Epigenetic pattern changes in prenatal female Sprague-Dawley rats following exposure to androgen
Yanjie Xia A , Shanmei Shen B , Xinlin Zhang A , Zhantao Deng A , Zou Xiang A , Hongwei Wang A , Long Yi A , Qian Gao A and Yong Wang A CA State Key Laboratory of Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Hankou Road 22, Nanjing 210093, China.
B Divisions of Endocrinology, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Zhongshan Road 321, Nanjing 210008, China.
C Corresponding author. Email: yongwang@nju.edu.cn
Reproduction, Fertility and Development 28(9) 1414-1423 https://doi.org/10.1071/RD14292
Submitted: 8 August 2014 Accepted: 28 January 2015 Published: 31 March 2015
Abstract
Androgen excess is generally considered to be one of the major characteristics of polycystic ovary syndrome (PCOS). Evidence from both clinical research and animal studies has revealed that this syndrome may have fetal origins, with epigenetics being proposed as the underlying mechanism. Our PCOS rat model induced by prenatal administration of 3 mg testosterone from Embryonic Day (E) 16 to E19 showed polycystic ovaries, irregular oestrous cycles and endocrine disorders in adulthood. The methylation status of 16, 8 and 4 cytosine–phosphate–guanine (CpG) sites in the promoter regions of the androgen receptor (Ar), cytochrome P450 family 11, subfamily A, polypeptide 1 (Cyp11a1) and cytochrome P450, family 17, subfamily A, polypeptide 1 (Cyp17a1) genes, respectively, were measured by pyrosequencing. We identified three hypomethylated sites (CpG +58, +65 and +150) in Ar and one hypomethylated site (CpG +1016) in Cyp11a1 in peripheral blood cells of prenatally androgenised (PNA) rats. In ovarian tissue, five CpG sites of Ar (CpG +87, +91, +93, +98, +150) and one single CpG site in Cyp11a1 (CpG +953) were significantly hypomethylated in PNA rats, but the modified methylation of these two genes may not be sufficient to significantly alter levels of gene expression. Furthermore, tissue-specific methylation analysis revealed that both Ar and Cyp11a1 exhibited significant hypomethylation in testis in contrast with ovary and blood. PNA may lead to methylation pattern changes and the development of PCOS, but further studies are required to reveal causal relationships.
Additional keywords: infertility, methylation, ovary.
References
Abbott, D. H., Barnett, D. K., Bruns, C. M., and Dumesic, D. A. (2005). Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum. Reprod. Update 11, 357–374.| Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVaksb8%3D&md5=9d222cfbc5c22aefd16d9a3d6fd5c4f9CAS | 15941725PubMed |
Abbott, D. H., Nicol, L. E., Levine, J. E., Xu, N., Goodarzi, M. O., and Dumesic, D. A. (2013). Nonhuman primate models of polycystic ovary syndrome. Mol. Cell. Endocrinol. 373, 21–28.
| Nonhuman primate models of polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFCntLw%3D&md5=c710061fd4ed4de5fd465fe1d6d746fdCAS | 23370180PubMed |
Barnes, R. B., Rosenfield, R. L., Ehrmann, D. A., Cara, J. F., Cuttler, L., Levitsky, L. L., and Rosenthal, I. M. (1994). Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J. Clin. Endocrinol. Metab. 79, 1328–1333.
| 1:CAS:528:DyaK2MXit1eksLs%3D&md5=0b7626e61dafc55febb0a018a56ec2ecCAS | 7962325PubMed |
Brinkmann, A. O. (2001). Molecular basis of androgen insensitivity. Mol. Cell. Endocrinol. 179, 105–109.
| Molecular basis of androgen insensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVylsbo%3D&md5=ba274107c28cf39a332141ac9832f053CAS | 11420135PubMed |
Chowdhury, S., Erickson, S. W., MacLeod, S. L., Cleves, M. A., Hu, P., Karim, M. A., and Hobbs, C. A. (2011). Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS ONE 6, e16506.
