Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Prospects for immunocontraception in feral horse population control: exploring novel targets for an equine fertility vaccine

Aleona Swegen A B and R. John Aitken A
+ Author Affiliations
- Author Affiliations

A Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia.

B Corresponding author. Email: aleona.swegen@uon.edu.au

Reproduction, Fertility and Development 28(7) 853-863 https://doi.org/10.1071/RD14280
Submitted: 1 August 2014  Accepted: 11 October 2014   Published: 8 December 2014

Abstract

Feral horses populate vast land areas and often induce significant ecological and economic damage throughout the landscape. Non-lethal population control methods are considered favourable in light of animal welfare, social and ethical considerations; however, no single effective, safe and species-specific contraceptive agent is currently available for use in free-ranging wild and feral horses. This review explores aspects of equine reproductive physiology that may provide avenues for the development of specific and long-lasting immunocontraceptive vaccines and some of the novel strategies that may be employed to facilitate appropriate antigen discovery in future research. Potential antigen targets pertaining to spermatozoa, the ovary and oocyte, as well as the early conceptus and its associated factors, are reviewed in the context of their suitability for immunocontraceptive vaccine development.

Additional keywords: antigens, contraceptive, embryo, oocyte, reproduction, spermatozoa.


References

Amory, J. K., Hong, S., Yu, X., Muller, C. H., Faustman, E., and Goldstein, A. (2014). Melphalan, alone or conjugated to an FSH-beta peptide, kills murine testicular cells in vitro and transiently suppresses murine spermatogenesis in vivo. Theriogenology 82, 152–159.
Melphalan, alone or conjugated to an FSH-beta peptide, kills murine testicular cells in vitro and transiently suppresses murine spermatogenesis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVCnu7s%3D&md5=414d176564ddbaf106672fddc6ded0b1CAS | 24746827PubMed |

Anderson, D. J., Johnson, P. M., Alexander, N. J., Jones, W. R., and Griffin, P. D. (1987). Monoclonal antibodies to human trophoblast and sperm antigens: report of two WHO-sponsored workshops, June 30, 1986 – Toronto, Canada. J. Reprod. Immunol. 10, 231–257.
Monoclonal antibodies to human trophoblast and sperm antigens: report of two WHO-sponsored workshops, June 30, 1986 – Toronto, Canada.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3isF2gtg%3D%3D&md5=ffcecf18658853db0d57da7f9532c5ceCAS | 3585867PubMed |

Arar, S., Chan, K. H., Quinn, B. A., Waelchli, R. O., Hayes, M. A., Betteridge, K. J., and Monteiro, M. A. (2007). Desialylation of core type 1 O-glycan in the equine embryonic capsule coincides with immobilisation of the conceptus in the uterus. Carbohydr. Res. 342, 1110–1115.
Desialylation of core type 1 O-glycan in the equine embryonic capsule coincides with immobilisation of the conceptus in the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktF2mtL8%3D&md5=a51afb8af7e0c4c5caccc7a8613967aaCAS | 17335787PubMed |

Asa, C., Beever, E., Coughenour, M., Eggert, L., Garrott, R., Huntsinger, L., Kalof, L., Krausman, P., Oli, M., Palmer, G., Petersen, S., Powell, D., Rubenstein, D., and Thain, D. (2013) ‘Using Science to Improve the BLM Wild Horse and Burro Program: A Way Forward’. (National Research Council: Washington, DC.)

Baker, M. A., and Aitken, R. J. (2009). Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev. Proteomics 6, 691–705.
Proteomic insights into spermatozoa: critiques, comments and concerns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKlsrfJ&md5=83ca906e4d604672dfd0e9547e3f7759CAS | 19929613PubMed |

Barber, M. R., Lee, S. M., Steffens, W. L., Ard, M., and Fayrer-Hosken, R. A. (2001). Immunolocalisation of zona pellucida antigens in the ovarian follicle of dogs, cats, horses and elephants. Theriogenology 55, 1705–1717.
Immunolocalisation of zona pellucida antigens in the ovarian follicle of dogs, cats, horses and elephants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzhvVWnsA%3D%3D&md5=afd2750f48672ce2b7aea1f8e8300e3eCAS | 11393221PubMed |

Bazer, F. W., Ott, T. L., and Spencer, T. E. (1994). Pregnancy recognition in ruminants, pigs and horses: signals from the trophoblast. Theriogenology 41, 79–94.
Pregnancy recognition in ruminants, pigs and horses: signals from the trophoblast.Crossref | GoogleScholarGoogle Scholar |

Beckelmann, J., Budik, S., Helmreich, M., Palm, F., Walter, I., and Aurich, C. (2013). Sex-dependent insulin-like growth factor-1 expression in preattachment equine embryos. Theriogenology 79, 193–199.
Sex-dependent insulin-like growth factor-1 expression in preattachment equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Sht73F&md5=0d3516e9f62ac3d2f22c9e23aa14068bCAS | 23122604PubMed |

Beschta, R. L., Donahue, D. L., Dellasala, D. A., Rhodes, J. J., Karr, J. R., O’Brien, M. H., Fleischner, T. L., and Deacon Williams, C. (2013). Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild and feral ungulates. Environ. Manage. 51, 474–491.
Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild and feral ungulates.Crossref | GoogleScholarGoogle Scholar | 23151970PubMed |

Bhande, S., and Naz, R. K. (2007). Molecular identities of human sperm proteins reactive with antibodies in sera of immunoinfertile women. Mol. Reprod. Dev. 74, 332–340.
Molecular identities of human sperm proteins reactive with antibodies in sera of immunoinfertile women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlClur8%3D&md5=e609ff8dc6ab1131c8bb0fbef16b394dCAS | 16998854PubMed |

Blöcher, S., Behr, R., Weinbauer, G. F., Bergmann, M., and Steger, K. (2003). Different CREM-isoform gene expression between equine and human normal and impaired spermatogenesis. Theriogenology 60, 1357–1369.
Different CREM-isoform gene expression between equine and human normal and impaired spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 14511788PubMed |

