Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Characterisation of the deleted in azoospermia like (Dazl)–green fluorescent protein mouse model generated by a two-step embryonic stem cell-based strategy to identify pluripotent and germ cells

Priscila Ramos-Ibeas A B , Eva Pericuesta A , Raúl Fernández-González A , Alfonso Gutiérrez-Adán A and Miguel Ángel Ramírez A
+ Author Affiliations
- Author Affiliations

A Departamento de Reproducción Animal, INIA, Avenida Puerta de Hierro N. 12, local 10, 28040 Madrid, Spain.

B Corresponding author. Email: priscilaramosibeas@gmail.com

Reproduction, Fertility and Development 28(11) 1741-1752 https://doi.org/10.1071/RD14253
Submitted: 17 July 2014  Accepted: 4 April 2015   Published: 6 May 2015

Abstract

The deleted in azoospermia like (Dazl) gene is preferentially expressed in germ cells; however, recent studies indicate that it may have pluripotency-related functions. We generated Dazl–green fluorescent protein (GFP) transgenic mice and assayed the ability of Dazl-driven GFP to mark preimplantation embryo development, fetal, neonatal and adult tissues, and in vitro differentiation from embryonic stem cells (ESCs) to embryoid bodies (EBs) and to primordial germ cell (PGC)-like cells. The Dazl-GFP mice were generated by a two-step ESC-based strategy, which enabled primary and secondary screening of stably transfected clones before embryo injection. During preimplantation embryo stages, GFP was detected from the zygote to blastocyst stage. At Embryonic Day (E) 12.5, GFP was expressed in gonadal ridges and in neonatal gonads of both sexes. In adult mice, GFP expression was found during spermatogenesis from spermatogonia to elongating spermatids and in the cytoplasm of oocytes. However, GFP mRNA was also detected in other tissues harbouring multipotent cells, such as the intestine and bone marrow. Fluorescence was maintained along in vitro Dazl-GFP ESC differentiation to EBs, and in PGC-like cells. In addition to its largely known function in germ cell development, Dazl could have an additional role in pluripotency, supporting these transgenic mice as a valuable tool for the prospective identification of stem cells from several tissues.

Additional keywords: differentiation, oogenesis, pluripotency, primordial germ cells, spermatogenesis, transgenesis.


References

Attia, W. A., Abd El Aziz, O. M., Spitkovsky, D., Gaspar, J. A., Droge, P., Suhr, F., Sabour, D., Winkler, J., Meganathan, K., Jagtap, S., Khalil, M., Hescheler, J., Brockmeier, K., Sachinidis, A., and Pfannkuche, K. (2014). Evidence for self-maintaining pluripotent murine stem cells in embryoid bodies. Stem Cell Rev. 10, 1–15.
Evidence for self-maintaining pluripotent murine stem cells in embryoid bodies.Crossref | GoogleScholarGoogle Scholar |

Bellve, A. R., Cavicchia, J. C., Millette, C. F., O’Brien, D. A., Bhatnagar, Y. M., and Dym, M. (1977). Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68–85.
Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization.Crossref | GoogleScholarGoogle Scholar |

Bermejo-Álvarez, P., Lonergan, P., Rath, D., Gutiérrez-Adan, A., and Rizos, D. (2010a). Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa. Reprod. Fertil. Dev. 22, 426–436.
Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2010b). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl Acad. Sci. USA 107, 3394–3399.
Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Blaschke, K., Ebata, K. T., Karimi, M. M., Zepeda-Martínez, J. A., Goyal, P., Mahapatra, S., Tam, A., Laird, D. J., Hirst, M., Rao, A., Lorincz, M. C., and Ramalho-Santos, M. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226.
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.Crossref | GoogleScholarGoogle Scholar |

Bukovsky, A. (2005). Can ovarian infertility be treated with bone marrow- or ovary-derived germ cells? Reprod. Biol. Endocrinol. 3, 36.
Can ovarian infertility be treated with bone marrow- or ovary-derived germ cells?Crossref | GoogleScholarGoogle Scholar |

