Characterisation of several ankyrin repeat protein variant 2, a phosphoprotein phosphatase 1-interacting protein, in testis and spermatozoa
Joana Vieira Silva A , Luís Korrodi-Gregório A , Georg Luers B , Maria João Cardoso A , António Patrício C , Nuno Maia C , Edgar F. da Cruz e Silva A and Margarida Fardilha A DA Laboratory of Signal Transduction, Biology Department and Institute for Research in Biomedicine – iBiMED, Health Sciences Program, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
B Institute for Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hamburg-Eppendorf, D-20246 Hamburg, Germany.
C Infante D. Pedro CHBV Hospital, 3810-193 Aveiro, Portugal.
D Corresponding author. Email: mfardilha@ua.pt
Reproduction, Fertility and Development 28(7) 1009-1019 https://doi.org/10.1071/RD14303
Submitted: 21 August 2014 Accepted: 16 November 2014 Published: 7 January 2015
Abstract
Phosphoprotein phosphatase 1 (PPP1) catalytic subunit gamma 2 (PPP1CC2), a PPP1 isoform, is largely restricted to testicular germ cells and spermatozoa. The key to understanding PPP1 regulation in male germ cells lies in the identification and characterisation of its interacting partners. This study was undertaken to determine the expression patterns of the several ankyrin repeat protein variant 2 (SARP2), a PPP1-interacting protein, in testis and spermatozoa. SARP2 was found to be highly expressed in testis and spermatozoa, and its interaction with human spermatozoa endogenous PPP1CC2 was confirmed by immunoprecipitation. Expression analysis by RT-qPCR revealed that SARP2 and PPP1CC2 mRNA levels were significantly higher in the spermatocyte fraction. However, microscopy revealed that SARP2 protein was only present in the nucleus of elongating and mature spermatids and in spermatozoa. In spermatozoa, SARP2 was prominently expressed in the connecting piece and flagellum, as well as, to a lesser extent, in the acrosome. A yeast two-hybrid approach was used to detect SARP2-interacting proteins and a relevant interaction with a novel sperm-associated antigen 9 (SPAG9) variant, a testis and spermatozoa-specific c-Jun N-terminal kinase-binding protein, was validated in human spermatozoa. Given the expression pattern of SARP2 and its association with PPP1CC2 and SPAG9, it may play a role in spermiogenesis and sperm function, namely in sperm motility and the acrosome reaction.
Additional keywords: phosphoprotein phosphatase 1 catalytic subunit gamma 2, sperm-associated antigen 9.
References
Bollen, M., Peti, W., Ragusa, M. J., and Beullens, M. (2010). The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci. 35, 450–458.| The extended PP1 toolkit: designed to create specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFKqsL4%3D&md5=6347db3e56209516cc55f98ba57a8aa0CAS | 20399103PubMed |
Browne, G. J., Fardilha, M., Oxenham, S. K., Wu, W., Helps, N. R., da Cruz, E. S. O. A., Cohen, P. T., and da Cruz, E. S. E. F. (2007). SARP, a new alternatively spliced protein phosphatase 1 and DNA interacting protein. Biochem. J. 402, 187–196.
| SARP, a new alternatively spliced protein phosphatase 1 and DNA interacting protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFOgtg%3D%3D&md5=0b4db2f2b00617bdf34a31deef48b5eaCAS | 17123353PubMed |
Ceulemans, H., and Bollen, M. (2004). Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1–39.
| Functional diversity of protein phosphatase-1, a cellular economizer and reset button.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotl2rtw%3D%3D&md5=e37e5c09825c2e64e495decb6cd04cecCAS | 14715909PubMed |
Chakrabarti, R., Cheng, L., Puri, P., Soler, D., and Vijayaraghavan, S. (2007). Protein phosphatase PP1γ2 in sperm morphogenesis and epididymal initiation of sperm motility. Asian J. Androl. 9, 445–452.
| Protein phosphatase PP1γ2 in sperm morphogenesis and epididymal initiation of sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVSlsLs%3D&md5=38ee7562831f85ec33f7abdf01b19d9dCAS | 17589781PubMed |
Cohen, P. T. (2002). Protein phosphatase 1: targeted in many directions. J. Cell Sci. 115, 241–256.
