Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Comparative genomic identification and expression profiling of a novel β-defensin gene cluster in the equine reproductive tract

Gillian P. Johnson A , Andrew T. Lloyd B , Cliona O’Farrelly C , Kieran G. Meade D and Sean Fair A E
+ Author Affiliations
- Author Affiliations

A Department of Life Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.

B Department of Science and Health, Carlow Institute of Technology, Kilkenny Road, Carlow, Ireland.

C Comparative Immunology Group, School of Biochemistry and Immunology, Trinity BioSciences Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.

D Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Meath, Ireland.

E Corresponding author. Email: sean.fair@ul.ie

Reproduction, Fertility and Development 28(10) 1499-1508 https://doi.org/10.1071/RD14345
Submitted: 16 September 2014  Accepted: 7 February 2015   Published: 30 April 2015

Abstract

β-defensins are small cationic proteins with potent immunoregulatory and antimicrobial activity. The number of genes encoding these peptides varies significantly between and within species but they have not been extensively characterised in the horse. Here, we describe a systematic search of the Equus caballus genome that identified a cluster of novel β-defensin genes on Chromosome 22, which is homologous to a cluster on bovine Chromosome 13. Close genomic matches were found for orthologs of 13 of the bovine genes, which were named equine β-defensins (eBD) 115, eBD116, eBD117, eBD119, eBD120, eBD122a, eBD123, eBD124, eBD125, eBD126, eBD127, eBD129 and eBD132. As expression of the homologous cluster in cattle was limited to the reproductive tract, tissue sections were obtained from the testis, caput, corpus and cauda epididymis and the vas deferens of three stallions and from the ovary, oviduct, uterine horn, uterus, cervix and vagina of three mares. Using a quantitative real-time polymerase chain reaction approach, each of the novel β-defensin genes showed distinct region-specific patterns of expression. Preferential expression in the caput epididymis of these novel defensins in the stallion and in the oviduct in the mare suggests a possible role in immunoprotection of the equine reproductive tract or in fertility.

Additional keywords: antimicrobial peptide, equine genome, epididymis, fertility, mare, stallion, oviduct.


References

Acott, T. S., and Hoskins, D. D. (1981). Bovine sperm forward motility protein: binding to epididymal spermatozoa. Biol. Reprod. 24, 234–240.
Bovine sperm forward motility protein: binding to epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M7mtFarsA%3D%3D&md5=11cb0ea2f2c7da9274826a5d3471d3daCAS | 7213873PubMed |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=98447bb4d3556fdfef35c701671916d9CAS | 2231712PubMed |

Bauer, F., Schweimer, K., Kluver, E., Conejo-Garcia, J. R., Forssmann, W. G., Rosch, P., Adermann, K., and Sticht, H. (2001). Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein science: a publication of the Protein Society 10, 2470–2479.
Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyrurY%3D&md5=a07ad9e99fa46cdc7dc1fb890d455e6fCAS |

Bowdish, D. M., Davidson, D. J., Scott, M. G., and Hancock, R. E. (2005). Immunomodulatory activities of small host defence peptides. Antimicrob. Agents Chemother. 49, 1727–1732.
Immunomodulatory activities of small host defence peptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFSnsbc%3D&md5=eef122c5c35db15f206ee4c65cbb839cCAS | 15855488PubMed |

Bruhn, O., Cauchard, J., Schlusselhuber, M., Gelhaus, C., Podschun, R., Thaller, G., Laugier, C., Leippe, M., and Grotzinger, J. (2009a). Antimicrobial properties of the equine alpha-defensin DEFA1 against bacterial horse pathogens. Vet. Immunol. Immunopathol. 130, 102–106.
Antimicrobial properties of the equine alpha-defensin DEFA1 against bacterial horse pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1GgtrY%3D&md5=e7b2ceef1474de50df5037d86b2b6820CAS | 19211153PubMed |

Bruhn, O., Paul, S., Tetens, J., and Thaller, G. (2009b). The repertoire of equine intestinal alpha-defensins. BMC Genomics 10, 631.
The repertoire of equine intestinal alpha-defensins.Crossref | GoogleScholarGoogle Scholar | 20030839PubMed |

Bruhn, O., Grotzinger, J., Cascorbi, I., and Jung, S. (2011). Antimicrobial peptides and proteins of the horse – insights into a well-armed organism. Vet. Res. 42, 98.
Antimicrobial peptides and proteins of the horse – insights into a well-armed organism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSns7%2FF&md5=fe59c8db2b5b7424dcf28cd2a5ed2d9dCAS | 21888650PubMed |

Choi, M. K., Le, M. T., Nguyen, D. T., Choi, H., Kim, W., Kim, J. H., Chun, J., Hyeon, J., Seo, K., and Park, C. (2012). Genome-level identification, gene expression and comparative analysis of porcine ss-defensin genes. BMC Genet. 13, 98.
Genome-level identification, gene expression and comparative analysis of porcine ss-defensin genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Gktrs%3D&md5=3ed86b1a3ef6b1b46443e27a1b4d98c3CAS | 23150902PubMed |

Com, E., Bourgeon, F., Evrard, B., Ganz, T., Colleu, D., Jegou, B., and Pineau, C. (2003). Expression of antimicrobial defensins in the male reproductive tract of rats, mice and humans. Biol. Reprod. 68, 95–104.
Expression of antimicrobial defensins in the male reproductive tract of rats, mice and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2i&md5=96b0253a34f71ea21b479163e6998ca6CAS | 12493700PubMed |

Cormican, P., Meade, K. G., Cahalane, S., Narciandi, F., Chapwanya, A., Lloyd, A. T., and O’farrelly, C. (2008). Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins. Immunogenetics 60, 147–156.
Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVOku7o%3D&md5=27e44f77ab6145ae06d7a12fdcf2f6d4CAS | 18369613PubMed |

Davis, E. G., Sang, Y., and Blecha, F. (2004). Equine beta-defensin-1: full-length cDNA sequence and tissue expression. Vet. Immunol. Immunopathol. 99, 127–132.
Equine beta-defensin-1: full-length cDNA sequence and tissue expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtl2ksbo%3D&md5=02c4a4e4718d205ccd54a5b2308af317CAS | 15113660PubMed |

Fjell, C. D., Jenssen, H., Fries, P., Aich, P., Griebel, P., Hilpert, K., Hancock, R. E., and Cherkasov, A. (2008). Identification of novel host defence peptides and the absence of alpha-defensins in the bovine genome. Proteins 73, 420–430.
Identification of novel host defence peptides and the absence of alpha-defensins in the bovine genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOisb3E&md5=81e53ac786a1fc9284d3283a65a26961CAS | 18442133PubMed |

Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720.
Defensins: antimicrobial peptides of innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVWmtLc%3D&md5=a5c82f679152a02c3ddb609bbe0e9bc0CAS | 12949495PubMed |

Ganz, T. (2004). Defensins: antimicrobial peptides of vertebrates. C. R. Biol. 327, 539–549.
Defensins: antimicrobial peptides of vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Wlt7s%3D&md5=a69cf01ced775871dae5d0f8ae656458CAS | 15330253PubMed |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=894e683e42a59ed72c7284090aeb33ebCAS |

Jelinsky, S. A., Turner, T. T., Bang, H. J., Finger, J. N., Solarz, M. K., Wilson, E., Brown, E. L., Kopf, G. S., and Johnston, D. S. (2007). The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol. Reprod. 76, 561–570.
The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFCnurc%3D&md5=f2468d80ff6e536b87c7789e933a120aCAS | 17167166PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=6db539426b70529f14f65734e4c1d0f6CAS | 11846609PubMed |

Looft, C., Paul, S., Philipp, U., Regenhard, P., Kuiper, H., Distl, O., Chowdhary, B. P., and Leeb, T. (2006). Sequence analysis of a 212-kb defensin gene cluster on ECA 27q17. Gene 376, 192–198.
Sequence analysis of a 212-kb defensin gene cluster on ECA 27q17.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVGmurw%3D&md5=b81ec62de4e965947f262caa710dad77CAS | 16723195PubMed |

Lynn, D. J., and Bradley, D. G. (2007). Discovery of alpha-defensins in basal mammals. Dev. Comp. Immunol. 31, 963–967.
Discovery of alpha-defensins in basal mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yhu7c%3D&md5=349739198f3637a40f09083306a1fbd0CAS | 17367857PubMed |

Mitchell, C., Gottsch, M. L., Liu, C., Fredricks, D. N., and Nelson, D. B. (2013). Associations between vaginal bacteria and levels of vaginal defensins in pregnant women. Am. J. Obstet. Gynecol. 208, 132.e1–132.e7.
Associations between vaginal bacteria and levels of vaginal defensins in pregnant women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2rs7nK&md5=d584f6cab36c30080802a770682d973eCAS |

Narciandi, F., Lloyd, A. T., Chapwanya, A., O’Farrelly, C., and Meade, K. G. (2011). Reproductive tissue-specific expression profiling and genetic variation across a 19-gene bovine beta-defensin cluster. Immunogenetics 63, 641–651.
Reproductive tissue-specific expression profiling and genetic variation across a 19-gene bovine beta-defensin cluster.Crossref | GoogleScholarGoogle Scholar | 21713586PubMed |

Narciandi, F., Lloyd, A., Meade, K. G., and O’Farrelly, C. (2014). A novel subclass of bovine β-defensins links reproduction and immunology. Reprod. Fertil. Dev. 26, 769–777.
A novel subclass of bovine β-defensins links reproduction and immunology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFynsbvL&md5=2eceb717052a6963bde9b6b15c3b1d35CAS | 23870162PubMed |

Notredame, C., Higgins, D. G., and Heringa, J. (2000). T-coffee: a novel method for fast and accurate multiple-sequence alignment. J. Mol. Biol. 302, 205–217.
T-coffee: a novel method for fast and accurate multiple-sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVGntr8%3D&md5=7d8fb749c6cb094a1448acc97605f96dCAS | 10964570PubMed |

Radhakrishnan, Y., Hamil, K. G., Yenugu, S., Young, S. L., French, F. S., and Hall, S. H. (2005). Identification, characterisation and evolution of a primate beta-defensin gene cluster. Genes Immun. 6, 203–210.
Identification, characterisation and evolution of a primate beta-defensin gene cluster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFyqsbo%3D&md5=ce03525ca3c39a57e4ab2a3210b4d6b3CAS | 15772680PubMed |

Ram, H., Kumar, A., Thomas, L., and Singh, V. P. (2014). In silico approach to study adaptive divergence in nucleotide composition of the 16S rRNA gene among bacteria thriving under different temperature regimes. J. Comput. Biol. 21, 753–759.
In silico approach to study adaptive divergence in nucleotide composition of the 16S rRNA gene among bacteria thriving under different temperature regimes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyrsLnK&md5=7fd44c02920076763c1049233b4e9cc5CAS | 25147925PubMed |

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.
| 1:CAS:528:DyaK1MXmslKqsbo%3D&md5=210b3fd9b4243645aaae275c22dcda1eCAS | 10547847PubMed |

Schneider, J. J., Unholzer, A., Schaller, M., Schafer-Korting, M., and Korting, H. C. (2005). Human defensins. J. Mol. Med. (Berl.) 83, 587–595.
Human defensins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVehsr4%3D&md5=b762d36a58fd0d97f432cf0d10e886b6CAS | 15821901PubMed |

Schöniger, S., Gräfe, H., and Schoon, H. A. (2013). Expression of β-defensin in the equine endometrium. Reprod. Biol. 13, 47.
Expression of β-defensin in the equine endometrium.Crossref | GoogleScholarGoogle Scholar |

Semple, C. A., Rolfe, M., and Dorin, J. R. (2003). Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol. 4, R31.
Duplication and selection in the evolution of primate beta-defensin genes.Crossref | GoogleScholarGoogle Scholar | 12734011PubMed |

Sonoda, Y., Abdel Mageed, A. M., Isobe, N., and Yoshimura, Y. (2013). Induction of avian beta-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro. Reproduction 145, 621–631.
Induction of avian beta-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmsbbN&md5=229fa0099ddbfeb25102f2cadf5cae99CAS | 23625580PubMed |

Sørensen, O. E., Gram, L., Johnsen, A. H., Andersson, E., Bangsboll, S., Tjabringa, G. S., Hiemstra, P. S., Malm, J., Egesten, A., and Borregaard, N. (2003). Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J. Biol. Chem. 278, 28540–28546.
Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina.Crossref | GoogleScholarGoogle Scholar | 12759353PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=7b9354cb35410da4b53605f83298036eCAS | 21546353PubMed |

Tollner, T. L., Yudin, A. I., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2004). Macaque sperm release ESP13.2 and PSP94 during capacitation: the absence of ESP13.2 is linked to sperm–zona recognition and binding. Mol. Reprod. Dev. 69, 325–337.
Macaque sperm release ESP13.2 and PSP94 during capacitation: the absence of ESP13.2 is linked to sperm–zona recognition and binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslyqtLo%3D&md5=8b32805ca9ca8d870d30b2de83ae19bfCAS | 15349845PubMed |

Tollner, T. L., Yudin, A. I., Tarantal, A. F., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2008a). Beta-defensin 126 on the surface of macaque spermatozoa mediates attachment of spermatozoa to oviductal epithelia. Biol. Reprod. 78, 400–412.
Beta-defensin 126 on the surface of macaque spermatozoa mediates attachment of spermatozoa to oviductal epithelia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSltb0%3D&md5=e024dd375d598faf1aaf3b5e82cb01f1CAS | 18003946PubMed |

Tollner, T. L., Yudin, A. I., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2008b). Macaque sperm-coating protein DEFB126 facilitates spermatozoal penetration of cervical mucus. Hum. Reprod. 23, 2523–2534.
Macaque sperm-coating protein DEFB126 facilitates spermatozoal penetration of cervical mucus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ois73E&md5=95a743d2bb7b0b179168165ac8fb3aa6CAS | 18658160PubMed |

Tollner, T. L., Vandevoort, C. A., Yudin, A. I., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2009). Release of DEFB126 from macaque spermatozoa and completion of capacitation are triggered by conditions that simulate periovulatory oviductal fluid. Mol. Reprod. Dev. 76, 431–443.
Release of DEFB126 from macaque spermatozoa and completion of capacitation are triggered by conditions that simulate periovulatory oviductal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWjt7w%3D&md5=880c0fade5dfa7269cec6c22da2affc5CAS | 18937315PubMed |

Tollner, T. L., Venners, S. A., Hollox, E. J., Yudin, A. I., Liu, X., Tang, G., Xing, H., Kays, R. J., Lau, T., Overstreet, J. W., Xu, X., Bevins, C. L., and Cherr, G. N. (2011). A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci. Transl. Med. 3, 92ra65.
A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOisL%2FE&md5=a5c55c34ba8ada9906266874a56a5cd0CAS | 21775668PubMed |

Tran, D., Tran, P., Roberts, K., Osapay, G., Schaal, J., Ouellette, A., and Selsted, M. E. (2008). Microbicidal properties and cytocidal selectivity of rhesus macaque theta defensins. Antimicrob. Agents Chemother. 52, 944–953.
Microbicidal properties and cytocidal selectivity of rhesus macaque theta defensins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFalsbw%3D&md5=64c52b735b1656439a5faf14d2ae041bCAS | 18160518PubMed |

Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., and Rozen, S. G. (2012). Primer3 – new capabilities and interfaces. Nucleic Acids Res. 40, e115.

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034–research0034.11.
Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar | 12184808PubMed |

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009). Jalview Version 2 – a multiple-sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191.
Jalview Version 2 – a multiple-sequence alignment editor and analysis workbench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWis7Y%3D&md5=45b2a05c60d9509840483ae0c7d8829aCAS | 19151095PubMed |

Yudin, A. I., Tollner, T. L., Li, M. W., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2003). ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol. Reprod. 69, 1118–1128.
ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsrw%3D&md5=e43317a7375d41f150e25c9caf99411bCAS | 12773404PubMed |

Yudin, A. I., Generao, S. E., Tollner, T. L., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2005a). Beta-defensin 126 on the cell surface protects spermatozoa from immunorecognition and binding of anti-spermatozoa antibodies. Biol. Reprod. 73, 1243–1252.
Beta-defensin 126 on the cell surface protects spermatozoa from immunorecognition and binding of anti-spermatozoa antibodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KqsLvN&md5=b889e1b18b594422923438b409852515CAS | 16079310PubMed |

Yudin, A. I., Treece, C. A., Tollner, T. L., Overstreet, J. W., and Cherr, G. N. (2005b). The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx. J. Membr. Biol. 207, 119–129.
The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislWksbg%3D&md5=d9fcac8236965accc59d3494dd59f834CAS | 16550483PubMed |

Yudin, A. I., Tollner, T. L., Treece, C. A., Kays, R., Cherr, G. N., Overstreet, J. W., and Bevins, C. L. (2008). Beta-defensin 22 is a major component of the mouse sperm glycocalyx. Reproduction 136, 753–765.
Beta-defensin 22 is a major component of the mouse sperm glycocalyx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Crsw%3D%3D&md5=04d1735fe7e527e75169998e367ac7c0CAS | 18787081PubMed |

Zhao, Y., Diao, H., Ni, Z., Hu, S., Yu, H., and Zhang, Y. (2011). The epididymis-specific antimicrobial peptide beta-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus). Cell. Mol. Life Sci. 68, 697–708.
The epididymis-specific antimicrobial peptide beta-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrsrc%3D&md5=c7f5207d4ff58d2aaf7bff627731c976CAS | 20694738PubMed |

Zhou, C. X., Zhang, Y. L., Xiao, L., Zheng, M., Leung, K. M., Chan, M. Y., Lo, P. S., Tsang, L. L., Wong, H. Y., Ho, L. S., Chung, Y. W., and Chan, H. C. (2004). An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat. Cell Biol. 6, 458–464.
An epididymis-specific beta-defensin is important for the initiation of sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFSlt7s%3D&md5=1c3d13534a3f112b42cc1a5cec6ba310CAS | 15122269PubMed |