Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Maternal age and in vitro culture affect mitochondrial number and function in equine oocytes and embryos

W. Karin Hendriks A F , Silvia Colleoni C , Cesare Galli C D , Damien B. B. P. Paris A G , Ben Colenbrander A , Bernard A. J. Roelen A B and Tom A. E. Stout A B E H
+ Author Affiliations
- Author Affiliations

A Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM Utrecht, The Netherlands.

B Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.

C Avantea, Laboratorio di Tecnologie della Riproduzione, Via Porcellasco 7f, 26100 Cremona, Italy.

D Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy.

E Section of Reproduction, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.

F Present address: Hendriks EQ Repro Consultancy, Zutphensestraatweg 32, 6955 AH Ellecom, The Netherlands.

G Present address: College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Drive, Townsville, Qld 4814, Australia.

H Corresponding author. Email: t.a.e.stout@uu.nl

Reproduction, Fertility and Development 27(6) 957-968 https://doi.org/10.1071/RD14450
Submitted: 18 November 2014  Accepted: 6 March 2015   Published: 17 April 2015

Abstract

Advanced maternal age and in vitro embryo production (IVP) predispose to pregnancy loss in horses. We investigated whether mare age and IVP were associated with alterations in mitochondrial (mt) DNA copy number or function that could compromise oocyte and embryo development. Effects of mare age (<12 vs ≥12 years) on mtDNA copy number, ATP content and expression of genes involved in mitochondrial replication (mitochondrial transcription factor (TFAM), mtDNA polymerase γ subunit B (mtPOLB) and mitochondrial single-stranded DNA-binding protein (SSB)), energy production (ATP synthase-coupling factor 6, mitochondrial-like (ATP-synth_F6)) and oxygen free radical scavenging (glutathione peroxidase 3 (GPX3)) were investigated in oocytes before and after in vitro maturation (IVM), and in early embryos. Expression of TFAM, mtPOLB and ATP-synth-F6 declined after IVM (P < 0.05). However, maternal age did not affect oocyte ATP content or expression of genes involved in mitochondrial replication or function. Day 7 embryos from mares ≥12 years had fewer mtDNA copies (P = 0.01) and lower mtDNA : total DNA ratios (P < 0.01) than embryos from younger mares, indicating an effect not simply due to lower cell number. Day 8 IVP embryos had similar mtDNA copy numbers to Day 7 in vivo embryos, but higher mtPOLB (P = 0.013) and a tendency to reduced GPX3 expression (P = 0.09). The lower mtDNA number in embryos from older mares may compromise development, but could be an effect rather than cause of developmental retardation. The general down-regulation of genes involved in mitochondrial replication and function after IVM may compromise resulting embryos.

Additional keywords: ATP, gene expression, mitochondrial quantity, mitochondrial replication.


References

Alexopoulos, N. I., Maddox-Hyttel, P., Tveden-Nyborg, P., D’Cruz, N. T., Tecirlioglu, T. R., Cooney, M. A., Schauser, K., Holland, M. K., and French, A. J. (2008). Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine Days 14 and 21 embryos: implications for embryonic loss. Reproduction 136, 433–445.
Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine Days 14 and 21 embryos: implications for embryonic loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtr%2FP&md5=5c692fd991636d45bf03f0e276206b04CAS | 18606825PubMed |

Allen, W. R., Brown, L., Wright, M., and Wilsher, S. (2007). Reproductive efficiency of Flatrace and National Hunt thoroughbred mares and stallions in England. Equine Vet. J. 39, 438–445.
Reproductive efficiency of Flatrace and National Hunt thoroughbred mares and stallions in England.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srovFyntA%3D%3D&md5=0d152f353e184f1d73221ddf392a21cbCAS | 17910269PubMed |

Altermatt, J. L., Marolf, A. J., Wrigley, R. H., and Carnevale, E. M. (2012). Effects of FSH and LH on ovarian and follicular blood flow, follicular growth and oocyte developmental competence in young and old mares. Anim. Reprod. Sci. 133, 191–197.
Effects of FSH and LH on ovarian and follicular blood flow, follicular growth and oocyte developmental competence in young and old mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2itbrE&md5=a3bc6d8b9ab4b706ad69b4f311e6c41eCAS | 22831776PubMed |