Bousquet, D., Guillomot, M., and Betteridge, K. J. (1987). Equine zona pellucida and capsule: some physicochemical and antigenic properties. Gamete Res. 16, 121–132.
Equine zona pellucida and capsule: some physicochemical and antigenic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlGqsb0%3D&md5=34832cf83787021ad647b0f4cf198069CAS | 3333642PubMed |

Branco, M. D. L., Kuchembuck, M. R. G., Papa, F. O., and Filho, E. P. C. (1989). Detection of early pregnancy in mares by the rosette inhibition test and measurement of serum progesterone. Equine Vet. J. 21, 19–20.
Detection of early pregnancy in mares by the rosette inhibition test and measurement of serum progesterone.Crossref | GoogleScholarGoogle Scholar |

Budik, S., Nöbauer, K., Razzazi-Fazeli, E., and Aurich, C. (2012). Analysis of the proteins and peptides isolated from incubation medium of early equine conceptuses ­– preliminary results. J. Equine Vet. Sci. 32, 400.
Analysis of the proteins and peptides isolated from incubation medium of early equine conceptuses ­– preliminary results.Crossref | GoogleScholarGoogle Scholar |

Burns, K. H., Viveiros, M. M., Ren, Y., Wang, P., DeMayo, F. J., Frail, D. E., Eppig, J. J., and Matzuk, M. M. (2003). Roles of NPM2 in chromatin and nucleolar organisation in oocytes and embryos. Science 300, 633–636.
Roles of NPM2 in chromatin and nucleolar organisation in oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVymu7w%3D&md5=db1de04238cc1a6e97f712dcf5d5d9fbCAS | 12714744PubMed |

Caixeta, E. S., Sutton-McDowall, M. L., Gilchrist, R. B., Thompson, J. G., Price, C. A., Machado, M. F., Lima, P. F., and Buratini, J. (2013). Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus–oocyte complexes. Reproduction 146, 27–35.
Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejsLbJ&md5=da1d46ea6c2d028d2525aad3c45a01c7CAS | 23641036PubMed |

Canali, E., Bolchi, A., Spagnoli, G., Seitz, H., Rubio, I., Pertinhez, T. A., Muller, M., and Ottonello, S. (2014). A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci. Rep. 4, 4729.
A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope.Crossref | GoogleScholarGoogle Scholar | 24751665PubMed |

Cheng, G. Y., Shi, J. L., Wang, M., Hu, Y. Q., Liu, C. M., Wang, Y. F., and Xu, C. (2007). Inhibition of mouse acrosome reaction and sperm–zona pellucida binding by anti-human sperm membrane protein 1 antibody. Asian J. Androl. 9, 23–29.
Inhibition of mouse acrosome reaction and sperm–zona pellucida binding by anti-human sperm membrane protein 1 antibody.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVWktbo%3D&md5=66d9d07be70724cb2e2a1c291c57f5e9CAS | 17187156PubMed |

Clift, D., and Schuh, M. (2013). Restarting life: fertilisation and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 14, 549–562.
Restarting life: fertilisation and the transition from meiosis to mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgsbnL&md5=84bb351673baf489d1d00aab5da858c1CAS | 23942453PubMed |

Correia, B. E., Bates, J. T., Loomis, R. J., Baneyx, G., Carrico, C., Jardine, J. G., Rupert, P., Correnti, C., Kalyuzhniy, O., Vittal, V., Connell, M. J., Stevens, E., Schroeter, A., Chen, M., Macpherson, S., Serra, A. M., Adachi, Y., Holmes, M. A., Li, Y., Klevit, R. E., Graham, B. S., Wyatt, R. T., Baker, D., Strong, R. K., Crowe, J. E., Johnson, P. R., and Schief, W. R. (2014). Proof of principle for epitope-focused vaccine design. Nature 507, 201–206.
Proof of principle for epitope-focused vaccine design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2ktrk%3D&md5=ff6a3e764dc2b674f4b8db87030acb69CAS | 24499818PubMed |

Cramer, D. W., and Xu, H. (1996). Predicting age at menopause. Maturitas 23, 319–326.
Predicting age at menopause.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zos1Kqsg%3D%3D&md5=128f97d78b73299f3b69b7ef36648ac3CAS | 8794427PubMed |

De Stoppelaire, G. H., Gillespie, T. W., Brock, J. C., and Tobin, G. A. (2004). Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National Seashore: impact of horses. Environ Manage 34, 642–649.
Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National Seashore: impact of horses.Crossref | GoogleScholarGoogle Scholar | 15633024PubMed |

de Villalobos, A. E., Zalba, S. M., and Pelaez, D. V. (2011). Pinus halepensis invasion in mountain pampean grassland: effects of feral horses grazing on seedling establishment. Environ. Res. 111, 953–959.
Pinus halepensis invasion in mountain pampean grassland: effects of feral horses grazing on seedling establishment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kmt77J&md5=bd0d99eeec1ff392d1927d8d7ae85a2eCAS | 21477801PubMed |

Domagala, A., and Kurpisz, M. (2004). Identification of sperm immunoreactive antigens for immunocontraceptive purposes: a review. Reprod. Biol. Endocrinol. 2, 11.
Identification of sperm immunoreactive antigens for immunocontraceptive purposes: a review.Crossref | GoogleScholarGoogle Scholar | 15035665PubMed |

Donovan, C. E., Greer, M., and Kutzler, M. A. (2012). Physiologic responses following gonadotrophin-releasing hormone immunisation in intact male dogs. Reprod. Domest. Anim. 47, 403–405.
Physiologic responses following gonadotrophin-releasing hormone immunisation in intact male dogs.Crossref | GoogleScholarGoogle Scholar | 23279550PubMed |

Donovan, C. E., Hazzard, T., Schmidt, A., LeMieux, J., Hathaway, F., and Kutzler, M. A. (2013). Effects of a commercial canine gonadotrophin-releasing hormone vaccine on oestrus suppression and oestrous behaviour in mares. Anim. Reprod. Sci. 142, 42–47.
Effects of a commercial canine gonadotrophin-releasing hormone vaccine on oestrus suppression and oestrous behaviour in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFeqtbjF&md5=0c7e0da3caf1499fe6eea64d66f8b2aaCAS | 24083943PubMed |