| 1:CAS:528:DC%2BD38Xht1CmsrY%3D&md5=f18c69b58dc96ec8e4bd760fb0fc30aeCAS | 11839776PubMed |
Cohen, P. T., Browne, G. J., Delibegovic, M., and Munro, S. (2003). Assay of protein phosphatase 1 complexes. Methods Enzymol. 366, 133–144.
| Assay of protein phosphatase 1 complexes.Crossref | GoogleScholarGoogle Scholar |
Cross, N. L., Morales, P., Overstreet, J. W., and Hanson, F. W. (1986). Two simple methods for detecting acrosome-reacted human sperm. Gamete Res. 15, 213–226.
| Two simple methods for detecting acrosome-reacted human sperm.Crossref | GoogleScholarGoogle Scholar |
da Cruz e Silva, E. F., Fox, C. A., Ouimet, C. C., Gustafson, E., Watson, S. J., and Greengard, P. (1995). Differential expression of protein phosphatase 1 isoforms in mammalian brain. J. Neurosci. 15, 3375–3389.
| 1:CAS:528:DyaK2MXls1ahtLg%3D&md5=1f0ce950a96eb0a9c305f5f6f6ee86e7CAS | 7751917PubMed |
Dadoune, J. P., Siffroi, J. P., and Alfonsi, M. F. (2004). Transcription in haploid male germ cells. Int. Rev. Cytol. 237, 1–56.
| Transcription in haploid male germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVentLzF&md5=56e8e99aa0afdeda69a80bc25b9ccb56CAS | 15380665PubMed |
Dastig, S., Nenicu, A., Otte, D. M., Zimmer, A., Seitz, J., Baumgart-Vogt, E., and Luers, G. H. (2011). Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress. Histochem. Cell Biol. 136, 413–425.
| Germ cells of male mice express genes for peroxisomal metabolic pathways implicated in the regulation of spermatogenesis and the protection against oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyjtL7P&md5=75af0cd30503f5cd20df5147792cc046CAS | 21898072PubMed |
De Jonge, C. J., and Barratt, C. L. (2013). Methods for the assessment of sperm capacitation and acrosome reaction excluding the sperm penetration assay. Methods Mol. Biol. 927, 113–118.
| Methods for the assessment of sperm capacitation and acrosome reaction excluding the sperm penetration assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Snu70%3D&md5=8c43106cc9c0271c70f1693e604daadfCAS | 22992908PubMed |
Eddy, E. M. (2002). Male germ cell gene expression. Recent Prog. Horm. Res. 57, 103–128.
| Male germ cell gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Wqt7g%3D&md5=672ff539b9c8f11e1fa1543b596401bfCAS | 12017539PubMed |
Fardilha, M., Esteves, S. L., Korrodi-Gregorio, L., da Cruz, E. S. O. A., and da Cruz, E. S. F. F. (2010). The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease. Curr. Med. Chem. 17, 3996–4017.
| The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1WisQ%3D%3D&md5=d50f69eb039612ec32d284c32541107eCAS | 20939825PubMed |
Fardilha, M., Esteves, S. L. C., Korrodi-Gregório, L., Pelech, S., da Cruz e Silva, O. A. B., and da Cruz e Silva, E. (2011a). Protein phospatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol. Hum. Reprod. 17, 466–477.
| Protein phospatase 1 complexes modulate sperm motility and present novel targets for male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCnsbY%3D&md5=552a3598dc16ef3be0a68fafddf582d5CAS | 21257602PubMed |
Fardilha, M., Esteves, S. L. C., Korrodi-Gregório, L., Vintém, A. P., Domingues, S. C., Rebelo, S., Morrice, N., Cohen, P. T., da Cruz e Silva, O. A., and da Cruz e Silva, E. F. (2011b). Identification of the human testis protein phosphatase 1 interactome. Biochem. Pharmacol. 82, 1403–1415.
| Identification of the human testis protein phosphatase 1 interactome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlars77N&md5=5acba90c9cad1f275e2d6e5cd6bcd9f9CAS | 21382349PubMed |
Fardilha, M., Ferreira, M., Pelech, S., Vieira, S., Rebelo, S., Korrodi-Gregorio, L., Sousa, M., Barros, A., Silva, V., da Cruz, E. S. O. A., and da Cruz, E. S. F. F. (2013). ‘Omics’ of human sperm: profiling protein phosphatases. Omics 17, 460–472.