Baird, D. T., Collins, J., Egozcue, J., Evers, L. H., Gianaroli, L., Leridon, H., Sunde, A., Templeton, A., Van Steirteghem, A., Cohen, J., Crosignani, P. G., Devroey, P., Diedrich, K., Fauser, B. C., Fraser, L., Glasier, A., Liebaers, I., Mautone, G., Penney, G., Tarlatzis, B., , ESHRE Capri Workshop Group (2005). Fertility and ageing. Hum. Reprod. Update 11, 261–276.
Fertility and ageing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3msVKhsA%3D%3D&md5=6e7447438243c4c06649b6e274e796adCAS | 15831503PubMed |

Ball, B. A., Little, T. V., Weber, J. A., and Woods, G. L. (1989). Survival of Day-4 embryos from young, normal mares and aged, subfertile mares after transfer to normal recipient mares. J. Reprod. Fertil. 85, 187–194.
Survival of Day-4 embryos from young, normal mares and aged, subfertile mares after transfer to normal recipient mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7isFCqsQ%3D%3D&md5=d13e755be6289e58a4c2554ff0ed42eaCAS | 2915352PubMed |

Cao, L., Shitara, H., Horii, T., Nagao, Y., Imai, H., Abe, K., Hara, T., Hayashi, J., and Yonekawa, H. (2007). The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386–390.
The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOktr0%3D&md5=9f7da2004d73b37008e2e7ef86aa4a71CAS | 17293866PubMed |

Carnevale, E. M. (2008). The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 69, 23–30.
The mare model for follicular maturation and reproductive aging in the woman.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmu7nN&md5=b1d730b243c0636c9f9498a2aecbc1f0CAS | 17976712PubMed |

Carnevale, E. M., and Ginther, O. J. (1992). Relationships of age to uterine function and reproductive efficiency in mares. Theriogenology 37, 1101–1115.
Relationships of age to uterine function and reproductive efficiency in mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFyksw%3D%3D&md5=1d59d21e6ce65edf1bc2f7e3a516408aCAS | 16727108PubMed |

Carnevale, E. M., and Ginther, O. J. (1995). Defective oocytes as a cause of subfertility in old mares. Biol. Reprod. 1, 209–214.

Carnevale, E. M., Coutinho da Silva, M. A., Panzani, D., Stokes, J. E., and Squires, E. L. (2005). Factors affecting the success of oocyte transfer in a clinical program for subfertile mares. Theriogenology 64, 519–527.
Factors affecting the success of oocyte transfer in a clinical program for subfertile mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzmslKntQ%3D%3D&md5=4a8ee6d69983f360f32d45bee9ae3150CAS | 15950272PubMed |

Chappel, S. (2013). The role of mitochondria from mature oocyte to viable blastocyst. Obstet. Gynecol. Int. 2013, 183024.
The role of mitochondria from mature oocyte to viable blastocyst.Crossref | GoogleScholarGoogle Scholar | 23766762PubMed |

Chiaratti, M. R., and Meirelles, F. V. (2010). Mitochondrial DNA copy number, a marker of viability for oocytes. Biol. Reprod. 83, 1–2.
Mitochondrial DNA copy number, a marker of viability for oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqt7k%3D&md5=4d73db84319c534d488ee35b56f88189CAS | 20220127PubMed |

Cree, L. M., Samuels, D. C., de Sousa Lopes, S. C., Rajasimha, H. K., Wonnapinij, P., Mann, J. R., Dahl, H. H., and Chinnery, P. F. (2008). A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254.
A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSjsbs%3D&md5=6492ad0a1c11b51931a04ea3f44f9385CAS | 18223651PubMed |

Eichenlaub-Ritter, U., Wieczorek, M., Luke, S., and Seidel, T. (2011). Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 11, 783–796.
Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWrsr%2FF&md5=be81660b4e365615908ca88a3002ef97CAS | 20817047PubMed |

Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., and St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025–4034.
Mitochondrial DNA replication during differentiation of murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOru73K&md5=f621ddb611032f97bc21f73da38c9165CAS | 17971411PubMed |

Fragouli, E., Wells, D., and Delhanty, J. D. (2011). Chromosome abnormalities in the human oocyte. Cytogenet. Genome Res. 133, 107–118.
Chromosome abnormalities in the human oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvivFSluw%3D%3D&md5=5a75b7f6b39de79bae9a61b7cd5c4590CAS | 21273765PubMed |

Franasiak, J. M., Forman, E. J., Hong, K. H., Werner, M. D., Upham, K. M., Treff, N. R., and Scott, R. T. (2014). The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 101, 656–663.
The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening.Crossref | GoogleScholarGoogle Scholar | 24355045PubMed |