Dyer, C. A., Raymond-Whish, S., Schmuki, S., Fisher, T., Pyzyna, B., Bennett, A., and Mayer, L. P. (2013). Accelerated follicle depletion in vitro and in vivo in Sprague–Dawley rats using the combination of 4-vinylcyclohexene diepoxide and triptolide. J. Zoo Wildl. Med. 44, S9–S17.
Accelerated follicle depletion in vitro and in vivo in Sprague–Dawley rats using the combination of 4-vinylcyclohexene diepoxide and triptolide.Crossref | GoogleScholarGoogle Scholar | 24437079PubMed |

Ellerman, D. A., Cohen, D. J., Weigel Munoz, M., Da Ros, V. G., Ernesto, J. I., Tollner, T. L., and Cuasnicu, P. S. (2010). Immunologic behaviour of human cysteine-rich secretory protein 1 (hCRISP1) in primates: prospects for immunocontraception. Fertil. Steril. 93, 2551–2556.
Immunologic behaviour of human cysteine-rich secretory protein 1 (hCRISP1) in primates: prospects for immunocontraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1arur0%3D&md5=5ea5a2c9545904af38bb1514f5367b99CAS | 20226442PubMed |

Elvin, J. A., Yan, C., Wang, P., Nishimori, K., and Matzuk, M. M. (1999). Molecular characterisation of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol. Endocrinol. 13, 1018–1034.
Molecular characterisation of the follicle defects in the growth differentiation factor 9-deficient ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yns7Y%3D&md5=8e31fae9ba8b0084535a00bb3daed249CAS | 10379899PubMed |

Fijak, M., Iosub, R., Schneider, E., Linder, M., Respondek, K., Klug, J., and Meinhardt, A. (2005). Identification of immunodominant autoantigens in rat autoimmune orchitis. J. Pathol. 207, 127–138.
Identification of immunodominant autoantigens in rat autoimmune orchitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKnsr7O&md5=5dbfc850e16848c0ab427dc340ab0b1cCAS | 16092147PubMed |

Fishel, S. B., Edwards, R. G., and Evans, C. J. (1984). Human chorionic gonadotrophin secreted by preimplantation embryos cultured in vitro. Science 223, 816–818.
Human chorionic gonadotrophin secreted by preimplantation embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtFGhs7g%3D&md5=6f02c04c606633ba40ea72297fd90190CAS | 6546453PubMed |

Garrott, R. A., Cook, J. G., Bernoco, M. M., Kirkpatrick, J. F., Cadwell, L. L., Cherry, S., and Tiller, B. (1998). Antibody response of elk immunised with porcine zona pellucida. J. Wildl. Dis. 34, 539–546.
Antibody response of elk immunised with porcine zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czntFymsA%3D%3D&md5=e2a6f97e7910fcb2ee023e1d51b9ccd3CAS | 9706563PubMed |

Goyal, S., Manivannan, B., Kumraj, G. R., Ansari, A. S., and Lohiya, N. K. (2013). Evaluation of efficacy and safety of recombinant sperm-specific contraceptive vaccine in albino mice. Am. J. Reprod. Immunol. 69, 495–508.
Evaluation of efficacy and safety of recombinant sperm-specific contraceptive vaccine in albino mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFagtr8%3D&md5=fdb7e66b8d41d12e8ce3e5936a866938CAS | 23405955PubMed |

Gray, M. E., Thain, D. S., Cameron, E. Z., and Miller, L. A. (2010). Multi-year fertility reduction in free-roaming feral horses with single-injection immunocontraceptive formulations. Wildl. Res. 37, 475–481.
Multi-year fertility reduction in free-roaming feral horses with single-injection immunocontraceptive formulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCht7%2FI&md5=8e4a436ea360cdbcc576c584cdedcbeaCAS |

Grignard, E., Cadet, R., Saez, F., Drevet, J. R., and Vernet, P. (2007). Identification of sperm antigens as a first step towards the generation of a contraceptive vaccine to decrease fossorial water vole Arvicola terrestris Scherman proliferations. Theriogenology 68, 779–795.
Identification of sperm antigens as a first step towards the generation of a contraceptive vaccine to decrease fossorial water vole Arvicola terrestris Scherman proliferations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1SgsL4%3D&md5=560dfa7a35f30f3f72d0fb8c2f3771daCAS | 17645936PubMed |

Hardy, C. M., Clydesdale, G., Mobbs, K. J., Pekin, J., Lloyd, M. L., Sweet, C., Shellam, G. R., and Lawson, M. A. (2004). Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 127, 325–334.
Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Ols70%3D&md5=75d2d51537e5fbb4f5f47becae65cd2fCAS | 15016952PubMed |

He, Y., Rappuoli, R., De Groot, A. S., and Chen, R. T. (2010). Emerging vaccine informatics. J. Biomed. Biotechnol. 2010, 218590.
| 21772787PubMed |

Hearn, J. P., Gidley-Baird, A. A., Hodges, J. K., Summers, P. M., and Webley, G. E. (1988). Embryonic signals during the peri-implantation period in primates. J. Reprod. Fertil. Suppl. 36, 49–58.
| 1:CAS:528:DyaL1cXls1emu7o%3D&md5=e95e5fc80ce6d9e36b47a6f88758062cCAS | 3142993PubMed |

Herrler, A., Pell, J. M., Allen, W. R., Beier, H. M., and Stewart, F. (2000). Horse conceptuses secrete insulin-like growth factor-binding protein 3. Biol. Reprod. 62, 1804–1811.
Horse conceptuses secrete insulin-like growth factor-binding protein 3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2htrw%3D&md5=a25eeb913d01c69ae19d5bd3e0e6d6d0CAS | 10819785PubMed |

Horteloup, M. P., Threlfall, W. R., and Funk, J. A. (2005). The early conception factor (ECF™) lateral flow assay for non-pregnancy determination in the mare. Theriogenology 64, 1061–1071.
The early conception factor (ECF™) lateral flow assay for non-pregnancy determination in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVCgtrk%3D&md5=62c25b82ee3e99274f6d18a0cfbad3c7CAS | 16125552PubMed |

Ing, N. H., Laughlin, A. M., Varner, D. D., and Welsh, T. H., Jr., Ing, N. H., Laughlin, A. M., Varner, D. D., and Welsh, T. H., Jr., (2004). Gene expression in the spermatogenically inactive “dark” and maturing “light” testicular tissues of the prepubertal colt. J. Androl. 25, 535–544.
| 1:CAS:528:DC%2BD2cXmtFSnsL4%3D&md5=900f5fb7b5c25cbdea24427c9b2067e4CAS | 15223842PubMed |

Kalaydjiev, S. K. (2002). Sperm antigenicity shared in five vertebrate classes. Theriogenology 57, 1073–1085.
Sperm antigenicity shared in five vertebrate classes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zgtVamsg%3D%3D&md5=6b389cce007aa861fe157c2d4d70ae87CAS | 12041901PubMed |

Kamada, M., Yamamoto, S., Takikawa, M., Kunimi, K., Maegawa, M., Futaki, S., Ohmoto, Y., Aono, T., and Koide, S. S. (1999). Identification of the human sperm protein that interacts with sperm-immobilising antibodies in the sera of infertile women. Fertil. Steril. 72, 691–695.
Identification of the human sperm protein that interacts with sperm-immobilising antibodies in the sera of infertile women.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvkvFChsA%3D%3D&md5=1c99be3a5ed9ae4c3ee0fd1a8ac7914aCAS | 10521112PubMed |

Kenney, R. M., Cummings, M. R., Teuscher, C., and Love, C. C. (2000). Possible role of autoimmunity to spermatozoa in idiopathic infertility of stallions. J. Reprod. Fertil. Suppl. , 23–30.
| 1:STN:280:DC%2BC3cjitlCrsw%3D%3D&md5=b07f1ff9d6e8c91a8ade63962eb2eb3cCAS | 20681112PubMed |

Kirkpatrick, J. F., Turner, J. W., Liu, I. K., and Fayrer-Hosken, R. (1996). Applications of pig zona pellucida immunocontraception to wildlife fertility control. J. Reprod. Fertil. Suppl. 50, 183–189.
| 1:STN:280:DyaK2s7gsFGhsQ%3D%3D&md5=87f77a70eadd6eb9532e9b0e2a8a42d9CAS | 8984182PubMed |

Kirkpatrick, J. F., Turner, J. W., Liu, I. K., Fayrer-Hosken, R., and Rutberg, A. T. (1997). Case studies in wildlife immunocontraception: wild and feral equids and white-tailed deer. Reprod. Fertil. Dev. 9, 105–110.
Case studies in wildlife immunocontraception: wild and feral equids and white-tailed deer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mt12qsw%3D%3D&md5=8497c0826aafb2f9c07e6a51e2ffbdb7CAS | 9109199PubMed |

Kirkpatrick, J. F., Lyda, R. O., and Frank, K. M. (2011). Contraceptive vaccines for wildlife: a review. Am. J. Reprod. Immunol. 66, 40–50.
Contraceptive vaccines for wildlife: a review.Crossref | GoogleScholarGoogle Scholar | 21501279PubMed |

Kitajima, T. S., Kawashima, S. A., and Watanabe, Y. (2004). The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517.
The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWnsg%3D%3D&md5=a41ffe29cfa115eca6a5e6fc2ec7c3b1CAS | 14730319PubMed |

Klein, C., and Troedsson, M. H. (2011). Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reprod. Fertil. Dev. 23, 952–963.
Maternal recognition of pregnancy in the horse: a mystery still to be solved.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjt7bM&md5=d79316a329ee3be3d3ff53fdfee85595CAS | 22127001PubMed |

Klein, C., and Troedsson, M. (2012). Equine pre-implantation conceptuses express neuraminidase 2 – a potential mechanism for desialylation of the equine capsule. Reprod. Domest. Anim. 47, 449–454.
Equine pre-implantation conceptuses express neuraminidase 2 – a potential mechanism for desialylation of the equine capsule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVKmtLk%3D&md5=4fd32bcf9e9d37510a693ff9ab8d0e43CAS | 22022932PubMed |

Lauber, T. B., Anthony, M. L., and Knuth, B. A. (2001). Gender and ethical judgments about suburban deer management. Soc. Nat. Resour. 14, 571–583.
Gender and ethical judgments about suburban deer management.Crossref | GoogleScholarGoogle Scholar |

Lee, C., Hunter, A. G., and Joo, H. S. (1995). Effect of antisperm antibodies on ability of in vitro-capacitated stallion sperm to penetrate zona-free hamster eggs. Biol. Reprod. 52, 132.

Lemons, A. R., and Naz, R. K. (2011). Contraceptive vaccines targeting factors involved in establishment of pregnancy. Am. J. Reprod. Immunol. 66, 13–25.
Contraceptive vaccines targeting factors involved in establishment of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGmsrg%3D&md5=d66715dc66e1494bfd5cffdeb56ce724CAS | 21481058PubMed |

Li, L., Baibakov, B., and Dean, J. (2008). A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425.
A subcortical maternal complex essential for preimplantation mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOit7vL&md5=03a16db44d7fb0f91d5f2a023d6d1308CAS | 18804437PubMed |

Llano, E., Gomez, R., Gutierrez-Caballero, C., Herran, Y., Sanchez-Martin, M., Vazquez-Quinones, L., Hernandez, T., de Alava, E., Cuadrado, A., Barbero, J. L., Suja, J. A., and Pendas, A. M. (2008). Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev. 22, 2400–2413.
Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSrs7zK&md5=7d593216f3f56ec3b4a11af0527bade3CAS | 18765791PubMed |

Lou, Y. H., McElveen, M. F., Garza, K. M., and Tung, K. S. (1996). Rapid induction of autoantibodies by endogenous ovarian antigens and activated T cells: implication in autoimmune disease pathogenesis and B-cell tolerance. J. Immunol. 156, 3535–3540.
| 1:CAS:528:DyaK28XisFaqt7g%3D&md5=c71d721060bee0292f8f8193d8747c14CAS | 8617983PubMed |

Luborsky, J. (2002). Ovarian autoimmune disease and ovarian autoantibodies. J. Womens Health Gend. Based Med. 11, 585–599.
Ovarian autoimmune disease and ovarian autoantibodies.Crossref | GoogleScholarGoogle Scholar | 12396892PubMed |