Cauffman, G., Van de Velde, H., Liebaers, I., and Van Steirteghem, A. (2005). DAZL expression in human oocytes, preimplantation embryos and embryonic stem cells. Mol. Hum. Reprod. 11, 405–411.
DAZL expression in human oocytes, preimplantation embryos and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

Chen, J., Melton, C., Suh, N., Oh, J. S., Horner, K., Xie, F., Sette, C., Blelloch, R., and Conti, M. (2011). Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 25, 755–766.
Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition.Crossref | GoogleScholarGoogle Scholar |

Clark, A. T., Bodnar, M. S., Fox, M., Rodriquez, R. T., Abeyta, M. J., Firpo, M. T., and Pera, R. A. (2004). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13, 727–739.
Spontaneous differentiation of germ cells from human embryonic stem cells in vitro.Crossref | GoogleScholarGoogle Scholar |

Crosnier, C., Stamataki, D., and Lewis, J. (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359.
Organizing cell renewal in the intestine: stem cells, signals and combinatorial control.Crossref | GoogleScholarGoogle Scholar |

Enseñat-Waser, R., Santana, A., Vicente-Salar, N., Cigudosa, J. C., Roche, E., Soria, B., and Reig, J. A. (2006). Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking. In Vitro Cell. Dev. Biol. Anim. 42, 115–123.
Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking.Crossref | GoogleScholarGoogle Scholar |

Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., and Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154.
Derivation of embryonic germ cells and male gametes from embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

Gutiérrez-Adan, A., and Pintado, B. (2000). Effect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos. Transgenic Res. 9, 81–89.
Effect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos.Crossref | GoogleScholarGoogle Scholar |

Gutiérrez-Adan, A., Maga, E. A., Meade, H., Shoemaker, C. F., Medrano, J. F., Anderson, G. B., and Murray, J. D. (1996). Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein. J. Dairy Sci. 79, 791–799.
Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein.Crossref | GoogleScholarGoogle Scholar |

Hashimoto, Y., Maegawa, S., Nagai, T., Yamaha, E., Suzuki, H., Yasuda, K., and Inoue, K. (2004). Localized maternal factors are required for zebrafish germ cell formation. Dev. Biol. 268, 152–161.
Localized maternal factors are required for zebrafish germ cell formation.Crossref | GoogleScholarGoogle Scholar |

Haston, K. M., Tung, J. Y., and Reijo Pera, R. A. (2009). Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS One 4, e5654.
Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar |

Houston, D. W., and King, M. L. (2000). A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127, 447–456.

Hübner, K., Fuhrmann, G., Christenson, L. K., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss, J. F., Boiani, M., and Schöler, H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256.
Derivation of oocytes from mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

Johnson, J., Bagley, J., Skaznik-Wikiel, M., Lee, H. J., Adams, G. B., Niikura, Y., Tschudy, K. S., Tilly, J. C., Cortes, M. L., Forkert, R., Spitzer, T., Iacomini, J., Scadden, D. T., and Tilly, J. L. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122, 303–315.
Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood.Crossref | GoogleScholarGoogle Scholar |

Katsara, O., Mahaira, L. G., Iliopoulou, E. G., Moustaki, A., Antsaklis, A., Loutradis, D., Stefanidis, K., Baxevanis, C. N., Papamichail, M., and Perez, S. A. (2011). Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 20, 1549–1561.
Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar |

Kerkis, A., Fonseca, S. A., Serafim, R. C., Lavagnolli, T. M., Abdelmassih, S., Abdelmassih, R., and Kerkis, I. (2007). In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells 9, 535–548.
In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes.Crossref | GoogleScholarGoogle Scholar |

Lassalle, B., Ziyyat, A., Testart, J., Finaz, C., and Lefevre, A. (1999). Flow cytometric method to isolate round spermatids from mouse testis. Hum. Reprod. 14, 388–394.
Flow cytometric method to isolate round spermatids from mouse testis.Crossref | GoogleScholarGoogle Scholar |

Lin, Y., and Page, D. C. (2005). Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice. Dev. Biol. 288, 309–316.
Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice.Crossref | GoogleScholarGoogle Scholar |