| Maternal genome-wide DNA methylation patterns and congenital heart defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsLg%3D&md5=8f05b8d65f39059e27f36787c0b104bcCAS | 21297937PubMed |
Chu, L. W., Tam, S., Kung, A. W., Lo, S., Fan, S., Wong, R. L., Morley, J. E., and Lam, K. S. (2008). Serum total and bioavailable testosterone levels, central obesity, and muscle strength changes with aging in healthy Chinese men. J. Am. Geriatr. Soc. 56, 1286–1291.
| Serum total and bioavailable testosterone levels, central obesity, and muscle strength changes with aging in healthy Chinese men.Crossref | GoogleScholarGoogle Scholar | 18482300PubMed |
Daneshmand, S., Weitsman, S. R., Navab, A., Jakimiuk, A. J., and Magoffin, D. A. (2002). Overexpression of theca-cell messenger RNA in polycystic ovary syndrome does not correlate with polymorphisms in the cholesterol side-chain cleavage and 17alpha-hydroxylase/C(17–20) lyase promoters. Fertil. Steril. 77, 274–280.
| Overexpression of theca-cell messenger RNA in polycystic ovary syndrome does not correlate with polymorphisms in the cholesterol side-chain cleavage and 17alpha-hydroxylase/C(17–20) lyase promoters.Crossref | GoogleScholarGoogle Scholar | 11821083PubMed |
Echiburú, B., Pérez-Bravo, F., Maliqueo, M., Ladrón de Guevara, A., Gálvez, C., Crisosto, N., and Sir-Petermann, T. (2012). CAG repeat polymorphism of androgen receptor gene and X-chromosome inactivation in daughters of women with polycystic ovary syndrome (PCOS): relationship with endocrine and metabolic parameters. Gynecol. Endocrinol. 28, 516–520.
| CAG repeat polymorphism of androgen receptor gene and X-chromosome inactivation in daughters of women with polycystic ovary syndrome (PCOS): relationship with endocrine and metabolic parameters.Crossref | GoogleScholarGoogle Scholar | 22724574PubMed |
Franks, S., and McCarthy, M. (2004). Genetics of ovarian disorders: polycystic ovary syndrome. Rev. Endocr. Metab. Disord. 5, 69–76.
| Genetics of ovarian disorders: polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Cmur0%3D&md5=69a09dd9de7d7a34a018892559a660ccCAS | 14966390PubMed |
Griswold, M. D., and Kim, J. S. (2001). Site-specific methylation of the promoter alters deoxyribonucleic acid-protein interactions and prevents follicle-stimulating hormone receptor gene transcription. Biol. Reprod. 64, 602–610.
| Site-specific methylation of the promoter alters deoxyribonucleic acid-protein interactions and prevents follicle-stimulating hormone receptor gene transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVOitQ%3D%3D&md5=113a62ae9cf316b297205fa0f7191c4cCAS | 11159363PubMed |
Hague, W. M., Adams, J., Rodda, C., Brook, C. G., de Bruyn, R., Grant, D. B., and Jacobs, H. S. (1990). The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin. Endocrinol. (Oxf.) 33, 501–510.
| The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FjtVSluw%3D%3D&md5=3b2b586dd9c07af8140bbe2742e888caCAS | 2225492PubMed |
Heerwagen, M. J., Miller, M. R., Barbour, L. A., and Friedman, J. E. (2010). Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R711–R722.
| Maternal obesity and fetal metabolic programming: a fertile epigenetic soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WgurvI&md5=fca89c9445a1dab76a3a98b2ce1f4c7cCAS | 20631295PubMed |
Heinlein, C. A., and Chang, C. (2004). Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308.
| Androgen receptor in prostate cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFSqtLY%3D&md5=745dcc48234a7966d3cd413e6366e230CAS | 15082523PubMed |
Hickey, T., Chandy, A., and Norman, R. J. (2002). The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87, 161–165.