Luo, J., Yang, J., Cheng, Y., Li, W., Yin, T.-L., Xu, W.-M., and Zou, Y.-J. (2012). Immunogenicity study of plasmid DNA encoding mouse cysteine-rich secretory protein-1 (mCRISP1) as a contraceptive vaccine. Am. J. Reprod. Immunol. 68, 47–55.
Immunogenicity study of plasmid DNA encoding mouse cysteine-rich secretory protein-1 (mCRISP1) as a contraceptive vaccine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ChtbvO&md5=58e528c9e4d5212ae2bcf6f146a4a975CAS | 22429321PubMed |

Madosky, J. M., Rubenstein, D. I., Howard, J. J., and Stuska, S. (2010). The effects of immunocontraception on harem fidelity in a feral horse (Equus caballus) population. Appl. Anim. Behav. Sci. 128, 50–56.
The effects of immunocontraception on harem fidelity in a feral horse (Equus caballus) population.Crossref | GoogleScholarGoogle Scholar |

Marino, E., Threlfall, W. R., and Schwarze, R. A. (2009). Early conception factor lateral flow assays for pregnancy in the mare. Theriogenology 71, 877–883.
Early conception factor lateral flow assays for pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7ptFOjtA%3D%3D&md5=3fde763758a1fc74c560ee399496747eCAS | 19185909PubMed |

Menkhorst, E. M., Cui, S., and Selwood, L. (2008). Novel immunocontraceptive targets in mammals: uterine secretions and the conceptus; a marsupial approach. Reproduction 136, 471–480.
Novel immunocontraceptive targets in mammals: uterine secretions and the conceptus; a marsupial approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtr%2FK&md5=caa61d5dbe942fb0d0a7e696790439e5CAS | 18614625PubMed |

Meyers, S. A., and Rosenberger, A. E. (1999). A plasma membrane-associated hyaluronidase is localised to the posterior acrosomal region of stallion sperm and is associated with spermatozoal function. Biol. Reprod. 61, 444–451.
A plasma membrane-associated hyaluronidase is localised to the posterior acrosomal region of stallion sperm and is associated with spermatozoal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslKqtrY%3D&md5=72583a83474f5cf860faffa478ed6c09CAS | 10411525PubMed |

Miyake, T., Taguchi, O., Ikeda, H., Sato, Y., Takeuchi, S., and Nishizuka, Y. (1988). Acute oocyte loss in experimental autoimmune oophoritis as a possible model of premature ovarian failure. Am. J. Obstet. Gynecol. 158, 186–192.
Acute oocyte loss in experimental autoimmune oophoritis as a possible model of premature ovarian failure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7gtlynug%3D%3D&md5=86832efc9a95ae7c790c777e2ba11eb2CAS | 3337168PubMed |

Morris, L. H., and Allen, W. R. (2002). Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Vet. J. 34, 51–60.
Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fptlequg%3D%3D&md5=29cf402cbeb534b21b566f01ceaa6698CAS | 11822372PubMed |

Müller, T., Freuling, C. M., Gschwendner, P., Holzhofer, E., Murke, H., Rudiger, H., Schuster, P., Kloss, D., Staubach, C., Teske, K., and Vos, A. (2012). SURVIS: a fully-automated aerial baiting system for the distribution of vaccine baits for wildlife. Berl. Munch. Tierarztl. Wochenschr. 125, 197–202.
| 22712416PubMed |

Muñoz, M. W., Ernesto, J. I., Bluguermann, C., Busso, D., Battistone, M. A., Cohen, D. J., and Cuasnicu, P. S. (2012). Evaluation of testicular sperm CRISP2 as a potential target for contraception. J. Androl. 33, 1360–1370.
Evaluation of testicular sperm CRISP2 as a potential target for contraception.Crossref | GoogleScholarGoogle Scholar | 22653965PubMed |

Naz, R. K. (1999). Vaccine for contraception targeting sperm. Immunol. Rev. 171, 193–202.
Vaccine for contraception targeting sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVSiu7k%3D&md5=6242ff53e76dbf4d42ac728f5ebd30ecCAS | 10582172PubMed |

Naz, R. K. (2008). Immunocontraceptive effect of izumo and enhancement by combination vaccination. Mol. Reprod. Dev. 75, 336–344.
Immunocontraceptive effect of izumo and enhancement by combination vaccination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVCqtg%3D%3D&md5=11f7878f024b5f7b2301e53767251080CAS | 17676591PubMed |

Naz, R. K. (2011). Contraceptive vaccines: success, status and future perspective. Am. J. Reprod. Immunol. 66, 2–4.
Contraceptive vaccines: success, status and future perspective.Crossref | GoogleScholarGoogle Scholar | 21645164PubMed |

Nelson, L. M. (2001). Autoimmune ovarian failure: comparing the mouse model and the human disease. J Soc Gynecol Investig 8, S55–S57.
Autoimmune ovarian failure: comparing the mouse model and the human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Oqtrw%3D&md5=49d0b8a65243ab69aae926e64c5d963fCAS | 11223375PubMed |

Nettles, V. F. (1997). Potential consequences and problems with wildlife contraceptives. Reprod. Fertil. Dev. 9, 137–143.
Potential consequences and problems with wildlife contraceptives.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mt12qtA%3D%3D&md5=2b4bafeae094934f86a89e3c8a394320CAS | 9109204PubMed |

Nie, G. J., Lee, C., Momont, H. W., and Joo, H. S. (1993). Equine anti-sperm antibodies (EASA) – preliminary-study of the clinical response following breeding in immunised mares. Theriogenology 40, 1107–1116.
Equine anti-sperm antibodies (EASA) – preliminary-study of the clinical response following breeding in immunised mares.Crossref | GoogleScholarGoogle Scholar |

Nimmo, D. G., and Miller, K. K. (2007). Ecological and human dimensions of management of feral horses in Australia: a review. Wildl. Res. 34, 408–417.
Ecological and human dimensions of management of feral horses in Australia: a review.Crossref | GoogleScholarGoogle Scholar |

Norris, A., and Low, T. (2005) Review of the management of feral animals and their impact on biodiversity in the rangelands: a resource to aid NRM planning. In ‘Pest Animal Control CRC Report 2005’. (Ed. PACCR Centre.) pp. 73–146. (Pest Animal Control CRC: Canberra.)