Galli, C., Crotti, G., Notari, C., Turini, P., Duchi, R., and Lazzari, G. (2001). Embryo production by ovum pick up from live donors. Theriogenology 55, 1341–1357.
Embryo production by ovum pick up from live donors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzotlWjtg%3D%3D&md5=c260a13eb07555cfb642c56e61669e10CAS | 11327688PubMed |

Galli, C., Colleoni, S., Duchi, R., Lagutina, I., and Lazzari, G. (2007). Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Anim. Reprod. Sci. 98, 39–55.
Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sksr4%3D&md5=8d410e775d85bd8fa4a69b4e2a228dfdCAS | 17101246PubMed |

Galli, C., Duchi, R., Colleoni, S., Lagutina, I., and Lazzari, G. (2014). Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology 81, 138–151.
Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice.Crossref | GoogleScholarGoogle Scholar | 24274418PubMed |

Giritharan, G., Talbi, S., Donjacour, A., Di Sebastiano, F., Dobson, A. T., and Rinaudo, P. F. (2007). Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction 134, 63–72.
Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGis74%3D&md5=f2976153fb2a48a279b1604aafcb4ad0CAS | 17641089PubMed |

Giritharan, G., Li, M. W., De Sebastiano, F., Esteban, F. J., Horcajadas, J. A., Lloyd, K. C., Donjacour, A., Maltepe, E., and Rinaudo, P. F. (2010). Effect of ICSI on gene expression and development of mouse preimplantation embryos. Hum. Reprod. 25, 3012–3024.
Effect of ICSI on gene expression and development of mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgtr7O&md5=7180d785412c70e4e88b13ac75cde50eCAS | 20889529PubMed |

Guérin, P., El Mouatassim, S., and Ménézo, Y. (2001). Oxidative stress and protection against reactive ocygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reactive ocygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 11284661PubMed |

Hinrichs, K., Schmidt, A. L., Friedman, P. P., Selgrath, J. P., and Martin, M. G. (1993). In vitro maturation of horse oocytes: characterization of chromatin configuration using fluorescence microscopy. Biol. Reprod. 48, 363–370.
In vitro maturation of horse oocytes: characterization of chromatin configuration using fluorescence microscopy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7ns12jtw%3D%3D&md5=54c4401fb1ebec69d06446de4e8f091dCAS | 8439626PubMed |

Hinrichs, K., Choi, Y. H., Love, L. B., Varner, D. D., Love, C. C., and Walckenaer, B. E. (2005). Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence. Biol. Reprod. 72, 1142–1150.
Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntrw%3D&md5=80f70cf6b90cb3fa0f8dd1e8bda9b0e5CAS | 15647456PubMed |

Houghton, F. D., and Leese, H. J. (2004). Metabolism and developmental competence of the preimplantation embryo. Eur. J. Obstet. Gynecol. Reprod. Biol. 115, S92–S96.
Metabolism and developmental competence of the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVKlu74%3D&md5=95794d943aad2351910c31443dbdfbf9CAS | 15196724PubMed |

Iwata, H., Goto, H., Tanaka, H., Sakaguchi, Y., Kimura, K., Kuwayama, T., and Monji, Y. (2011). Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod. Fertil. Dev. 23, 424–432.
Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12nt7s%3D&md5=6cdb905d47fd73c97dad5204c22448a2CAS | 21426860PubMed |

Jansen, R. P. (2000). Origin and persistence of the mitochondrial genome. Hum. Reprod. 15, 1–10.
Origin and persistence of the mitochondrial genome.Crossref | GoogleScholarGoogle Scholar | 11041508PubMed |

Jiao, F., Yan, J. B., Yang, X. Y., Li, H., Wang, Q., Huang, S. Z., Zeng, F., and Zeng, Y. T. (2007). Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency. Mol. Reprod. Dev. 74, 1278–1286.
Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsbfI&md5=c34de0b4259136fb32c9da14f9282691CAS | 17290429PubMed |

Kameyama, Y., Filion, F., Yoo, J. G., and Smith, L. C. (2007). Characterization of mitochondrial replication and transcription control during rat early development in vivo and in vitro. Reproduction 133, 423–432.
Characterization of mitochondrial replication and transcription control during rat early development in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOjt74%3D&md5=4d2f611ffa4402dc4ab9ae74e4101a2fCAS | 17307910PubMed |

Lazzari, G., Crotti, G., Turini, P., Duchi, P., Mari, G., Zavaglia, G., Barbacini, S., and Galli, G. (2002). Equine embryos at the compacted morula and blastocyst stage can be obtained by intracytoplasmic sperm injection (ICSI) of in vitro matured oocytes with frozen–thawed spermatozoa from semen of different fertilities. Theriogenology 58, 709–712.
Equine embryos at the compacted morula and blastocyst stage can be obtained by intracytoplasmic sperm injection (ICSI) of in vitro matured oocytes with frozen–thawed spermatozoa from semen of different fertilities.Crossref | GoogleScholarGoogle Scholar |

Leese, H. J., Baumann, C. G., Brison, D. R., McEvoy, T. G., and Sturmey, R. G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod. 14, 667–672.
Metabolism of the viable mammalian embryo: quietness revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2gsA%3D%3D&md5=9034204c84df6b71f9e2d5645a866619CAS | 19019836PubMed |

Luciano, A. M., Goudet, G., Perazzoli, F., Lahuec, C., and Gérard, N. (2006). Glutathione content and glutathione peroxidase expression in in vivo and in vitro matured equine oocytes. Mol. Reprod. Dev. 73, 658–666.
Glutathione content and glutathione peroxidase expression in in vivo and in vitro matured equine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Kitb4%3D&md5=1b55fb205b82b911bf19dd12626f381aCAS | 16493673PubMed |

Mahrous, E., Yang, Q., and Clarke, H. J. (2012). Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse. Reproduction 144, 177–185.
Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Klu7fJ&md5=326531a62afe745d9e2795a8d022c5f2CAS | 22641769PubMed |

May-Panloup, P., Chretien, M. F., Jacques, C., Vasseur, C., Maltiery, Y., and Reynier, P. (2005a). Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod. 20, 593–597.
Low oocyte mitochondrial DNA content in ovarian insufficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSgsbc%3D&md5=7380bccd2c00ef36bfcd87728c8ab9e6CAS | 15608038PubMed |

May-Panloup, P., Vignon, X., Chrétien, M. F., Heyman, Y., Tamassia, M., Malthièry, Y., and Reynier, P. (2005b). Increase of mitochondrial DNA content and transcripts in early embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod. Biol. Endocrinol. 3, 65.
Increase of mitochondrial DNA content and transcripts in early embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors.Crossref | GoogleScholarGoogle Scholar | 16285882PubMed |

May-Panloup, P., Chretien, M. F., Malthiery, Y., and Reynier, P. (2007). Mitochondrial DNA in the oocyte and the developing embryo. Curr. Top. Dev. Biol. 77, 51–83.
Mitochondrial DNA in the oocyte and the developing embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Gltbw%3D&md5=9acaffa131dbc5c6c0703d2ca2be07a4CAS | 17222700PubMed |

Morel, M. C., Newcombe, J. R., and Swindlehurst, J. C. (2005). The effect of age on multiple ovulation rates, multiple pregnancy rates and embryonic vesicle diameter in the mare. Theriogenology 63, 2482–2493.
The effect of age on multiple ovulation rates, multiple pregnancy rates and embryonic vesicle diameter in the mare.Crossref | GoogleScholarGoogle Scholar | 15910928PubMed |

Paris, D. B., Kuijk, E. W., Roelen, B. A., and Stout, T. A. (2011). Establishing reference genes for use in real-time quantitative PCR analysis of early equine embryos. Reprod. Fertil. Dev. 23, 353–363.
Establishing reference genes for use in real-time quantitative PCR analysis of early equine embryos.Crossref | GoogleScholarGoogle Scholar | 21211469PubMed |

Pikó, L., and Matsumoto, L. (1976). Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev. Biol. 49, 1–10.
Number of mitochondria and some properties of mitochondrial DNA in the mouse egg.Crossref | GoogleScholarGoogle Scholar | 943339PubMed |

Pikó, L., and Taylor, K. D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374.
Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 2443405PubMed |

Pomar, F. J., Teerds, K. J., Kidson, A., Colenbrander, B., Tharasanit, T., Aguilar, B., and Roelen, B. A. (2005). Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–2268.
Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyrtbg%3D&md5=02df8590b30fa952d82d5bbcdf7d95abCAS | 15826688PubMed |

Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P. C., Sousa, A. P., and Amaral, A. (2009). Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. Update 15, 553–572.
Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVals7nI&md5=606aa89014c573e0990be5dbc18159baCAS | 19414527PubMed |

Rambags, B. P. B., van Boxtel, D. C. J., Tharasanit, T., Lenstra, J. A., Colenbrander, B., and Stout, T. A. E. (2014). Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology 81, 959–965.
Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsF2gurc%3D&md5=ad6e368a68b30907f0750967a230eb4dCAS |

Reynier, P., Chretien, M. F., Savagner, F., Larcher, G., Rohmer, V., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425–429.
Mitochondrial DNA content affects the fertilizability of human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1CqsLg%3D&md5=0085b23718f670a2255c713cfb0e4dc4CAS | 11331664PubMed |

Santos, J. H., Meyer, J. N., Mandavilli, B. S., and Van Houten, B. (2006a). Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 314, 183–199.
Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyltrfM&md5=387702b1927d18311c07bbdf2d8dbaccCAS | 16673882PubMed |

Santos, T. A., El Shourbagy, S., and St. John, J. C. (2006b). Mitochondrial content reflects oocytes variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocytes variability and fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=44608f7ae2e3ffae80f03b8cd2a33e56CAS | 16500323PubMed |

Spikings, E. C., Alderson, J., and St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335.
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtLs%3D&md5=30018c227a337aca5c711740f1c2372bCAS | 17035641PubMed |

St. John, J. C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update 16, 488–509.
Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVektr7L&md5=cf3ed6febc731a2878fb170895822788CAS | 20231166PubMed |

Steuerwald, N., Barrit, J. A., Adler, R., Malter, H., Schimmel, T., Cohen, J., and Brenner, C. A. (2000). Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8, 209–215.
Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1OitLs%3D&md5=30cace6a7c823f4a973fa017d0be450bCAS | 11014500PubMed |

Takahashi, M. (2012). Oxidative stress and redox regulation of mammalian embryos. J. Reprod. Dev. 58, 1–9.
Oxidative stress and redox regulation of mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVOnsbY%3D&md5=5f19e6eefe1a17a36a35def21e507384CAS | 22450278PubMed |

Takeuchi, T., Neri, Q. V., Katagiri, Y., Rosenwaks, Z., and Palermo, G. D. (2005). Effect of treating induced mitochondrial damage on embryonic development and epigenesist. Biol. Reprod. 72, 584–592.
Effect of treating induced mitochondrial damage on embryonic development and epigenesist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVeis7s%3D&md5=8b4cdb79a0aa81753cf787d84dc7f552CAS | 15525817PubMed |

Tharasanit, T., Colleoni, S., Lazzari, G., Colenbrander, B., Galli, C., and Stout, T. A. (2006). Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reproduction 132, 759–769.
Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWktbrF&md5=2b1635f0bba0b6c71d42fbeaf1c34baeCAS | 17071777PubMed |

Thundathil, J., Filion, F., and Smith, L. C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405–413.
Molecular control of mitochondrial function in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSltLk%3D&md5=9a7b046ebc00c7c939ee51773ec88e58CAS | 15895466PubMed |

Tremoleda, J. L., Stout, T. A., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander, B., and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCns7k%3D&md5=4a930e45082af00c2628f0bb4acea601CAS | 12904313PubMed |

Ufer, C., and Wang, C. C. (2011). The roles of glutathione peroxidases during embryonic development. Front. Mol. Neurosci. 4, 12.
| 1:CAS:528:DC%2BC38XovVKg&md5=21433cfc1d2c700a2842e0fcf31fef07CAS | 21847368PubMed |

Van Blerkom, J., Davis, P. W., and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–424.
| 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=f1cafb1b1db144259abaa53545c16e55CAS | 7769073PubMed |

Wai, T., Teoli, D., and Shoubridge, E. A. (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488.
The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhu7nJ&md5=295ddbe4a1f4cc48f55797662c6a808eCAS | 19029901PubMed |

Wai, T., Asangla, A., Zhang, X., Cyr, D., Dufort, D., and Shoubridge, E. A. (2010). The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83, 52–62.
The role of mitochondrial DNA copy number in mammalian fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqtLo%3D&md5=46ce3598089e81edd1f349205c92f95eCAS | 20130269PubMed |

Wang, L. Y., Wang, D. H., Zou, X. Y., and Xu, C. M. (2009). Mitochondrial functions on oocytes and preimplantation embryos. J. Zhejiang Univ. Sci. B 10, 483–492.
Mitochondrial functions on oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2qtbo%3D&md5=25f23923fe2676d4a98906ce43e41c31CAS | 19585665PubMed |

Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M. L., Lombardi, L., and De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitlCktw%3D%3D&md5=1c4176cd537dfbb8c6bba9a06bd153d2CAS | 11331637PubMed |

Zeng, H. T., Ren, Z., Yeung, W. S., Shu, Y. M., Xu, Y. W., Zhuang, G. L., and Liang, X. Y. (2007). Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro human oocytes. Hum. Reprod. 22, 1681–1686.
Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ejtL0%3D&md5=121d3047e27534e0e7088da721068d16CAS | 17449512PubMed |