| ‘Omics’ of human sperm: profiling protein phosphatases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlKrtrbF&md5=b42e52f9e2e1accac0499dd02f79fb5aCAS | 23895272PubMed |
Forgione, N., Vogl, A. W., and Varmuza, S. (2010). Loss of protein phosphatase 1cγ (PPP1CC) leads to impaired spermatogenesis associated with defects in chromatin condensation and acrosome development: an ultrastructural analysis. Reproduction 139, 1021–1029.
| Loss of protein phosphatase 1cγ (PPP1CC) leads to impaired spermatogenesis associated with defects in chromatin condensation and acrosome development: an ultrastructural analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsbw%3D&md5=34b7c067b35746ac835e99a009dd3925CAS | 20385779PubMed |
Heroes, E., Lesage, B., Görnemann, J., Beullens, M., Van Meervelt, L., and Bollen, M. (2013). The PP1 binding code: a molecular-Lego strategy that governs specificity. FEBS J. 280, 584–595.
| The PP1 binding code: a molecular-Lego strategy that governs specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFClsbY%3D&md5=e8287afea23c83f7aefd161fe41a38beCAS | 22360570PubMed |
Ivell, R., Danner, S., and Fritsch, M. (2004). Post-meiotic gene products as targets for male contraception. Mol. Cell. Endocrinol. 216, 65–74.
| Post-meiotic gene products as targets for male contraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVens7s%3D&md5=e604258023a71d0e3712c77e6649cf1fCAS | 15109746PubMed |
Jagadish, N., Rana, R., Selvi, R., Mishra, D., Garg, M., Yadav, S., Herr, J. C., Okumura, K., Hasegawa, A., Koyama, K., and Suri, A. (2005). Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem. J. 389, 73–82.
| Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1ykur0%3D&md5=fb509ebc6d10bc53495434aa2ab0a56cCAS | 15693750PubMed |
Jagadish, N., Rana, R., Mishra, D., Garg, M., Selvi, R., and Suri, A. (2006). Characterization of immune response in mice to plasmid DNA encoding human sperm associated antigen 9 (SPAG9). Vaccine 24, 3695–3703.
| Characterization of immune response in mice to plasmid DNA encoding human sperm associated antigen 9 (SPAG9).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFGksbo%3D&md5=913d1c9b9bd60eadff29199b8829aa3cCAS | 16061308PubMed |
Korrodi-Gregório, L., Ferreira, M., Vintém, A. P., Wu, W., Muller, T., Marcus, K., Vijayaraghavan, S., Brautigan, D. L., da Cruz, E. S. O. A., Fardilha, M., and da Cruz, E. S. E. F. (2013a). Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa. BMC Cell Biol. 14, 15.
| Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 23506001PubMed |
Korrodi-Gregório, L., Vieira, S. I., Esteves, S. L. C., Silva, J. V., Freitas, M. J., Brauns, A.-K., Luers, G., Abrantes, J., Esteves, P. J., da Cruz e Silva, O. A. B., Fardilha, M., and da Cruz e Silva, E. F. (2013b). TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network. Biol. Open 2, 453–465.
| TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network.Crossref | GoogleScholarGoogle Scholar | 23789093PubMed |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=6db539426b70529f14f65734e4c1d0f6CAS | 11846609PubMed |
MacLeod, G., Shang, P., Booth, G. T., Mastropaolo, L. A., Manafpoursakha, N., Vogl, A. W., and Varmuza, S. (2014). PPP1CC2 can form a kinase/phosphatase complex with the testis-specific proteins TSSK1 and TSKS in the mouse testis. Reproduction 147, 1–12.
| PPP1CC2 can form a kinase/phosphatase complex with the testis-specific proteins TSSK1 and TSKS in the mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2ksbw%3D&md5=aff7a5382827f906637b460b210070e0CAS | 24088291PubMed |
Naz, R. K., and Rajesh, P. B. (2004). Role of tyrosine phosphorylation in sperm capacitation/ acrosome reaction. Reprod. Biol. Endocrinol. 2, 75.