| The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVyntg%3D%3D&md5=e1e681390d0eeae0a708f4e5cfc93fffCAS | 11788641PubMed |
Homburg, R. (2009). Androgen circle of polycystic ovary syndrome. Hum. Reprod. 24, 1548–1555.
| Androgen circle of polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslGkurk%3D&md5=2f74b4bcbda946689694d0ab4229ef02CAS | 19279033PubMed |
Keil, K. P., Abler, L. L., Laporta, J., Altmann, H. M., Yang, B., Jarrard, D. F., Hernandez, L. L., and Vezina, C. M. (2014). Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development. Dev. Biol. 396, 237–245.
| Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVems7rO&md5=e19e3a798173ea3df3c352db45c98014CAS | 25446526PubMed |
Khazamipour, N., Noruzinia, M., Fatehmanesh, P., Keyhanee, M., and Pujol, P. (2009). MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum. Reprod. 24, 2361–2364.
| MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtValsbbI&md5=a8fd740b7209fc18dd4b4bb44139cb89CAS | 19477879PubMed |
Kulis, M., Queiros, A. C., Beekman, R., and Martin-Subero, J. I. (2013). Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim. Biophys. Acta 1829, 1161–1174.
| Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yqu7vO&md5=f38932c623a4acf602f508c54469d7fdCAS | 23938249PubMed |
Legro, R. S., Driscoll, D., Strauss, J. F., Fox, J., and Dunaif, A. (1998). Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 95, 14 956–14 960.
| Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVGlsr0%3D&md5=da976720e59d4ef425d7d6227dc0bb00CAS |
Li, H., Chen, Y., Yan, L. Y., and Qiao, J. (2013). Increased expression of P450scc and CYP17 in development of endogenous hyperandrogenism in a rat model of PCOS. Endocrine 43, 184–190.
| Increased expression of P450scc and CYP17 in development of endogenous hyperandrogenism in a rat model of PCOS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVegurvN&md5=2ae048c691b090996e2a8dbffb326958CAS | 22798247PubMed |
Lombardi, L. A., Simoes, R. S., Maganhin, C. C., Baracat, M. C., Silva-Sasso, G. R., Florencio-Silva, R., Soares, J. M., and Baracat, E. C. (2014). Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary. Rev. Assoc. Med. Bras. 60, 349–356.
| Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary.Crossref | GoogleScholarGoogle Scholar | 25211419PubMed |
Marcondes, F. K., Bianchi, F. J., and Tanno, A. P. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Braz. J. Biol. 62, 609–614.
| Determination of the estrous cycle phases of rats: some helpful considerations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ksValsA%3D%3D&md5=c41ee2cb9fa0973316058a718a4e3b4dCAS | 12659010PubMed |
Miller, W. L. (2002). Androgen biosynthesis from cholesterol to DHEA. Mol. Cell. Endocrinol. 198, 7–14.
| Androgen biosynthesis from cholesterol to DHEA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCguw%3D%3D&md5=343b34bcb575db6140a2a7494b568641CAS | 12573809PubMed |
Miller, W. L. (2013). Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62–73.
| Steroid hormone synthesis in mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ClsLc%3D&md5=ab8c032be2c7ccfe8ba4e17e5d61b8bdCAS | 23628605PubMed |
Nakayama, T., Watanabe, M., Suzuki, H., Toyota, M., Sekita, N., Hirokawa, Y., Mizokami, A., Ito, H., Yatani, R., and Shiraishi, T. (2000). Epigenetic regulation of androgen receptor gene expression in human prostate cancers. Lab. Invest. 80, 1789–1796.
| Epigenetic regulation of androgen receptor gene expression in human prostate cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFShug%3D%3D&md5=b80cf650e47c9cefdb6bdcfe3342455cCAS | 11140692PubMed |
Navarro-Costa, P., Nogueira, P., Carvalho, M., Leal, F., Cordeiro, I., Calhaz-Jorge, C., Goncalves, J., and Plancha, C. E. (2010). Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum. Reprod. 25, 2647–2654.
| Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyltLvE&md5=849b9dbe196ff91268f6a9fd55f21794CAS | 20685756PubMed |
Nelson, V. L., Legro, R. S., Strauss, J. F., and McAllister, J. M. (1999). Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol. Endocrinol. 13, 946–957.
| Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yns7w%3D&md5=d65cab944eae5392de27d2932efbd7f3CAS | 10379893PubMed |
Pusalkar, M., Meherji, P., Gokral, J., Chinnaraj, S., and Maitra, A. (2009). CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome. Fertil. Steril. 92, 653–659.
| CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GntbrO&md5=c1ce61add58fb0b63f74dfd522685b47CAS | 18725155PubMed |
Ross, S. A., and Milner, J. A. (2007). Epigenetic modulation and cancer: effect of metabolic syndrome? Am. J. Clin. Nutr. 86, s872–s877.
| 18265481PubMed |
Sasaki, M., Oh, B. R., Dharia, A., Fujimoto, S., and Dahiya, R. (2000). Inactivation of the human androgen receptor gene is associated with CpG hypermethylation in uterine endometrial cancer. Mol. Carcinog. 29, 59–66.
| Inactivation of the human androgen receptor gene is associated with CpG hypermethylation in uterine endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFOjurw%3D&md5=172062c64734fa5239ae3b2fed8e4e71CAS | 11074602PubMed |
Sen, A., and Hammes, S. R. (2010). Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol. Endocrinol. 24, 1393–1403.
| Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1CntrY%3D&md5=e4b91c219aef295d721ddf9f02e05e39CAS | 20501640PubMed |
Shiina, H., Matsumoto, T., Sato, T., Igarashi, K., Miyamoto, J., Takemasa, S., Sakari, M., Takada, I., Nakamura, T., Metzger, D., Chambon, P., Kanno, J., Yoshikawa, H., and Kato, S. (2006). Premature ovarian failure in androgen receptor-deficient mice. Proc. Natl Acad. Sci. USA 103, 224–229.
| Premature ovarian failure in androgen receptor-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms12huw%3D%3D&md5=19c96c5a7b781651434907ded1f2c0daCAS | 16373508PubMed |
Sveberg Røste, L., Tauboll, E., Isojärvi, J. I., Pakarinen, A. J., Huhtaniemi, I. T., Knip, M., and Gjerstad, L. (2002). Effects of chronic valproate treatment on reproductive endocrine hormones in female and male Wistar rats. Reprod. Toxicol. 16, 767–773.
| Effects of chronic valproate treatment on reproductive endocrine hormones in female and male Wistar rats.Crossref | GoogleScholarGoogle Scholar | 12401504PubMed |
Toperoff, G., Aran, D., Kark, J. D., Rosenberg, M., Dubnikov, T., Nissan, B., Wainstein, J., Friedlander, Y., Levy-Lahad, E., Glaser, B., and Hellman, A. (2012). Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum. Mol. Genet. 21, 371–383.
| Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFar&md5=746841d237ebde563b052df9b732aa82CAS | 21994764PubMed |
Vottero, A., Capelletti, M., Giuliodori, S., Viani, I., Ziveri, M., Neri, T. M., Bernasconi, S., and Ghizzoni, L. (2006). Decreased androgen receptor gene methylation in premature pubarche: a novel pathogenetic mechanism? J. Clin. Endocrinol. Metab. 91, 968–972.
| Decreased androgen receptor gene methylation in premature pubarche: a novel pathogenetic mechanism?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1CmtLY%3D&md5=1aeaf95e317e51fb04c1d9a73ddb20d6CAS | 16403814PubMed |
Walters, K. A., Simanainen, U., and Handelsman, D. J. (2010). Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum. Reprod. Update 16, 543–558.
| Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVektr7N&md5=041aadbba90132278ddc62e6da5dccd5CAS | 20231167PubMed |
Wang, P., Zhao, H., Li, T., Zhang, W., Wu, K., Li, M., Bian, Y., Liu, H., Ning, Y., Li, G., and Chen, Z. J. (2014). Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology 155, 1445–1452.
| Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 24527662PubMed |
Wickenheisser, J. K., Quinn, P. G., Nelson, V. L., Legro, R. S., Strauss, J. F., and McAllister, J. M. (2000). Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J. Clin. Endocrinol. Metab. 85, 2304–2311.
| 1:CAS:528:DC%2BD3cXlsVCjs7w%3D&md5=fbcac7b512cbd0d02a441af054e7d192CAS | 10852468PubMed |
Wilson, C. M., and McPhaul, M. J. (1996). A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol. Cell. Endocrinol. 120, 51–57.
| A and B forms of the androgen receptor are expressed in a variety of human tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktVSgs7c%3D&md5=4a9e869461c65b22d8c3a4c18155bc73CAS | 8809738PubMed |
Witchel, S. F., and Aston, C. E. (2000). The role of heterozygosity for CYP21 in the polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 13, 1315–1317.
| 11117678PubMed |
Wu, X. Y., Li, Z. L., Wu, C. Y., Liu, Y. M., Lin, H., Wang, S. H., and Xiao, W. F. (2010). Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats. Endocr. J. 57, 201–209.
| Endocrine traits of polycystic ovary syndrome in prenatally androgenized female Sprague-Dawley rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptl2ksro%3D&md5=598f8ac53f3b1e1704d7e79b896442f2CAS | 20057162PubMed |
Xu, N., Azziz, R., and Goodarzi, M. O. (2010). Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertil. Steril. 94, 781–783e1.
| Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFantrY%3D&md5=07541a63dc579956fd68f38933c8f210CAS | 19939367PubMed |
Xu, N., Kwon, S., Abbott, D. H., Geller, D. H., Dumesic, D. A., Azziz, R., Guo, X., and Goodarzi, M. O. (2011). Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS ONE 6, e27286.
| Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejsrbN&md5=49e715e0f380496b416b1d8e139f5b42CAS | 22076147PubMed |
Yong, E. L., Loy, C. J., and Sim, K. S. (2003). Androgen receptor gene and male infertility. Hum. Reprod. Update 9, 1–7.
| Androgen receptor gene and male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVelt7s%3D&md5=a994eae29f34fad649bd24022cff72aaCAS | 12638777PubMed |
Zhang, T., Liang, W., Fang, M., Yu, J., Ni, Y., and Li, Z. (2013). Association of the CAG repeat polymorphisms in androgen receptor gene with polycystic ovary syndrome: a systemic review and meta-analysis. Gene 524, 161–167.
| Association of the CAG repeat polymorphisms in androgen receptor gene with polycystic ovary syndrome: a systemic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFemtrg%3D&md5=3438eb20a5bc00312851b033f5725fdaCAS | 23628801PubMed |
Zhang, D., Cong, J., Shen, H., Wu, Q., and Wu, X. (2014). Genome-wide identification of aberrantly methylated promoters in ovarian tissue of prenatally androgenized rats. Fertil. Steril. 102, 1458–1467.
| Genome-wide identification of aberrantly methylated promoters in ovarian tissue of prenatally androgenized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSmt7zN&md5=7289d18069010c9b2e44fc563727beb7CAS | 25150387PubMed |
Zhu, J. Q., Zhu, L., Liang, X. W., Xing, F. Q., Schatten, H., and Sun, Q. Y. (2010). Demethylation of LHR in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Mol. Hum. Reprod. 16, 260–266.
| Demethylation of LHR in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1OitLY%3D&md5=4665b11265439c74567f7382080222d8CAS | 19828691PubMed |