Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-β signalling during follicle development in the mare

Juliano C. da Silveira A , Quinton A. Winger A , Gerrit J. Bouma A B and Elaine M. Carnevale A
+ Author Affiliations
- Author Affiliations

A Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA.

B Corresponding author. Email: gerrit.bouma@colostate.edu

Reproduction, Fertility and Development 27(6) 897-905 https://doi.org/10.1071/RD14452
Submitted: 19 November 2014  Accepted: 31 March 2015   Published: 7 May 2015

Abstract

Age-related decline in fertility is a consequence of low oocyte number and/or low oocyte competence resulting in pregnancy failure. Transforming growth factor (TGF)-β signalling is a well-studied pathway involved in follicular development and ovulation. Recently, small non-coding RNAs, namely microRNAs (miRNAs), have been demonstrated to regulate several members of this pathway; miRNAs are secreted inside small cell-secreted vesicles called exosomes. The overall goal of the present study was to determine whether altered exosome miRNA content in follicular fluid from old mares is associated with changes in TGF-β signalling in granulosa cells during follicle development. Follicular fluid was collected at deviation (n = 6), mid-oestrus (n = 6) and preovulation (n = 6) for identification of exosomal miRNAs from young (3–12 years) and old (20–26 years) mares. Analysis of selected TGF-β signalling members revealed significantly increased levels of interleukin 6 (IL6) in granulosa cells from mid-oestrus compared with preovulatory follicles, and collagen alpha-2(I) chain (COL1A2) in granulosa cells from deviation compared with preovulatory follicles in young mares. In addition, granulosa cells from old mares had significantly altered levels of DNA-binding protein inhibitor ID-2 (ID2), signal transducer and activator of transcription 1 (STAT1) and cell division cycle 25A (CDC25A). Finally, changes in exosomal miRNA predicted to target selected TGF-β members were identified.

Additional keywords: equine ovarian follicle, exosomes.


References

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.
MicroRNAs: target recognition and regulatory functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Kiuro%3D&md5=f280e901233ba42e7dd030b5efb248bbCAS | 19167326PubMed |

Buratini, J., and Price, C. A. (2011). Follicular somatic cell factors and follicle development. Reprod. Fertil. Dev. 23, 32–39.
Follicular somatic cell factors and follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVyqsLg%3D&md5=a3478316d3b77be421e65e97cc4c4b16CAS | 21366978PubMed |

Butler, L., and Santoro, N. (2011). The reproductive endocrinology of the menopausal transition. Steroids 76, 627–635.
The reproductive endocrinology of the menopausal transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVCju7c%3D&md5=9a4b65afd395cf27450149d281171a64CAS | 21419147PubMed |

Carnevale, E. M. (2008). The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 69, 23–30.
The mare model for follicular maturation and reproductive aging in the woman.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmu7nN&md5=b1d730b243c0636c9f9498a2aecbc1f0CAS | 17976712PubMed |

Carnevale, E. M., Bergfelt, D. R., and Ginther, O. J. (1993). Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares. Anim. Reprod. Sci. 31, 287–299.
Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltV2nsb0%3D&md5=447aae172b61b197d75fb8805cae2dfaCAS |

Carnevale, E. M., Bergfelt, D. R., and Ginther, O. J. (1994). Follicular activity and concentrations of FSH and LH associated with senescence in mares. Anim. Reprod. Sci. 35, 231–246.
Follicular activity and concentrations of FSH and LH associated with senescence in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslChtr4%3D&md5=16270f0ae565d4ae996bf7fb02b3059cCAS |

Carnevale, E. M., Ramirez, R. J., Squires, E. L., Alvarenga, M. A., Vanderwall, D. K., and McCue, P. M. (2000). Factors affecting pregnancy rates and early embryonic death after equine embryo transfer. Theriogenology 54, 965–979.
Factors affecting pregnancy rates and early embryonic death after equine embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2Fot1Cisg%3D%3D&md5=41b4a9738e334e23a60464eb434ff1a6CAS | 11097048PubMed |

Clément, F., and Monniaux, D. (2013). Multiscale modelling of ovarian follicular selection. Prog. Biophys. Mol. Biol. 113, 398–408.
Multiscale modelling of ovarian follicular selection.Crossref | GoogleScholarGoogle Scholar | 23262160PubMed |

da Silveira, J. C., Veeramachaneni, D. N., Winger, Q. A., Carnevale, E. M., and Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 86, 71.
Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 22116803PubMed |

da Silveira, J. C., Carnevale, E. M., Winger, Q. A., and Bouma, G. J. (2014). Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod. Biol. Endocrinol. 12, 44.
Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare.Crossref | GoogleScholarGoogle Scholar | 24884710PubMed |

Edson, M. A., Nagaraja, A. K., and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712.
The mammalian ovary from genesis to revelation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyhsrbL&md5=b5626fbfb0dc8c3f452e1ab077959ae7CAS | 19776209PubMed |

Ellis, R. E., and Wei, Q. (2010). Somatic signals counteract reproductive aging in females. Genome Biol. 11, 142.
Somatic signals counteract reproductive aging in females.Crossref | GoogleScholarGoogle Scholar | 21122165PubMed |

Fair, T. (2010). Mammalian oocyte development: checkpoints for competence. Reprod. Fertil. Dev. 22, 13–20.
Mammalian oocyte development: checkpoints for competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlagurg%3D&md5=f92cf51341106064c29e61146d5d1dabCAS | 20003841PubMed |

Ginther, O. J., Beg, M. A., Gastal, M. O., and Gastal, E. L. (2004). Follicle dynamics and selection in mares. Anim. Reprod. Sci. 1, 45–63.