| Role of tyrosine phosphorylation in sperm capacitation/ acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 15535886PubMed |
Publicover, S. J., Giojalas, L. C., Teves, M. E., de Oliveira, G. S., Garcia, A. A., Barratt, C. L., and Harper, C. V. (2008). Ca2+ signalling in the control of motility and guidance in mammalian sperm. Front. Biosci. 13, 5623–5637.
| Ca2+ signalling in the control of motility and guidance in mammalian sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVOju7k%3D&md5=98178ab78ebae4704da7b3d8b9cb448bCAS | 18508611PubMed |
Shankar, S., Mohapatra, B., and Suri, A. (1998). Cloning of a novel human testis mRNA specifically expressed in testicular haploid germ cells, having unique palindromic sequences and encoding a leucine zipper dimerization motif. Biochem. Biophys. Res. Commun. 243, 561–565.
| Cloning of a novel human testis mRNA specifically expressed in testicular haploid germ cells, having unique palindromic sequences and encoding a leucine zipper dimerization motif.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1eksbY%3D&md5=56a510346eb68f96bdf8db6aff4452faCAS | 9480848PubMed |
Sinha, N., Pilder, S., and Vijayaraghavan, S. (2012). Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice. PLoS ONE 7, e47623.
| Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WrsrjF&md5=e856a2398a7ed2d1fa09865fb6335185CAS | 23082183PubMed |
Smith, G. D., Wolf, D. P., Trautman, K. C., da Cruz e Silva, E. F., Greengard, P., and Vijayaraghavan, S. (1996). Primate sperm contain protein phosphatase 1, a biochemical mediator of motility. Biol. Reprod. 54, 719–727.
| Primate sperm contain protein phosphatase 1, a biochemical mediator of motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCjtb0%3D&md5=23fb97613815eb9d1b7ce0b4356f7a60CAS | 8835396PubMed |
Soler, D. C., Kadunganattil, S., Ramdas, S., Myers, K., Roca, J., Slaughter, T., Pilder, S. H., and Vijayaraghavan, S. (2009). Expression of transgenic PPP1CC2 in the testis of Ppp1cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility. Biol. Reprod. 81, 343–352.
| Expression of transgenic PPP1CC2 in the testis of Ppp1cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVaitbY%3D&md5=129c5cb5b8fc6a6c5c9d7c4a94fd67aaCAS | 19420386PubMed |
Terrak, M., Kerff, F., Langsetmo, K., Tao, T., and Dominguez, R. (2004). Structural basis of protein phosphatase 1 regulation. Nature 429, 780–784.
| Structural basis of protein phosphatase 1 regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVOjt7s%3D&md5=2e34d7d1699ba1b01c90a5170d6ffcd6CAS | 15164081PubMed |
Varmuza, S., Jurisicova, A., Okano, K., Hudson, J., Boekelheide, K., and Shipp, E. B. (1999). Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cγ gene. Dev. Biol. 205, 98–110.
| Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cγ gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslCisg%3D%3D&md5=fca0615a05327082c00baacb78e41b32CAS | 9882500PubMed |
Vijayaraghavan, S., Stephens, D. T., Trautman, K., Smith, G. D., Khatra, B., da Cruz e Silva, E. F., and Greengard, P. (1996). Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol. Reprod. 54, 709–718.
| Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCjtbw%3D&md5=d3dd9a83c8dcfb045a6b264874bcef33CAS | 8835395PubMed |
Virshup, D. M., and Shenolikar, S. (2009). From promiscuity to precision: protein phosphatases get a makeover. Mol. Cell 33, 537–545.
| From promiscuity to precision: protein phosphatases get a makeover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFSmsr4%3D&md5=e262df3f2e507f8d2a974c1a8ae427c4CAS | 19285938PubMed |
Wang, Y., Chen, J., Yu, Z., Xu, X., and Gui, Y. T. (2009). Expression and location of SPAG9 in human ejaculated spermatozoa. Zhonghua Nan Ke Xue 15, 771–774.
| 1:CAS:528:DC%2BC3cXptF2itw%3D%3D&md5=70fa29349bc2a1aa6e6a9506cd2bd12eCAS | 19947555PubMed |
World Health Organization (2013). Infertility definitions and terminology. Available at http://www.who.int/reproductivehealth/topics/infertility/definitions/en/index.html [Verified 5 December 2014]