FJ&md5=f423be8c174e81b45bf9e44567844fc0CAS |

Barr, A. R., and Gergely, F. (2007). Aurora A: the maker and breaker of spindle poles. J. Cell Sci. 120, 2987–2996.
Aurora A: the maker and breaker of spindle poles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrtbnJ&md5=1898ee59c49554276c39ec4f5da5a740CAS | 17715155PubMed |

Boveri, T. (1901). Zellen-Studien: Über die Natur der Centrosomen. Fisher Z. Med. Naturw. 28, 1–220.

Boveri, T. (1914). ‘Zur Frage der Entstehung maligner Tumoren.’ (G. Fisher: Jena, Germany.)

Butler, K. V., Kalin, J., Brochier, C., Vistoli, G., Langley, B., and Kozikowski, A. P. (2010). Rational design and simple chemistry yield a superior, neuro-protective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 132, 10 842–10 846.
Rational design and simple chemistry yield a superior, neuro-protective HDAC6 inhibitor, tubastatin A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1ers7k%3D&md5=cf397eb4f2bd9c328b744455c45034cbCAS |

Calarco-Gillam, P. D., Siebert, M. C., Hubble, R., Mitchison, T., and Kirschner, M. (1983). Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 35, 621–629.
Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2Fot1SrtQ%3D%3D&md5=c64476472d3abda6448e1abaa3ebf930CAS | 6652679PubMed |

Cande, W. Z. (1990). Centrosomes: composition and reproduction. Curr. Opin. Cell Biol. 2, 301–305.
Centrosomes: composition and reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVyqs7w%3D&md5=ad945293e679cdc479d8ed8544567eceCAS | 2194529PubMed |

Cheng, J., Türkel, N., Hemati, N., Fuller, M. T., Hunt, A. J., and Yamashita, Y. M. (2008). Centrosome misorientation reduces stem cell division during ageing. Nature 456, 599–604.
Centrosome misorientation reduces stem cell division during ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGlur%2FF&md5=8c0fe9902c26a81d5f9a19bfba4ae8b3CAS | 18923395PubMed |

Dunn, S., Morrison, E. E., Liverpool, T. B., Molina-París, C., Cross, R. A., Alonso, M. C., and Peckham, M. (2008). Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085–1095.
Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsF2ntr0%3D&md5=9ce46e2610565b135ce8484759605fe9CAS | 18334549PubMed |

Fan, H. Y., and Sun, Q. Y. (2004). Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol. Reprod. 70, 535–547.
Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chsro%3D&md5=d953c4ee422509f0927a6bb93d8fcc85CAS | 14613897PubMed |

Gardner, M. K., Zanic, M., and Howard, J. (2013). Microtubule catastrophe and rescue. Curr. Opin. Cell Biol. 25, 14–22.
Microtubule catastrophe and rescue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFClurfK&md5=7a31a17a3a76b3727a123c7ef531596dCAS | 23092753PubMed |

Garnham, C. P., and Roll-Mecak, A. (2012). The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions. Cytoskeleton 69, 442–463.
The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVeiu7k%3D&md5=79a154bc895d4e658486a14f9d979ee1CAS | 22422711PubMed |

Glozak, M. A., and Seto, E. (2007). Histone deacetylases and cancer. Oncogene 26, 5420–5432.
Histone deacetylases and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFeku7Y%3D&md5=09b18b14226cfbb5c1193fe13e84c90bCAS | 17694083PubMed |

Goud, A. P., Goud, P. T., Diamond, M. P., and Abu-Soud, H. M. (2005a). Nitric oxide delays oocyte aging. Biochemistry 44, 11 361–11 368.
Nitric oxide delays oocyte aging.Crossref | GoogleScholarGoogle Scholar |

Goud, A. P., Goud, P. T., Diamond, M. P., Van Oostveldt, P., and Hughes, M. R. (2005b). Microtubule turnover in ooplasm biopsy reflects ageing phenomena in the parent oocyte. Reprod. Biomed. Online 11, 43–52.
Microtubule turnover in ooplasm biopsy reflects ageing phenomena in the parent oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mvjs12htQ%3D%3D&md5=7fcf56e4bc8d5b8ad79856f9cbf58075CAS | 16102286PubMed |

Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M., and Schreiber, S. L. (2003). Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA 100, 4389–4394.
Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12gtL0%3D&md5=3776ce1a5eee8b1860e3b44e9fdfee51CAS | 12677000PubMed |