Maegawa, S., Yasuda, K., and Inoue, K. (1999). Maternal mRNA localization of zebrafish DAZ-like gene. Mech. Dev. 81, 223–226.
Maternal mRNA localization of zebrafish DAZ-like gene.Crossref | GoogleScholarGoogle Scholar |

Matsui, Y., Zsebo, K., and Hogan, B. L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.
Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.Crossref | GoogleScholarGoogle Scholar |

Miranda, A., Pericuesta, E., Ramirez, M. A., and Gutierrez-Adan, A. (2011). Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One 6, e18422.
Prion protein expression regulates embryonic stem cell pluripotency and differentiation.Crossref | GoogleScholarGoogle Scholar |

Moore, F. L., Jaruzelska, J., Fox, M. S., Urano, J., Firpo, M. T., Turek, P. J., Dorfman, D. M., and Pera, R. A. (2003). Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc. Natl Acad. Sci. USA 100, 538–543.
Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins.Crossref | GoogleScholarGoogle Scholar |

Nayernia, K., Nolte, J., Michelmann, H. W., Lee, J. H., Rathsack, K., Drusenheimer, N., Dev, A., Wulf, G., Ehrmann, I. E., Elliott, D. J., Okpanyi, V., Zechner, U., Haaf, T., Meinhardt, A., and Engel, W. (2006). In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11, 125–132.
In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice.Crossref | GoogleScholarGoogle Scholar |

Nicholas, C. R., Xu, E. Y., Banani, S. F., Hammer, R. E., Hamra, F. K., and Reijo Pera, R. A. (2009). Characterization of a Dazl-GFP germ cell-specific reporter. Genesis 47, 74–84.
Characterization of a Dazl-GFP germ cell-specific reporter.Crossref | GoogleScholarGoogle Scholar |

Novak, I., Lightfoot, D. A., Wang, H., Eriksson, A., Mahdy, E., and Hoog, C. (2006). Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells 24, 1931–1936.
Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis.Crossref | GoogleScholarGoogle Scholar |

Pan, H. A., Liao, R. W., Chung, C. L., Teng, Y. N., Lin, Y. M., and Kuo, P. L. (2008). DAZL protein expression in mouse preimplantation embryo. Fertil. Steril. 89, 1324–1327.
DAZL protein expression in mouse preimplantation embryo.Crossref | GoogleScholarGoogle Scholar |

Pericuesta, E., Ramirez, M. A., Villa-Diaz, A., Relano-Gines, A., Torres, J. M., Nieto, M., Pintado, B., and Gutierrez-Adan, A. (2006). The proximal promoter region of mTert is sufficient to regulate telomerase activity in ES cells and transgenic animals. Reprod. Biol. Endocrinol. 4, 5.
The proximal promoter region of mTert is sufficient to regulate telomerase activity in ES cells and transgenic animals.Crossref | GoogleScholarGoogle Scholar |

Ramírez, M. A., Pericuesta, E., Fernández-González, R., Pintado, B., and Gutiérrez-Adán, A. (2007). Inadvertent presence of pluripotent cells in monolayers derived from differentiated embryoid bodies. Int. J. Dev. Biol. 51, 397–408.
Inadvertent presence of pluripotent cells in monolayers derived from differentiated embryoid bodies.Crossref | GoogleScholarGoogle Scholar |

Ramírez, M. A., Fernández-González, R., Pérez-Crespo, M., Pericuesta, E., and Gutiérrez-Adán, A. (2009). Effect of stem cell activation, culture media of manipulated embryos, and site of embryo transfer in the production of F0 embryonic stem cell mice. Biol. Reprod. 80, 1216–1222.
Effect of stem cell activation, culture media of manipulated embryos, and site of embryo transfer in the production of F0 embryonic stem cell mice.Crossref | GoogleScholarGoogle Scholar |

Reijo, R., Seligman, J., Dinulos, M. B., Jaffe, T., Brown, L. G., Disteche, C. M., and Page, D. C. (1996). Mouse autosomal homolog of DAZ, a candidate male sterility gene in humans, is expressed in male germ cells before and after puberty. Genomics 35, 346–352.
Mouse autosomal homolog of DAZ, a candidate male sterility gene in humans, is expressed in male germ cells before and after puberty.Crossref | GoogleScholarGoogle Scholar |