Ginther, O. J., Gastal, M. O., Gastal, E. L., Jacob, J. C., Siddiqui, M. A. R., and Beg, M. A. (2008). Effect of age on follicle and hormone dynamics during the oestroes cycle in mares. Reprod. Fertil. Dev. 20, 955–963.
Effect of age on follicle and hormone dynamics during the oestroes cycle in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Oks7%2FO&md5=ef516c3cfe0a6beb2b5716bd8e92b500CAS | 19007560PubMed |

Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110.
Gene silencing by microRNAs: contributions of translational repression and mRNA decay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVelsw%3D%3D&md5=73c0896725104bc44ce09894cbbf8060CAS | 21245828PubMed |

Luo, S., Kleemann, G. A., Ashraf, J. M., Shaw, W. M., and Murphy, C. T. (2010). TGF-beta and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143, 299–312.
TGF-beta and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qurnF&md5=acd7872da90d6c15757e45e7ef75669fCAS | 20946987PubMed |

Raposo, G., and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.
Extracellular vesicles: exosomes, microvesicles, and friends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFCnsbk%3D&md5=256ffbaa78563000c8f93850112d94e0CAS | 23420871PubMed |

Sang, Q., Yao, Z., Wang, H., Feng, R., Zhao, X., Xing, Q., Jin, L., He, L., Wu, L., and Wang, L. (2013). Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 98, 3068–3079.
Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFChsr7K&md5=361a831fe2691db21049ac50225f9e91CAS | 23666971PubMed |

Schauer, S. N., Sontakke, S. D., Watson, E. D., Esteves, C. L., and Donadeu, F. X. (2013). Involvement of miRNAs in equine follicle development. Reproduction 146, 273–282.
Involvement of miRNAs in equine follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVaiu77E&md5=245a78c2f7b49eddee1d0c0510f4f075CAS | 23813447PubMed |

Sirotkin, A. V., Laukova, M., Ovcharenko, D., Brenaut, P., and Mlyncek, M. (2010). Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J. Cell. Physiol. 223, 49–56.
| 1:CAS:528:DC%2BC3cXhtlSitrY%3D&md5=ef700b93e3ab2547498ea2d4baf76759CAS | 20039279PubMed |

Tatone, C., Amicarelli, F., Carbone, M. C., Monteleone, P., Caserta, D., Marci, R., Artini, P. G., Piomboni, P., and Focarelli, R. (2008). Cellular and molecular aspects of ovarian follicle ageing. Hum. Reprod. Update 14, 131–142.
Cellular and molecular aspects of ovarian follicle ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurs%3D&md5=0db6f4d5e034ffff4428490537164207CAS | 18239135PubMed |

Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: ‘Current Protocols in Cell Biology’. (Eds J. S. Bonifacino, M. Dasso, J. B. Harford, J. Lippincott-Schwartz and K. M. Yamada) pp. 3.22.1–3.22.29. (Wiley Online Library.)

Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659.
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSmtb8%3D&md5=d283faba9fe87e780e8377666c7c7382CAS | 17486113PubMed |

Voorhuis, M., Broekmans, F. J., Fauser, B. C., Onland-Moret, N. C., and van der Schouw, Y. T. (2011). Genes involved in initial follicle recruitment may be associated with age at menopause. J. Clin. Endocrinol. Metab. 96, E473–E479.
Genes involved in initial follicle recruitment may be associated with age at menopause.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFahtLk%3D&md5=d2706146f7e6d168a7244ae8bf7a0f05CAS | 21193543PubMed |

Yang, X., Zhou, Y., Peng, S., Wu, L., Lin, H. Y., Wang, S., and Wang, H. (2012). Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 144, 235–244.
Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kksr7I&md5=e082d3d94dc4b1a8671411ac65a971b0CAS | 22653319PubMed |

Yao, N., Yang, B. Q., Liu, Y., Tan, X. Y., Lu, C. L., Yuan, X. H., and Ma, X. (2010). Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 38, 158–166.
Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKgtrnK&md5=eb4305508462772ee71c07b36e1b8543CAS | 20734245PubMed |

Zhang, Q., Sun, H., Jiang, Y., Ding, L., Wu, S., Fang, T., Yan, G., and Hu, Y. (2013). MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PloS one 8, e59667.
MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1CrtL0%3D&md5=aa1ac413a555253a817ff3e33491ffb9CAS | 23527246PubMed |