Huang, B. (1990). Genetics and biochemistry of centrosomes and spindle poles. Curr. Opin. Cell Biol. 2, 28–32.
Genetics and biochemistry of centrosomes and spindle poles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVyqsrg%3D&md5=57b53867a7066f7b8196392e394c2295CAS | 2183839PubMed |

Huang, J. C., Yan, L. Y., Lei, Z. L., Miao, Y. L., Shi, L. H., Yang, J. W., Wang, Q., Ouyang, Y. C., Sun, Q. Y., and Chen, D. Y. (2007). Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol. Reprod. 77, 666–670.
Changes in histone acetylation during postovulatory aging of mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahsbzF&md5=c85f011f5ff51ddec3de51b6e74c19d0CAS | 17582009PubMed |

Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., and Yao, T. P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458.
HDAC6 is a microtubule-associated deacetylase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVersr4%3D&md5=dda0e9fd8e1251b4bdbbcb062b2f16a8CAS | 12024216PubMed |

Hyder, C. L., Isoniemi, K. O., Torvaldson, E. S., and Eriksson, J. E. (2011). Insights into intermediate filament regulation from development to ageing. J. Cell Sci. 124, 1363–1372.
Insights into intermediate filament regulation from development to ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1equ70%3D&md5=182bfb79d73ad002f0934363ca060459CAS | 21502133PubMed |

Jackman, M., Lindon, C., Nigg, E., and Pines, J. (2003). Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat. Cell Biol. 5, 143–148.
Active cyclin B1-Cdk1 first appears on centrosomes in prophase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12qtg%3D%3D&md5=1e632d9f1a9721a00370be74ad0a70b5CAS | 12524548PubMed |

Janke, C., and Bulinski, J. C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–786.
Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOisLfN&md5=9d21ecce27acdde757587c2d7ed0caa0CAS | 22086369PubMed |

Ješeta, M., Petr, J., Krejčová, T., Chmelíková, E., and Jílek, F. (2008). In vitro ageing of pig oocytes: effects of the histone deacetylase inhibitor trichostatin A. Zygote 16, 145–152.
In vitro ageing of pig oocytes: effects of the histone deacetylase inhibitor trichostatin A.Crossref | GoogleScholarGoogle Scholar | 18405435PubMed |

Kikuchi, K., Naito, K., Noguchi, J., Shimada, A., Kaneko, H., Yamashita, M., Aoki, F., Tojo, H., and Toyoda, Y. (2000). Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol. Reprod. 63, 715–722.
Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCitbc%3D&md5=5f1d5ea640edd27ba951fa0fa13b03bfCAS | 10952912PubMed |

Kikuchi, K., Naito, K., Noguchi, J., Kaneko, H., and Tojo, H. (2002). Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. Cloning Stem Cells 4, 211–222.
Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFSksrk%3D&md5=2683dc481ba2de166b7423a0f2b696fbCAS | 12398802PubMed |

Kim, N. H., Moon, S. J., Prather, R. S., and Day, B. N. (1996). Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Mol. Reprod. Dev. 43, 513–518.
Cytoskeletal alteration in aged porcine oocytes and parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVGjsLw%3D&md5=a1d55da748dc30ce255aef842967bd9cCAS | 9052943PubMed |

Konishi, Y., and Setou, M. (2009). Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559–567.
Tubulin tyrosination navigates the kinesin-1 motor domain to axons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ku78%3D&md5=78e45bc5571f158249f404a9976de38eCAS | 19377471PubMed |

Lee, J. H., and Campbell, K. H. (2008). Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer. Cloning Stem Cells 10, 381–390.
Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7zP&md5=13e4b520704295b37835189d3226d3b3CAS | 18673075PubMed |

Liang, C. G., Su, Y. Q., Fan, H. Y., Schatten, H., and Sun, Q. Y. (2007). Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol. Endocrinol. 21, 2037–2055.
Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSqtb7N&md5=3bc9842dfe7f53f575dd957689249e2fCAS | 17536005PubMed |

Liao, G., and Gundersen, G. G. (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803.
Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVOrurw%3D&md5=072a3bc526c5ca2b296aff531498de65CAS | 9545318PubMed |

Liu, Z., Schatten, H., Hao, Y., Lai, L., Wax, D., Samuel, M., Zhong, Z.-S., Sun, Q.-Y., and Prather, R. S. (2006). The nuclear mitotic apparatus (NuMA) protein is contributed by the donor cell nucleus in cloned porcine embryos. Front. Biosci. 11, 1945–1957.
The nuclear mitotic apparatus (NuMA) protein is contributed by the donor cell nucleus in cloned porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislSntro%3D&md5=1249b8ffbaad60dee3ce26a0765517c4CAS | 16368570PubMed |

Ly, D. H., Lockhart, D. J., Lerner, R. A., and Schultz, P. G. (2000). Mitotic misregulation and human aging. Science 287, 2486–2492.
Mitotic misregulation and human aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlKmtr4%3D&md5=57539cae9942a3641807b7a04957dc27CAS | 10741968PubMed |

Manipalviratn, S., DeCherney, A., and Segars, J. (2009). Imprinting disorders and assisted reproductive technology. Fertil. Steril. 91, 305–315.
Imprinting disorders and assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsF2ns7Y%3D&md5=ecbfcc80b6998a82793e6ceee0d35ba4CAS | 19201275PubMed |

Maro, B., Howlett, S. K., and Webb, M. (1985). Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J. Cell Biol. 101, 1665–1672.
Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FjsVWnsA%3D%3D&md5=f41167244b44495aef03a1cafc28d8ccCAS | 2865266PubMed |

Matsuyama, A., Shimazu, T., Sumida, Y., Saito, A., Yoshimatsu, Y., Seigneurin-Berny, D., Osada, H., Komatsu, Y., Nishino, N., Khochbin, S., Horinouchi, S., and Yoshida, M. (2002). In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J. 21, 6820–6831.
In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslOgsrc%3D&md5=534f9954d18e49ff447d13a5910e6310CAS | 12486003PubMed |

Mazia, D., Harris, P. J., and Bibring, T. (1960). The multiplicity of the mitotic centers and the time-course of their duplication and separation. J. Biophys. Biochem. Cytol. 7, l–20.

Miao, Y.-L., Kikuchi, K., Sun, Q.-Y., and Schatten, H. (2009a). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585.
Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility.Crossref | GoogleScholarGoogle Scholar | 19429634PubMed |

Miao, Y.-L., Sun, Q.-Y., Zhang, X., Zhao, J.-G., Zhao, M.-T., Spate, L., Prather, R. S., and Schatten, H. (2009b). Centrosome abnormalities during porcine oocyte aging. Environ. Mol. Mutagen. 50, 666–671.
Centrosome abnormalities during porcine oocyte aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CmtrbP&md5=8039b9d402bfe2b2a7a72de980d4a18dCAS | 19593801PubMed |

Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. Nature 312, 237–242.
Dynamic instability of microtubule growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvF2jsQ%3D%3D&md5=2a3665642476be2d4934915bbdd9e295CAS | 6504138PubMed |

North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444.
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Wgs7c%3D&md5=84d4c440f3c8ada7baca9da9f014a8b7CAS | 12620231PubMed |

Ou, X.-H., Li, S., Xu, B.-C., Wang, Z.-B., Quan, S., Li, M., Zhang, Q.-H., Ouyang, Y.-C., Schatten, H., Xing, F.-Q., and Sun, Q.-Y. (2010). p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 9, 4130–4143.
p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1ahur0%3D&md5=7cefcf7782d8943d01f6561b5d0fe783CAS | 20948319PubMed |

Qiao, J., Wang, Z. B., Feng, H. L., Miao, Y. L., Wang, Q., Yu, Y., Wei, Y. C., Yan, J., Wang, W. H., Shen, W., Sun, S. C., Schatten, H., and Sun, Q. Y. (2014). The root of reduced fertility in aged women and possible therapeutic options: Current status and future perspectives. Mol. Aspects Med. 38, 54–85.
The root of reduced fertility in aged women and possible therapeutic options: Current status and future perspectives.Crossref | GoogleScholarGoogle Scholar | 23796757PubMed |

Rausell, F., Pertusa, J. F., Gomez-Piquer, V., Hermenegildo, C., Garcia-Perez, M. A., Cano, A., and Tarin, J. J. (2007). Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst stage in the mouse. Mol. Reprod. Dev. 74, 860–869.
Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst stage in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKlsbk%3D&md5=dea5df88773534ed1c912a929718ccbeCAS | 17186547PubMed |

Schatten, H. (1994). Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins. Cell Motil. Cytoskeleton 27, 59–68.
Dithiothreitol prevents membrane fusion but not centrosome or microtubule organization during the first cell cycles in sea urchins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlWnsbw%3D&md5=bf7a513838807b55fc1cdcdcdf3a89d4CAS | 8194110PubMed |

Schatten, H. (2008). The mammalian centrosome and its functional significance. Histochem. Cell Biol. 129, 667–686.
The mammalian centrosome and its functional significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFajt70%3D&md5=02117d076ae57520165bd3878cd7dc95CAS | 18437411PubMed |

Schatten, H., and Sun, Q.-Y. (2010). The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development. Semin. Cell Dev. Biol. 21, 174–184.
The role of centrosomes in fertilization, cell division and establishment of asymmetry during embryo development.Crossref | GoogleScholarGoogle Scholar | 20083214PubMed |

Schatten, H., and Sun, Q. Y. (2011a). Centrosome dynamics during meiotic spindle formation in oocyte maturation. Mol. Reprod. Dev. 78, 757–768.
Centrosome dynamics during meiotic spindle formation in oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7rJ&md5=b1541544a1af6b6d0f03bdc34beae411CAS | 21887720PubMed |

Schatten, H., and Sun, Q. Y. (2011b). New insights into the role of centrosomes in mammalian fertilisation and implications for ART. Reproduction 142, 793–801.
New insights into the role of centrosomes in mammalian fertilisation and implications for ART.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GqtLnE&md5=ea9557db711de3ceb24884912ffa4327CAS | 21911443PubMed |

Schatten, H., and Sun, Q. Y. (2013). Chromosome behaviour and spindle formation in mammalian oocytes. In: ‘Biology and Pathology of the Oocyte: Role in Fertility, Medicine and Nuclear Reprogramming’. (Eds A. Trounson, R. Gosden and U. Eichenlaub-Ritter.) pp. 142–153. (Cambridge University Press: New York.)

Schatten, H., and Sun, Q.-Y. (2014). Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. In: ‘Posttranslational Protein Modifications in the Reproductive System’. (Ed. P. Sutovsky.) pp. 57–87. (Springer Science and Business Media: New York.)

Schatten, G., Simerly, C., and Schatten, H. (1985). Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc. Natl Acad. Sci. USA 82, 4152–4156.
Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFWrsr0%3D&md5=6bd94458e0245ee6b20a2bc1f5a331eaCAS | 3889922PubMed |

Schatten, H., Schatten, G., Mazia, D., Balczon, R., and Simerly, C. (1986). Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc. Natl Acad. Sci. USA 83, 105–109.
Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FpsVehsQ%3D%3D&md5=f58e9fcb8adcab692af914c65f1d20deCAS | 2417231PubMed |

Schatten, H., Walter, M., Mazia, D., Biessmann, H., Paweletz, N., Coffe, G., and Schatten, G. (1987). Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes. Proc. Natl Acad. Sci. USA 84, 8488–8492.
Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1eitw%3D%3D&md5=c6b3490998a58e71b39f0ea124457ea6CAS | 3120191PubMed |

Schatten, G., Simerly, C., Asai, D. J., Szöke, E., Cooke, P., and Schatten, H. (1988). Acetylated α-tubulin in microtubules during mouse fertilization and early development. Dev. Biol. 130, 74–86.
Acetylated α-tubulin in microtubules during mouse fertilization and early development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FjtFKqtg%3D%3D&md5=0d6b00d48991af067792299b00c1bbbdCAS | 3053299PubMed |

Schatten, H., Walter, M., Biessmann, H., and Schatten, G. (1992). Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil. Cytoskeleton 23, 61–70.
Activation of maternal centrosomes in unfertilized sea urchin eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2FgvVejsg%3D%3D&md5=af6f2e93cf5e6590dd852eaa33fd117bCAS | 1356637PubMed |

Schatten, H., Chakrabarti, A., and Hedrick, J. (1999). Centrosome and microtubule instability in cells during aging. J. Cell. Biochem. 74, 229–241.
Centrosome and microtubule instability in cells during aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVOks7o%3D&md5=cfab23e2c7f4b10befb2919624c0bb83CAS | 10404393PubMed |

Schatten, H., Rawe, V. Y., and Sun, Q.-Y. (2012). Cytoskeletal architecture of human oocytes with focus on centrosomes and their significant role in fertilization. In: ‘Practical Manual of In Vitro Fertilization: Advanced Methods and Novel Devices’. (Eds Z. P. Nagy, A. C. Varghese and A. Agarwal.) pp. 667–676. (Springer Science+Business Media: New York.)

Schatten, H., Sun, Q.-Y., and Prather, R. (2014). The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod. Biol. Endocrinol. 12, 111.
The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility.Crossref | GoogleScholarGoogle Scholar | 25421171PubMed |

Schnackenberg, B. J., Hull, D. R., Balczon, R. D., and Palazzo, R. E. (2000). Reconstitution of microtubule nucleation potential in centrosomes isolated from Spisula solidissima oocytes. J. Cell Sci. 113, 943–953.
| 1:CAS:528:DC%2BD3cXisVygsLk%3D&md5=c8c89e8077fae30cc6ea8d94520a423dCAS | 10683143PubMed |

Sluder, G., and Begg, D. A. (1985). Experimental analysis of the reproduction of spindle poles. J. Cell Sci. 76, 35–51.
| 1:STN:280:DyaL28%2FlvFOlsw%3D%3D&md5=00c4b82f94bf2482f8e59a22dd29daf8CAS | 4066795PubMed |

Sun, Q.-Y., and Schatten, H. (2006). Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front. Biosci. 11, 1137–1146.
Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSru77N&md5=006b403bf4b0f57be70dc829fa898e7fCAS | 16146802PubMed |

Sun, Q.-Y., Lai, L., Wu, G., Bonk, A., Cabot, R., Park, K.-W., Day, B., Prather, R. S., and Schatten, H. (2002). Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression are regulated by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol. Reprod. 66, 580–588.
Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression are regulated by protein phosphatases during pig oocyte maturation and fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitL0%3D&md5=473ebdf131249acb6eafdf493069f327CAS | 11870061PubMed |

Tarín, J. J., Ten, J., Vendrell, F. J., and Cano, A. (1998). Dithiothreitol prevents age-associated decrease in oocyte/conceptus viability in vitro. Hum. Reprod. 13, 381–386.
Dithiothreitol prevents age-associated decrease in oocyte/conceptus viability in vitro.Crossref | GoogleScholarGoogle Scholar | 9557843PubMed |

Tatone, C., Carbone, M. C., Gallo, R., Delle Monache, S., Di Cola, M., Alesse, E., and Amicarelli, F. (2006). Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2. Biol. Reprod. 74, 395–402.
Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktw%3D%3D&md5=0274e1b86643eab0ee06cd99aa713698CAS | 16251501PubMed |

Tian, X. C., Lonergan, P., Jeong, B. S., Evans, A. C., and Yang, X. (2002). Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocytes. Mol. Reprod. Dev. 62, 132–138.
Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVChu7k%3D&md5=524fe4c96f84015b24116533596dac08CAS | 11933170PubMed |

Verhey, K. J., and Gaertig, J. (2007). The tubulin code. Cell Cycle 6, 2152–2160.
The tubulin code.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlartr%2FL&md5=10a4b7882c4f314fcd53b98c194e4f43CAS | 17786050PubMed |

Wang, Z.-B., Schatten, H., and Sun, Q.-Y. (2011). Why is chromosome segregation error in oocytes increased with maternal aging? Physiology (Bethesda) 26, 314–325.
Why is chromosome segregation error in oocytes increased with maternal aging?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSktbfF&md5=58bd89c4840327e479cdc4c2bc9b76a9CAS | 22013190PubMed |

Wilkinson, C. J., Andersen, J. S., Mann, M., and Nigg, E. A. (2004). A proteomic approach to the inventory of the human centrosome. In: ‘Centrosomes in Development and Disease’. (Ed. E. Nigg.) pp. 125–142. (Wiley-VCA Verlag: Weinheim.)

Xu, Z., Abbott, A., Kopf, G. S., Schultz, R. M., and Ducibella, T. (1997). Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol. Reprod. 57, 743–750.
Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFCqu7s%3D&md5=68c991d651cfa2ee4440f6f2938c1cfbCAS | 9314575PubMed |

Zhao, Y., Fang, X., Wang, Y., Zhang, J., Jiang, S., Liu, Z., Ma, Z., Xu, L., Li, E., and Zhang, K. (2014). Comprehensive analysis for histone acetylation of human colon cancer cells treated with a novel HDAC inhibitor. Curr. Pharm. Des. 20, 1866–1873.
Comprehensive analysis for histone acetylation of human colon cancer cells treated with a novel HDAC inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlWksbw%3D&md5=791cec31a16bdc849bab9a95142d5264CAS | 23888955PubMed |

Zilberman, Y., Ballestrem, C., Carramusa, L., Mazitschek, R., Khochbin, S., and Bershadsky, A. (2009). Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J. Cell Sci. 122, 3531–3541.
Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSkurnF&md5=2197ccfb6b2e031518465e769c2c07c4CAS | 19737819PubMed |