Reijo, R. A., Dorfman, D. M., Slee, R., Renshaw, A. A., Loughlin, K. R., Cooke, H., and Page, D. C. (2000). DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice. Biol. Reprod. 63, 1490–1496.
DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice.Crossref | GoogleScholarGoogle Scholar |

Resnick, J. L., Bixler, L. S., Cheng, L., and Donovan, P. J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551.
Long-term proliferation of mouse primordial germ cells in culture.Crossref | GoogleScholarGoogle Scholar |

Rocchietti-March, M., Weinbauer, G. F., Page, D. C., Nieschlag, E., and Gromoll, J. (2000). Dazl protein expression in adult rat testis is up-regulated at meiosis and not hormonally regulated. Int. J. Androl. 23, 51–56.
Dazl protein expression in adult rat testis is up-regulated at meiosis and not hormonally regulated.Crossref | GoogleScholarGoogle Scholar |

Ruggiu, M., Speed, R., Taggart, M., McKay, S. J., Kilanowski, F., Saunders, P., Dorin, J., and Cooke, H. J. (1997). The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389, 73–77.
The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis.Crossref | GoogleScholarGoogle Scholar |

Saunders, P. T., Turner, J. M., Ruggiu, M., Taggart, M., Burgoyne, P. S., Elliott, D., and Cooke, H. J. (2003). Absence of mDazl produces a final block on germ cell development at meiosis. Reproduction 126, 589–597.
Absence of mDazl produces a final block on germ cell development at meiosis.Crossref | GoogleScholarGoogle Scholar |

Schrans-Stassen, B. H., Saunders, P. T., Cooke, H. J., and de Rooij, D. G. (2001). Nature of the spermatogenic arrest in Dazl–/– mice. Biol. Reprod. 65, 771–776.
Nature of the spermatogenic arrest in Dazl–/– mice.Crossref | GoogleScholarGoogle Scholar |

Seligman, J., and Page, D. C. (1998). The Dazh gene is expressed in male and female embryonic gonads before germ cell sex differentiation. Biochem. Biophys. Res. Commun. 245, 878–882.
The Dazh gene is expressed in male and female embryonic gonads before germ cell sex differentiation.Crossref | GoogleScholarGoogle Scholar |

Spence, J. R., Lauf, R., and Shroyer, N. F. (2011). Vertebrate intestinal endoderm development. Dev. Dyn. 240, 501–520.
Vertebrate intestinal endoderm development.Crossref | GoogleScholarGoogle Scholar |

Stefanidis, K., Loutradis, D., Koumbi, L., Anastasiadou, V., Dinopoulou, V., Kiapekou, E., Lavdas, A. A., Mesogitis, S., and Antsaklis, A. (2008). Deleted in azoospermia-like (DAZL) gene-expressing cells in human amniotic fluid: a new source for germ cells research? Fertil. Steril. 90, 798–804.
Deleted in azoospermia-like (DAZL) gene-expressing cells in human amniotic fluid: a new source for germ cells research?Crossref | GoogleScholarGoogle Scholar |

Telfer, E. E., Gosden, R. G., Byskov, A. G., Spears, N., Albertini, D., Andersen, C. Y., Anderson, R., Braw-Tal, R., Clarke, H., Gougeon, A., McLaughlin, E., McLaren, A., McNatty, K., Schatten, G., Silber, S., and Tsafriri, A. (2005). On regenerating the ovary and generating controversy. Cell 122, 821–822.

Toyooka, Y., Tsunekawa, N., Akasu, R., and Noce, T. (2003). Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11 457–11 462.
Embryonic stem cells can form germ cells in vitro.Crossref | GoogleScholarGoogle Scholar |

Xu, X., Pantakani, D. V., Luhrig, S., Tan, X., Khromov, T., Nolte, J., Dressel, R., Zechner, U., and Engel, W. (2011). Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency. PLoS One 6, e22413.
Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency.Crossref | GoogleScholarGoogle Scholar |

Xu, X., Tan, X., Lin, Q., Schmidt, B., Engel, W., and Pantakani, D. V. (2013). Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells. Biochim. Biophys. Acta 1829, 425–435.
Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |