Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology

Rebecca L. Krisher A G , Adam L. Heuberger B , Melissa Paczkowski A , John Stevens C , Courtney Pospisil C , Randall S. Prather D , Roger G. Sturmey E , Jason R. Herrick A and William B. Schoolcraft F
+ Author Affiliations
- Author Affiliations

A National Foundation for Fertility Research, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA.

B Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO 80523, USA.

C Fertility Laboratories of Colorado, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA.

D Division of Animal Science, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA.

E Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, UK.

F Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA.

G Corresponding author. Email: rkrisher@fertilityresearch.org

Reproduction, Fertility and Development 27(4) 602-620 https://doi.org/10.1071/RD14359
Submitted: 25 September 2014  Accepted: 10 January 2015   Published: 13 March 2015

Abstract

The advent of metabolomics technology and its application to small samples has allowed us to non-invasively monitor the metabolic activity of embryos in a complex culture environment. The aim of this study was to apply metabolomics technology to the analysis of individual embryos from several species during in vitro development to gain an insight into the metabolomics pathways used by embryos and their relationship with embryo quality. Alanine is produced by both in vivo- and in vitro-derived human, murine, bovine and porcine embryos. Glutamine is also produced by the embryos of these four species, but only those produced in vitro. Across species, blastocysts significantly consumed amino acids from the culture medium, whereas glucose was not significantly taken up. There are significant differences in the metabolic profile of in vivo- compared with in vitro-produced embryos at the blastocyst stage. For example, in vitro-produced murine embryos consume arginine, asparagine, glutamate and proline, whereas in vivo-produced embryos do not. Human embryos produce more alanine, glutamate and glutamine, and consume less pyruvate, at the blastocyst compared with cleavage stages. Glucose was consumed by human blastocysts, but not at a high enough level to reach significance. Consumption of tyrosine by cleavage stage human embryos is indicative of blastocyst development, although tyrosine consumption is not predictive of blastocyst quality. Similarly, although in vivo-produced murine blastocysts consumed less aspartate, lactate, taurine and tyrosine than those produced in vitro, consumption of these four amino acids by in vitro-derived embryos with high octamer-binding transcription factor 4 (Oct4) expression, indicative of high quality, did not differ from those with low Oct4 expression. Further application of metabolomic technologies to studies of the consumption and/or production of metabolites from individual embryos in a complete culture medium could transform our understanding of embryo physiology and improve our ability to produce developmentally competent embryos in vitro.

Additional keywords: amino acids, bovine, glucose, human, in vitro embryo culture, metabolism, mouse, porcine.


References

Barceló-Fimbres, M., and Seidel, G. E. (2007). Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro. Mol. Reprod. Dev. 74, 1406–1418.
Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro.Crossref | GoogleScholarGoogle Scholar | 17342742PubMed |

Bauer, B. K., Isom, S. C., Spate, L. D., Whitworth, K. M., Spollen, W. G., Blake, S. M., Springer, G. K., Murphy, C. N., and Prather, R. S. (2010). Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biol. Reprod. 83, 791–798.
Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos.Crossref | GoogleScholarGoogle Scholar | 20668257PubMed |

Baumann, C. G., Morris, D. G., Sreenan, J. M., and Leese, H. J. (2007). The quiet embryo hypothesis: molecular characteristics favoring viability. Mol. Reprod. Dev. 74, 1345–1353.
The quiet embryo hypothesis: molecular characteristics favoring viability.Crossref | GoogleScholarGoogle Scholar | 17342740PubMed |

Biggers, J. D., Whittingham, D. G., and Donahue, R. P. (1967). The pattern of energy metabolism in the mouse oocyte and zygote. Proc. Natl Acad. Sci. USA 58, 560–567.
The pattern of energy metabolism in the mouse oocyte and zygote.Crossref | GoogleScholarGoogle Scholar | 5233459PubMed |

Botros, L., Sakkas, D., and Seli, E. (2008). Metabolomics and its application for non-invasive embryo assessment in IVF. Mol. Hum. Reprod. 14, 679–690.
Metabolomics and its application for non-invasive embryo assessment in IVF.Crossref | GoogleScholarGoogle Scholar | 19129367PubMed |

Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., Bjorndahl, T. C., Krishnamurthy, R., Saleem, F., Liu, P., Dame, Z. T., Poelzer, J., Huynh, J., Yallou, F. S., Psychogios, N., Dong, E., Bogumil, R., Roehring, C., and Wishart, D. S. (2013). The human urine metabolome. PLoS ONE 8, e73076.
| 24023812PubMed |

Brinster, R. L. (1965). Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J. Reprod. Fertil. 10, 227–240.
Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources.Crossref | GoogleScholarGoogle Scholar | 5836270PubMed |

Brison, D. R., Houghton, F. D., Falconer, D., Roberts, S. A., Hawkhead, J., Humpherson, P. G., Lieberman, B. A., and Leese, H. J. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–2324.
Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover.Crossref | GoogleScholarGoogle Scholar | 15298971PubMed |

Brison, D. R., Hollywood, K., Arnesen, R., and Goodacre, R. (2007). Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting. Reprod. Biomed. Online 15, 296–302.
Predicting human embryo viability: the road to non-invasive analysis of the secretome using metabolic footprinting.Crossref | GoogleScholarGoogle Scholar | 17854527PubMed |

Cortezzi, S. S., Cabral, E. C., Trevisan, M. G., Ferreira, C. R., Setti, A. S., Braga, D. P., Figueira Rde, C., Iaconelli, A., Eberlin, M. N., and Borges, E. (2013). Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction 145, 453–462.
Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium.Crossref | GoogleScholarGoogle Scholar | 23404850PubMed |

De La Torre-Sanchez, J. F., Gardner, D. K., Preis, K., Gibbons, J., and Seidel, G. E. (2006). Metabolic regulation of in vitro-produced bovine embryos. II. Effects of phenazine ethosulfate, sodium azide and 2,4-dinitrophenol during post-compaction development on glucose metabolism and lipid accumulation. Reprod. Fertil. Dev. 18, 597–607.
| 16836966PubMed |

Dunning, K. R., Cashman, K., Russell, D. L., Thompson, J. G., Norman, R. J., and Robker, R. L. (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83, 909–918.
Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development.Crossref | GoogleScholarGoogle Scholar | 20686180PubMed |

Ferguson, E. M., and Leese, H. J. (2006). A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 73, 1195–1201.
A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 16804881PubMed |

Ferreira, C. R., Pirro, V., Eberlin, L. S., Hallett, J. E., and Cooks, R. G. (2012). Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 404, 2915–2926.
Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 23052870PubMed |

Flood, M. R., and Wiebold, J. L. (1988). Glucose metabolism by preimplantation pig embryos. J. Reprod. Fertil. 84, 7–12.
Glucose metabolism by preimplantation pig embryos.Crossref | GoogleScholarGoogle Scholar | 3184061PubMed |

Gada, R. P., Daftary, G. S., Walker, D. L., Lacey, J. M., Matern, D., and Morbeck, D. E. (2012). Potential of inner cell mass outgrowth and amino acid turnover as markers of quality in the in vitro fertilization laboratory. Fertil. Steril. 98, 863–869.e1.
Potential of inner cell mass outgrowth and amino acid turnover as markers of quality in the in vitro fertilization laboratory.Crossref | GoogleScholarGoogle Scholar | 22771026PubMed |

Gandhi, A. P., Lane, M., Gardner, D. K., and Krisher, R. L. (2000). A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum. Reprod. 15, 395–401.
A single medium supports development of bovine embryos throughout maturation, fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 10655312PubMed |

Gandhi, A. P., Lane, M., Gardner, D. K., and Krisher, R. L. (2001). Substrate utilization in porcine embryos cultured in NCSU23 and G1.2/G2.2 sequential culture media. Mol. Reprod. Dev. 58, 269–275.
Substrate utilization in porcine embryos cultured in NCSU23 and G1.2/G2.2 sequential culture media.Crossref | GoogleScholarGoogle Scholar | 11170267PubMed |

Gardner, D. K., and Leese, H. J. (1987). Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J. Exp. Zool. 242, 103–105.
Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake.Crossref | GoogleScholarGoogle Scholar | 3598508PubMed |

Gardner, D. K., and Leese, H. J. (1990). Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 88, 361–368.
Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro.Crossref | GoogleScholarGoogle Scholar | 2313649PubMed |