Novak, S., Smith, T. A., Paradis, F., Burwash, L., Dyck, M. K., Foxcroft, G. R., and Dixon, W. T. (2010). Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 74, 956–967.
Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWqtLbL&md5=c1a810312c4e598648ef9f13a926388aCAS | 20580075PubMed |

Nuñez, C. M. V., Adelman, J. S., and Rubenstein, D. I. (2010). Immunocontraception in wild horses (Equus caballus) extends reproductive cycling beyond the normal breeding season. PLoS ONE 5, e13635.
Immunocontraception in wild horses (Equus caballus) extends reproductive cycling beyond the normal breeding season.Crossref | GoogleScholarGoogle Scholar |

O’Hern, P. A., Bambra, C. S., Isahakia, M., and Goldberg, E. (1995). Reversible contraception in female baboons immunised with a synthetic epitope of sperm-specific lactate dehydrogenase. Biol. Reprod. 52, 331–339.
Reversible contraception in female baboons immunised with a synthetic epitope of sperm-specific lactate dehydrogenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt12ksr4%3D&md5=349a4b6c648682a9ba691fee8c965be0CAS | 7536050PubMed |

Oriol, J. G., Sharom, F. J., and Betteridge, K. J. (1993). Developmentally regulated changes in the glycoproteins of the equine embryonic capsule. J. Reprod. Fertil. 99, 653–664.
Developmentally regulated changes in the glycoproteins of the equine embryonic capsule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFentbc%3D&md5=c64fbc5947f9ff87de8014c3b8ae2c28CAS | 8107051PubMed |

Ostermann-Kelm, S. D., Atwill, E. A., Rubin, E. S., Hendrickson, L. E., and Boyce, W. M. (2009). Impacts of feral horses on a desert environment. BMC Ecol. 9, 22.
Impacts of feral horses on a desert environment.Crossref | GoogleScholarGoogle Scholar | 19903355PubMed |

Otsuka, N., Tong, Z. B., Vanevski, K., Tu, W., Cheng, M. H., and Nelson, L. M. (2011). Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of mater. Endocrinology 152, 2465–2473.
Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of mater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Sntb0%3D&md5=ad5bec26e77139af36ae47d9eca50de4CAS | 21447630PubMed |

Ownby, C. L., and Shivers, C. A. (1972). Antigens of the hamster ovary and effects of anti-ovary serum on eggs. Biol. Reprod. 6, 310–318.
| 1:CAS:528:DyaE38XkvVKnurs%3D&md5=f76d947c6774599bea3b3ce0105ea0e2CAS | 4622755PubMed |

Papa, F. O., Alvarenga, M. A., Lopes, M. D., and Campos Filho, E. P. (1990). Infertility of autoimmune origin in a stallion. Equine Vet. J. 22, 145–146.
Infertility of autoimmune origin in a stallion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3gtV2ruw%3D%3D&md5=d59648f76bcb95768bec206a8ed6c70cCAS | 2318183PubMed |

Parker, E., Tibary, A., and Vanderwall, D. K. (2005). Evaluation of a new early pregnancy test in mares. J. Equine Vet. Sci. 25, 66–69.
Evaluation of a new early pregnancy test in mares.Crossref | GoogleScholarGoogle Scholar |

Parks Victoria (2012) ‘Public Perceptions toward Wild Horses in Victoria Research’ (Parks Victoria: Melbourne, Australia.)

Paterson, M., Jennings, Z. A., Wilson, M. R., and Aitken, R. J. (2002). The contraceptive potential of ZP3 and ZP3 peptides in a primate model. J. Reprod. Immunol. 53, 99–107.
The contraceptive potential of ZP3 and ZP3 peptides in a primate model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kjsbc%3D&md5=0c2324beb6c58a94f72f181eb8b07c83CAS | 11730908PubMed |

Pennetier, S., Uzbekova, S., Perreau, C., Papillier, P., Mermillod, P., and Dalbies-Tran, R. (2004). Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15 and VASA in adult bovine tissues, oocytes and preimplantation embryos. Biol. Reprod. 71, 1359–1366.
Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15 and VASA in adult bovine tissues, oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGquro%3D&md5=9699f92d381f0329bb4a0c46143df734CAS | 15189828PubMed |

Pennetier, S., Perreau, C., Uzbekova, S., Thelie, A., Delaleu, B., Mermillod, P., and Dalbies-Tran, R. (2006). MATER protein expression and intracellular localisation throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev. Biol. 6, 26.
MATER protein expression and intracellular localisation throughout folliculogenesis and preimplantation embryo development in the bovine.Crossref | GoogleScholarGoogle Scholar | 16753072PubMed |

Pomering, M., Jones, R. C., Holland, M. K., Blake, A. E., and Beagley, K. W. (2002). Restricted entry of IgG into male and female rabbit reproductive ducts following immunisation with recombinant rabbit PH-20. Am. J. Reprod. Immunol. 47, 174–182.
Restricted entry of IgG into male and female rabbit reproductive ducts following immunisation with recombinant rabbit PH-20.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zisFKnuw%3D%3D&md5=fd48679984bdfdbb7e4a738b5535ef12CAS | 12069203PubMed |

Primakoff, P., Lathrop, W., Woolman, L., Cowan, A., and Myles, D. (1988). Fully effective contraception in male and female guinea pigs immunised with the sperm protein PH-20. Nature 335, 543–546.
Fully effective contraception in male and female guinea pigs immunised with the sperm protein PH-20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVelur8%3D&md5=10ac9b20cd3b9c38fce6dae7af81297bCAS | 3419530PubMed |

Rappuoli, R. (2000). Reverse vaccinology. Curr. Opin. Microbiol. 3, 445–450.
Reverse vaccinology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOit70%3D&md5=e5aa0c818d2fcbca55269f8a8fb4121aCAS | 11050440PubMed |

Robbins, S. C., Jelinski, M. D., and Stotish, R. L. (2004). Assessment of the immunological and biological efficacy of two different doses of a recombinant GnRH vaccine in domestic male and female cats (Felis catus). J. Reprod. Immunol. 64, 107–119.
Assessment of the immunological and biological efficacy of two different doses of a recombinant GnRH vaccine in domestic male and female cats (Felis catus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKksb%2FO&md5=c8a023390117167646fff11212c90cd4CAS | 15596230PubMed |

Samoylova, T. I., Cochran, A. M., Samoylov, A. M., Schemera, B., Breiteneicher, A. H., Ditchkoff, S. S., Petrenko, V. A., and Cox, N. R. (2012). Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife. J. Biotechnol. 162, 311–318.
Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejsLnE&md5=58b616b0d13856f3423d3a1f80ec6be4CAS | 23079080PubMed |

Schambony, A., Hess, O., Gentzel, M., and Topfer-Petersen, E. (1998). Expression of CRISP proteins in the male equine genital tract. J. Reprod. Fertil. Suppl. 53, 67–72.
| 1:CAS:528:DyaK1MXitVekur0%3D&md5=286cf7aaa33aa15d97e5f94f3cfd3cb1CAS | 10645267PubMed |

Sena, P., Riccio, M., Marzona, L., Nicoli, A., Marsella, T., Marmiroli, S., Bertacchini, J., Fano, R. A., La Sala, G. B., and De Pol, A. (2009). Human MATER localisation in specific cell domains of oocytes and follicular cells. Reprod. Biomed. Online 18, 226–234.
Human MATER localisation in specific cell domains of oocytes and follicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOntbbL&md5=1d23a2e2bb92162465ddd5ca3f2097aeCAS | 19192343PubMed |

Serruto, D., Adu-Bobie, J., Capecchi, B., Rappuoli, R., Pizza, M., and Masignani, V. (2004). Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J. Biotechnol. 113, 15–32.
Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslOhtr8%3D&md5=8387fc0dee596357caf04201bac6e8d9CAS | 15380644PubMed |

Seydoux, G. (1996). Mechanisms of translational control in early development. Curr. Opin. Genet. Dev. 6, 555–561.
Mechanisms of translational control in early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslOqsb0%3D&md5=aa4d2812031ff92a9afad5a667f8e179CAS | 8939728PubMed |

Sissener, T. R., Squires, E. L., and Clay, C. M. (1996). Differential suppression of endometrial prostaglandin F2alpha by the equine conceptus. Theriogenology 45, 541–546.
Differential suppression of endometrial prostaglandin F2alpha by the equine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisV2qsrs%3D&md5=0a8e5baf1c2f7ef73bad3fc3f539a53aCAS | 16727817PubMed |

Stout, R. J., Knuth, B. A., and Curtis, P. D. (1997). Preferences of suburban landowners for deer management techniques: a step towards better communication. Wildl. Soc. Bull. 25, 348–359.

Stout, T. A. E., Meadows, S., and Allen, W. R. (2005). Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo. Anim. Reprod. Sci. 87, 269–281.
Stage-specific formation of the equine blastocyst capsule is instrumental to hatching and to embryonic survival in vivo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mvVWitQ%3D%3D&md5=0a3a2c1d2bcbf6bb666285fe67daa540CAS |

Suri, A. (2005). Contraceptive vaccines targeting sperm. Expert Opin. Biol. Ther. 5, 381–392.
Contraceptive vaccines targeting sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1ylt7k%3D&md5=3dd636f1119c63ac0f629e17eb9a318bCAS | 15833075PubMed |

Takikawa, M., Kamada, M., Maegawa, M., Yamano, S., Irahara, M., Aono, T., Futaki, S., Ohmoto, Y., and Koide, S. S. (2001). Evaluation of two sperm antigens, rSMP-B and YWK-II, as targets for immunocontraception. Zygote 9, 145–151.
Evaluation of two sperm antigens, rSMP-B and YWK-II, as targets for immunocontraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFamt7s%3D&md5=3cab26dc6eb49e317dff8cca90f2e250CAS | 11358321PubMed |

Talwar, G. P. (2013). Making of a vaccine preventing pregnancy without impairment of ovulation and derangement of menstrual regularity and bleeding profiles. Contraception 87, 280–287.
Making of a vaccine preventing pregnancy without impairment of ovulation and derangement of menstrual regularity and bleeding profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2jsL7N&md5=3c8552d15af306f880275a527ebabf31CAS | 23040138PubMed |

Tarnasky, H., Cheng, M., Ou, Y., Thundathil, J. C., Oko, R., and van der Hoorn, F. A. (2010). Gene trap mutation of murine outer dense fibre protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism. BMC Dev. Biol. 10, 67.
Gene trap mutation of murine outer dense fibre protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism.Crossref | GoogleScholarGoogle Scholar | 20550699PubMed |

Tashiro, F., Kanai-Azuma, M., Miyazaki, S., Kato, M., Tanaka, T., Toyoda, S., Yamato, E., Kawakami, H., Miyazaki, T., and Miyazaki, J. (2010). Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal–zygotic stage transition. Genes Cells 15, 813–828.
Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal–zygotic stage transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCltb3L&md5=636b67a1f11ba6e7006382b0f97c6f24CAS | 20590823PubMed |

Tesarík, J. (1989). Immunoinhibition of human fertilisation in vitro by antibodies to the cumulus oophorus intercellular matrix. J. Reprod. Fertil. 87, 193–198.
Immunoinhibition of human fertilisation in vitro by antibodies to the cumulus oophorus intercellular matrix.Crossref | GoogleScholarGoogle Scholar | 2621695PubMed |

Tesarik, J., Testart, J., and Nome, F. (1990). Effects of prolonged administration of anti-cumulus oophorus antibody on reproduction in mice. J. Reprod. Fertil. 90, 605–610.
Effects of prolonged administration of anti-cumulus oophorus antibody on reproduction in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2Fms1aqsA%3D%3D&md5=f0a7e24b436e8d397e4933bcbf33748bCAS | 2250256PubMed |

Teuscher, C., Kenney, R. M., Cummings, M. R., and Catten, M. (1994). Identification of 2 stallion sperm-specific proteins and their autoantibody response. Equine Vet. J. 26, 148–151.
Identification of 2 stallion sperm-specific proteins and their autoantibody response.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287jsVSksw%3D%3D&md5=e7f7f2b93325ba8c8c41f0d0ff833fc4CAS | 8575379PubMed |

Thomas, P. G. A., Ball, B. A., Ignotz, G. G., Dobrinski, I., Parks, J. E., and Currie, W. B. (1997). Antibody directed against plasma membrane components of equine spermatozoa inhibits adhesion of spermatozoa to oviduct epithelial cells in vitro. Biol. Reprod. 56, 720–730.
Antibody directed against plasma membrane components of equine spermatozoa inhibits adhesion of spermatozoa to oviduct epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Ggsb4%3D&md5=85a347edbc3e8dcc68cb4e673f77ecf9CAS |

Tong, Z. B., Gold, L., Pfeifer, K. E., Dorward, H., Lee, E., Bondy, C. A., Dean, J., and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
Mater, a maternal effect gene required for early embryonic development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWhs7c%3D&md5=7851038fd7ab5cf47c5b061d5199a929CAS | 11062459PubMed |

Tremoleda, J. L., Stout, T. A., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander, B., and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics and blastocyst capsule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCns7k%3D&md5=97de3ee1cdb9ac3d2c983a0477c53550CAS | 12904313PubMed |

Tung, K. S. K., Unanue, E. R., and Dixon, F. J. (1971). Pathogenesis of experimental allergic orchitis: role of antibody. J. Immunol. 106, 1463.
| 1:CAS:528:DyaE3MXktFOrtbw%3D&md5=31453bb041b10da300bf9d817322afc7CAS |

Turkstra, J. A., van der Meer, F. J., Knaap, J., Rottier, P. J., Teerds, K. J., Colenbrander, B., and Meloen, R. H. (2005). Effects of GnRH immunisation in sexually mature pony stallions. Anim. Reprod. Sci. 86, 247–259.
Effects of GnRH immunisation in sexually mature pony stallions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Cjtbo%3D&md5=d276957372fa556e35e3fe4685f81a4fCAS | 15766804PubMed |

Turner, J. W., Liu, I. K. M., Flanagan, D. R., Rutberg, A. T., and Kirkpatrick, J. F. (2007). Immunocontraception in wild horses: one inoculation provides two years of infertility. J. Wildl. Manage. 71, 662–667.
Immunocontraception in wild horses: one inoculation provides two years of infertility.Crossref | GoogleScholarGoogle Scholar |

Verma, S., Mohapatra, B., Jagadish, N., Selvi, R., Roy, P., Rana, R., Lakshmi, K., and Suri, A. (2004). Molecular cloning, expression of testicular transcript abundant in germ cells and immunobiological effects of the recombinant protein. Am. J. Reprod. Immunol. 52, 164–173.
Molecular cloning, expression of testicular transcript abundant in germ cells and immunobiological effects of the recombinant protein.Crossref | GoogleScholarGoogle Scholar | 15274658PubMed |

Walters, K. W., Roser, J. F., and Anderson, G. B. (2001). Maternal–conceptus signalling during early pregnancy in mares: oestrogen and insulin-like growth factor I. Reproduction 121, 331–338.
Maternal–conceptus signalling during early pregnancy in mares: oestrogen and insulin-like growth factor I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslSitr8%3D&md5=6fb7f960fb18ddace9b8c12513fd97efCAS | 11226058PubMed |

Wiley, L. M., and Calarco, P. G. (1975). The effects of anti-embryo sera and their localisation on the cell surface during mouse preimplantation development. Dev. Biol. 47, 407–418.
The effects of anti-embryo sera and their localisation on the cell surface during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE28%2Fpt1Kltg%3D%3D&md5=241a99ac488e3c0fb891a4a7fe08014dCAS |

Willmann, C., Budik, S., Walter, I., and Aurich, C. (2011). Influences of treatment of early pregnant mares with the progestin altrenogest on embryonic development and gene expression in the endometrium and conceptus. Theriogenology 76, 61–73.
Influences of treatment of early pregnant mares with the progestin altrenogest on embryonic development and gene expression in the endometrium and conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKiurw%3D&md5=934b66a4da5644e5c041fdb3477251fcCAS | 21396689PubMed |

Wu, H., Chen, Y., Miao, S., Zhang, C., Zong, S., Koide, S. S., and Wang, L. (2010). Sperm associated antigen 8 (SPAG8), a novel regulator of activator of CREM in testis during spermatogenesis. FEBS Lett. 584, 2807–2815.
Sperm associated antigen 8 (SPAG8), a novel regulator of activator of CREM in testis during spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlaksb8%3D&md5=a1af7381e30a944e0fffa3c9691386bfCAS | 20488182PubMed |

Yurttas, P., Vitale, A. M., Fitzhenry, R. J., Cohen-Gould, L., Wu, W., Gossen, J. A., and Coonrod, S. A. (2008). Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135, 2627–2636.
Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGqt7vI&md5=1baffea9306a6a2faaf54b6bc13a10dfCAS | 18599511PubMed |

Yurttas, P., Morency, E., and Coonrod, S. A. (2010). Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 139, 809–823.
Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLw%3D&md5=27becb718bf5637527d5c163bb1120fcCAS | 20106898PubMed |

Zhang, J., Ricketts, S. W., and Tanner, S. J. (1990). Anti-sperm antibodies in the semen of a stallion following testicular trauma. Equine Vet. J. 22, 138–141.
Anti-sperm antibodies in the semen of a stallion following testicular trauma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3gtV2rtQ%3D%3D&md5=1f7ae55011cd1c752a51ecf5cf675d53CAS | 2318181PubMed |

Zhang, C. H., Li, F. Q., Yang, A. L., Sun, W., and Miao, J. W. (2007). Detection of anti-Sp17 antibodies in infertile patients’ serum and its clinical significance. Zhonghua Nan Ke Xue 13, 27–29.
| 1:CAS:528:DC%2BD1cXmsFWgs7c%3D&md5=ec579041621c91a94b191201d4e6c6deCAS | 17302030PubMed |