Gardner, D. K., and Wale, P. L. (2013). Analysis of metabolism to select viable human embryos for transfer. Fertil. Steril. 99, 1062–1072.
Analysis of metabolism to select viable human embryos for transfer.Crossref | GoogleScholarGoogle Scholar | 23312219PubMed |

Gardner, D. K., Lane, M., and Batt, P. (1993). Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol. Reprod. Dev. 36, 313–319.
Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo.Crossref | GoogleScholarGoogle Scholar | 8286112PubMed |

Gardner, D. K., Lane, M., Stevens, J., Schlenker, T., and Schoolcraft, W. B. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–1158.
Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer.Crossref | GoogleScholarGoogle Scholar | 10856474PubMed |

Gardner, D. K., Lane, M., Stevens, J., and Schoolcraft, W. B. (2001). Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 76, 1175–1180.
Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential.Crossref | GoogleScholarGoogle Scholar | 11730746PubMed |

Gardner, D. K., Lane, M., and Watson, A. J. (2004). ‘A Laboratory Guide to the Mammalian Embryo.’ (Oxford University Press: New York.)

Gardner, D. K., Wale, P. L., Collins, R., and Lane, M. (2011). Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum. Reprod. 26, 1981–1986.
Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome.Crossref | GoogleScholarGoogle Scholar | 21572086PubMed |

Hardarson, T., Ahlstrom, A., Rogberg, L., Botros, L., Hillensjo, T., Westlander, G., Sakkas, D., and Wikland, M. (2012). Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum. Reprod. 27, 89–96.
Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial.Crossref | GoogleScholarGoogle Scholar | 22068638PubMed |

Harper, J., Cristina Magli, M., Lundin, K., Barratt, C. L. R., and Brison, D. (2012). When and how should new technology be introduced into the IVF laboratory? Hum. Reprod. 27, 303–313.
When and how should new technology be introduced into the IVF laboratory?Crossref | GoogleScholarGoogle Scholar | 22166806PubMed |

Harvey, A. J., Kind, K. L., and Thompson, J. G. (2002). REDOX regulation of early embryonic development. Reproduction 123, 479–486.
REDOX regulation of early embryonic development.Crossref | GoogleScholarGoogle Scholar | 11914110PubMed |

Hemmings, K. E., Leese, H. J., and Picton, H. M. (2012). Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro. Biol. Reprod. 86, 165.
Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro.Crossref | GoogleScholarGoogle Scholar | 22378762PubMed |

Herrick, J. R., Strauss, K. J., Schneiderman, A., Rawlins, M., Stevens, J., Schoolcraft, W. B., and Krisher, R. L. (2015). The beneficial effects of reduced magnesium during the oocyte-to-embryo transition are conserved in mice, domestic cats and humans. Reprod. Fertil. Dev. 27, 323–331.
The beneficial effects of reduced magnesium during the oocyte-to-embryo transition are conserved in mice, domestic cats and humans.Crossref | GoogleScholarGoogle Scholar | 24280268PubMed |

Hollywood, K., Brison, D. R., and Goodacre, R. (2006). Metabolomics: current technologies and future trends. Proteomics 6, 4716–4723.
Metabolomics: current technologies and future trends.Crossref | GoogleScholarGoogle Scholar | 16888765PubMed |

Houghton, F. D., Hawkhead, J. A., Humpherson, P. G., Hogg, J. E., Balen, A. H., Rutherford, A. J., and Leese, H. J. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17, 999–1005.
Non-invasive amino acid turnover predicts human embryo developmental capacity.Crossref | GoogleScholarGoogle Scholar | 11925397PubMed |

Kane, M. T. (1979). Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae. Biol. Reprod. 20, 323–332.
Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae.Crossref | GoogleScholarGoogle Scholar | 572233PubMed |

Keefer, C. L., Colvin, J. L., and Bequette, B. J. (2014). Determination of glycolytic activity of early cleavage and blastocyst staged bovine embryos employing [13C]-labeled substrates and mass spectrometry. In: ‘Society for the Study of Reproduction’, Grand Rapids, MI, 2014. (Society for the Study of Reproduction: Madison, WI.) [Abstract 191]

Krisher, R. L. (2013). Oocyte and embryo metabolomics. In ‘Control of Pig Reproduction IX. Vol. 68.’ (Eds H. Rodriguez-Martinez, N. M. Soede and W. L. Flowers.) pp. 1–18. (Society of Reproduction and Fertility: London.)

Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development:metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
A role for the Warburg effect in preimplantation embryo development:metabolic modification to support rapid cell proliferation.Crossref | GoogleScholarGoogle Scholar | 22431437PubMed |

Krisher, R. L., Lane, M., and Bavister, B. D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–1352.
Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media.Crossref | GoogleScholarGoogle Scholar | 10330091PubMed |

Lamb, V. K., and Leese, H. J. (1994). Uptake of a mixture of amino acids by mouse blastocysts. J. Reprod. Fertil. 102, 169–175.
Uptake of a mixture of amino acids by mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 7799310PubMed |

Lane, M., and Gardner, D. K. (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 102, 305–312.
Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions.Crossref | GoogleScholarGoogle Scholar | 7861382PubMed |

Lane, M., and Gardner, D. K. (1996). Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum. Reprod. 11, 1975–1978.
Selection of viable mouse blastocysts prior to transfer using a metabolic criterion.Crossref | GoogleScholarGoogle Scholar | 8921074PubMed |

Lane, M., and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 9619560PubMed |

Lane, M., and Gardner, D. K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse.Crossref | GoogleScholarGoogle Scholar | 12773416PubMed |

Lane, M., and Gardner, D. K. (2005a). Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18 361–18 367.
Mitochondrial malate–aspartate shuttle regulates mouse embryo nutrient consumption.Crossref | GoogleScholarGoogle Scholar |

Lane, M., and Gardner, D. K. (2005b). Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod. Fertil. Dev. 17, 371–378.
Understanding cellular disruptions during early embryo development that perturb viability and fetal development.Crossref | GoogleScholarGoogle Scholar | 15745645PubMed |

Lane, M., and Gardner, D. K. (2007). Embryo culture medium: which is the best? Best Pract. Res. Clin. Obstet. Gynaecol. 21, 83–100.
Embryo culture medium: which is the best?Crossref | GoogleScholarGoogle Scholar | 17090393PubMed |

Lane, M., Maybach, J. M., Hooper, K., Hasler, J. F., and Gardner, D. K. (2003). Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol. Reprod. Dev. 64, 70–78.
Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan.Crossref | GoogleScholarGoogle Scholar | 12420301PubMed |

Lee, K., Redel, B., Spate, L., Teson, J., Brown, A., Park, K.-W., Walters, E., Samuel, M., Murphy, C., and Prather, R. (2013). Piglets produced from cloned blastocysts cultured in vitro with GM-CSF. Mol. Reprod. Dev. 80, 145–154.
Piglets produced from cloned blastocysts cultured in vitro with GM-CSF.Crossref | GoogleScholarGoogle Scholar | 23239239PubMed |

Leese, H. J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845–849.
Quiet please, do not disturb: a hypothesis of embryo metabolism and viability.Crossref | GoogleScholarGoogle Scholar | 12210521PubMed |

Leese, H. J., Sturmey, R. G., Baumann, C. G., and McEvoy, T. G. (2007). Embryo viability and metabolism: obeying the quiet rules. Hum. Reprod. 22, 3047–3050.
Embryo viability and metabolism: obeying the quiet rules.Crossref | GoogleScholarGoogle Scholar | 17956925PubMed |

Leese, H. J., Baumann, C. G., Brison, D. R., McEvoy, T. G., and Sturmey, R. G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod. 14, 667–672.
Metabolism of the viable mammalian embryo: quietness revisited.Crossref | GoogleScholarGoogle Scholar | 19019836PubMed |

Leonard, P. H., Charlesworth, M. C., Benson, L., Walker, D. L., Fredrickson, J. R., and Morbeck, D. E. (2013). Variability in protein quality used for embryo culture: embryotoxicity of the stabilizer octanoic acid. Fertil. Steril. 100, 544–549.
Variability in protein quality used for embryo culture: embryotoxicity of the stabilizer octanoic acid.Crossref | GoogleScholarGoogle Scholar | 23602317PubMed |

Li, X. (2005). ‘PROcess: Ciphergen SELDI-TOF Processing. R package version 1.40.0.’

Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396.
Gas chromatography mass spectrometry-based metabolite profiling in plants.Crossref | GoogleScholarGoogle Scholar | 17406261PubMed |

Marhuenda-Egea, F. C., Martinez-Sabater, E., Gonsalvez-Alvarez, R., Lledo, B., Ten, J., and Bernabeu, R. (2010). A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation. Fertil. Steril. 94, 772–774.
A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation.Crossref | GoogleScholarGoogle Scholar | 19962138PubMed |

Marhuenda-Egea, F., Gonsálvez-Álvarez, R., Martínez-Sabater, E., Lledó, B., Ten, J., and Bernabeu, R. (2011). Improving human embryos selection in IVF: non-invasive metabolomic and chemometric approach. Metabolomics 7, 247–256.
Improving human embryos selection in IVF: non-invasive metabolomic and chemometric approach.Crossref | GoogleScholarGoogle Scholar |

Nadal-Desbarats, L., Veau, S., Blasco, H., Emond, P., Royere, D., Andres, C. R., and Guerif, F. (2013). Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection? MAGMA 26, 193–202.
Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection?Crossref | GoogleScholarGoogle Scholar | 22878530PubMed |

Nagy, Z. P., Sakkas, D., and Behr, B. (2008). Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media (‘metabolomics’). Reprod. Biomed. Online 17, 502–507.
Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media (‘metabolomics’).Crossref | GoogleScholarGoogle Scholar | 18854103PubMed |

National Research Council (2011). ‘Guide for the Care and Use of Laboratory Animals: Eighth Edition.’ (The National Academies Press: Washington, D.C.)

Nel-Themaat, L., and Nagy, Z. P. (2011). A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta 32, S257–S263.
| 21703683PubMed |

Orsi, N. M., and Leese, H. J. (2004). Ammonium exposure and pyruvate affect the amino acid metabolism of bovine blastocysts in vitro. Reproduction 127, 131–140.
Ammonium exposure and pyruvate affect the amino acid metabolism of bovine blastocysts in vitro.Crossref | GoogleScholarGoogle Scholar | 15056778PubMed |

Paczkowski, M., Silva, E., Schoolcraft, W. B., and Krisher, R. L. (2013). Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol. Reprod. 88, 111.
Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 23536372PubMed |

Paczkowski, M., Schoolcraft, W. B., and Krisher, R. L. (2014). Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 148, 429–439.
Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence.Crossref | GoogleScholarGoogle Scholar | 25062802PubMed |

Partridge, R. J., and Leese, H. J. (1996). Consumption of amino acids by bovine preimplantation embryos. Reprod. Fertil. Dev. 8, 945–950.
Consumption of amino acids by bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 8896028PubMed |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 8145215PubMed |

Petters, R. M., Johnson, B. H., Reed, M. L., and Archibong, A. E. (1990). Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil. 89, 269–275.
Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro.Crossref | GoogleScholarGoogle Scholar | 2374120PubMed |

Picton, H. M., Elder, K., Houghton, F. D., Hawkhead, J. A., Rutherford, A. J., Hogg, J. E., Leese, H. J., and Harris, S. E. (2010). Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol. Hum. Reprod. 16, 557–569.
Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 20571076PubMed |

Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., Sinelnikov, I., Krishnamurthy, R., Eisner, R., Gautam, B., Young, N., Xia, J., Knox, C., Dong, E., Huang, P., Hollander, Z., Pedersen, T. L., Smith, S. R., Bamforth, F., Greiner, R., McManus, B., Newman, J. W., Goodfriend, T., and Wishart, D. S. (2011). The human serum metabolome. PLoS ONE 6, e16957.
The human serum metabolome.Crossref | GoogleScholarGoogle Scholar | 21359215PubMed |

Pudakalakatti, S. M., Uppangala, S., D’Souza, F., Kalthur, G., Kumar, P., Adiga, S. K., and Atreya, H. S. (2013). NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential. NMR Biomed. 26, 20–27.
NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential.Crossref | GoogleScholarGoogle Scholar | 22714820PubMed |

Redel, B. K., Brown, A. N., Spate, L. D., Whitworth, K. M., Green, J. A., and Prather, R. S. (2012). Glycolysis in preimplantation development is partially controlled by the Warburg effect. Mol. Reprod. Dev. 79, 262–271.
Glycolysis in preimplantation development is partially controlled by the Warburg effect.Crossref | GoogleScholarGoogle Scholar | 22213464PubMed |

Rieger, D., Loskutoff, N. M., and Betteridge, K. J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1299829PubMed |

Rinaudo, P., Shen, S., Hua, J., Qian, S., Prabhu, U., Garcia, E., Cedars, M., Sukumaran, D., Szyperski, T., and Andrews, C. (2012). (1)H NMR based profiling of spent culture media cannot predict success of implantation for day 3 human embryos. J. Assist. Reprod. Genet. 29, 1435–1442.
(1)H NMR based profiling of spent culture media cannot predict success of implantation for day 3 human embryos.Crossref | GoogleScholarGoogle Scholar | 23090745PubMed |

Rosenkrans, C. F., and First, N. L. (1994). Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J. Anim. Sci. 72, 434–437.
| 8157527PubMed |

Sakkas, D., Morita, H., Yamashita, N., Kato, O., Botros, L., Roos, P., and Seli, E. (2008). Evaluation of embryo quality by metabolomics: a new strategy to aid single embryo transfer. J. Mammal. Ova Res. 25, 26–31.
Evaluation of embryo quality by metabolomics: a new strategy to aid single embryo transfer.Crossref | GoogleScholarGoogle Scholar |

Scott, R., Seli, E., Miller, K., Sakkas, D., Scott, K., and Burns, D. H. (2008). Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil. Steril. 90, 77–83.
Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study.Crossref | GoogleScholarGoogle Scholar | 18281045PubMed |

Seli, E., Sakkas, D., Scott, R., Kwok, S. C., Rosendahl, S. M., and Burns, D. H. (2007). Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 88, 1350–1357.
Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 17923129PubMed |

Seli, E., Vergouw, C. G., Morita, H., Botros, L., Roos, P., Lambalk, C. B., Yamashita, N., Kato, O., and Sakkas, D. (2010). Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil. Steril. 94, 535–542.
Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer.Crossref | GoogleScholarGoogle Scholar | 19589524PubMed |

Shroff, R., and Svatoš, A. (2009). Proton sponge: a novel and versatile MALDI matrix for the analysis of metabolites using mass spectrometry. Anal. Chem. 81, 7954–7959.
Proton sponge: a novel and versatile MALDI matrix for the analysis of metabolites using mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 19705852PubMed |

Smith, D. G., and Sturmey, R. G. (2013). Parallels between embryo and cancer cell metabolism. Biochem. Soc. Trans. 41, 664–669.
| 23514173PubMed |

Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., and Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787.
XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.Crossref | GoogleScholarGoogle Scholar | 16448051PubMed |

Steeves, T. E., and Gardner, D. K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–740.
Temporal and differential effects of amino acids on bovine embryo development in culture.Crossref | GoogleScholarGoogle Scholar | 10456851PubMed |

Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10, 770–781.
An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data.Crossref | GoogleScholarGoogle Scholar |

Stringfellow, D. A., and Seidel, S. M. (1998). ‘Manual of the International Embryo Transfer Society: A procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedure: Third Edition.’ (IETS: Savoy, IL.)

Sturmey, R. G., and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 12887276PubMed |

Sturmey, R. G., and Leese, H. J. (2008). Role of glucose and fatty acid metabolism in porcine early embryo development. Reprod. Fertil. Dev. 20, 149.
Role of glucose and fatty acid metabolism in porcine early embryo development.Crossref | GoogleScholarGoogle Scholar |

Sturmey, R. G., O’Toole, P. J., and Leese, H. J. (2006). Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 132, 829–837.
Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte.Crossref | GoogleScholarGoogle Scholar | 17127743PubMed |

Sturmey, R. G., Brison, D. R., and Leese, H. J. (2008). Symposium: innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover. Reprod. Biomed. Online 17, 486–496.
Symposium: innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover.Crossref | GoogleScholarGoogle Scholar | 18854101PubMed |

Sturmey, R. G., Hawkhead, J. A., Barker, E. A., and Leese, H. J. (2009a). DNA damage and metabolic activity in the preimplantation embryo. Hum. Reprod. 24, 81–91.
DNA damage and metabolic activity in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 18835872PubMed |

Sturmey, R. G., Reis, A., Leese, H. J., and McEvoy, T. G. (2009b). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–58.
Role of fatty acids in energy provision during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 19660080PubMed |

Sturmey, R. G., Bermejo-Alvarez, P., Gutierrez-Adan, A., Rizos, D., Leese, H. J., and Lonergan, P. (2010). Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol. Reprod. Dev. 77, 285–296.
| 20058302PubMed |

Sutton-McDowall, M. L., Feil, D., Robker, R. L., Thompson, J. G., and Dunning, K. R. (2012). Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology 77, 1632–1641.
Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 22365693PubMed |

Swain, J. E., Bormann, C. L., Clark, S. G., Walters, E. M., Wheeler, M. B., and Krisher, R. L. (2002). Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction 123, 253–260.
Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 11866692PubMed |

Tachibana, C. (2014). What’s next in ‘omics’: the metabolome. Science 345, 1519–1521.
What’s next in ‘omics’: the metabolome.Crossref | GoogleScholarGoogle Scholar |

Takahashi, Y., and First, N. L. (1992). In vitro development of bovine one cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37, 963–978.
In vitro development of bovine one cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins.Crossref | GoogleScholarGoogle Scholar | 16727096PubMed |

Tervit, H. R., Whittingham, D. G., and Rowson, L. E. A. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–497.
Successful culture in vitro of sheep and cattle ova.Crossref | GoogleScholarGoogle Scholar | 4672493PubMed |

Thompson, J. G., Simpson, A. C., Pugh, P. A., Wright, R. W., and Tervit, H. R. (1991). Glucose utilization by sheep embryos derived in vivo and in vitro. Reprod. Fertil. Dev. 3, 571–576.
Glucose utilization by sheep embryos derived in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1788397PubMed |

Thompson, J. G., Simpson, A. C., Pugh, P. A., and Tervit, H. R. (1992). Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol. Reprod. Dev. 31, 253–257.
Requirement for glucose during in vitro culture of sheep preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1571159PubMed |

Uyar, A., and Seli, E. (2014). Metabolomic assessment of embryo viability. Semin. Reprod. Med. 32, 141–152.
Metabolomic assessment of embryo viability.Crossref | GoogleScholarGoogle Scholar | 24515909PubMed |

Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E. J., and Leroy, J. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS ONE 6, e23183.
Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar | 21858021PubMed |

Vergouw, C. G., Kieslinger, D. C., Kostelijk, E. H., Botros, L. L., Schats, R., Hompes, P. G., Sakkas, D., and Lambalk, C. B. (2012). Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum. Reprod. 27, 2304–2311.
Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial.Crossref | GoogleScholarGoogle Scholar | 22647453PubMed |

Wale, P. L., and Gardner, D. K. (2012). Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol. Reprod. 87, 24.
Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development.Crossref | GoogleScholarGoogle Scholar | 22553221PubMed |

Wale, P. L., and Gardner, D. K. (2013). Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol. Reprod. 89, 75.
Oxygen affects the ability of mouse blastocysts to regulate ammonium.Crossref | GoogleScholarGoogle Scholar | 23803557PubMed |

Yamada, M., Takanashi, K., Hamatani, T., Hirayama, A., Akutsu, H., Fukunaga, T., Ogawa, S., Sugawara, K., Shinoda, K., Soga, T., Umezawa, A., Kuji, N., Yoshimura, Y., and Tomita, M. (2012). A medium-chain fatty acid as an alternative energy source in mouse preimplantation development. Sci. Rep. 2, 930.
| 23226596PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. K., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 11751272PubMed |

Zivi, E., Barash, D., Aizenman, E., Gibson, D., and Shufaro, Y. (2014). Zygote serine decreased uptake from the fertilization medium is associated with implantation and pregnancy. J. Assist. Reprod. Genet. 31, 889–897.
Zygote serine decreased uptake from the fertilization medium is associated with implantation and pregnancy.Crossref | GoogleScholarGoogle Scholar | 24789167PubMed |