Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Actin crosslinking protein filamin A during early pregnancy in the rat uterus

Romanthi J. Madawala A B C , Connie E. Poon A B , Samson N. Dowland A B and Christopher R. Murphy A B
+ Author Affiliations
- Author Affiliations

A Department of Anatomy and Histology, N364 Cell and Reproductive Laboratory, Anderson Stuart Building (F13), The University of Sydney, Sydney, NSW 2006, Australia.

B Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.

C Corresponding author. Email: romi@anatomy.usyd.edu.au

Reproduction, Fertility and Development 28(7) 960-968 https://doi.org/10.1071/RD14240
Submitted: 8 July 2014  Accepted: 13 November 2014   Published: 5 January 2015

Abstract

During early pregnancy the endometrium undergoes a major transformation in order for it to become receptive to blastocyst implantation. The actin cytoskeleton and plasma membrane of luminal uterine epithelial cells (UECs) and the underlying stromal cells undergo dramatic remodelling to facilitate these changes. Filamin A (FLNA), a protein that crosslinks actin filaments and also mediates the anchorage of membrane proteins to the actin cytoskeleton, was investigated in the rat uterus at fertilisation (Day 1) and implantation (Day 6) to determine the role of FLNA in actin cytoskeletal remodelling of UECs and decidua during early pregnancy. Localisation of FLNA in UECs at the time of fertilisation was cytoplasmic, whilst at implantation it was distributed apically; its localisation is under the influence of progesterone. FLNA was also concentrated to the first two to three stromal cell layers at the time of fertilisation and shifted to the primary decidualisation zone at the time of implantation. This shift in localisation was found to be dependent on the decidualisation reaction. Protein abundance of the FLNA 280-kDa monomer and calpain-cleaved fragment (240 kDa) did not change during early pregnancy in UECs. Since major actin cytoskeletal remodelling occurs during early pregnancy in UECs and in decidual cells, the changing localisation of FLNA suggests that it may be an important regulator of cytoskeletal remodelling of these cells to allow uterine receptivity and decidualisation necessary for implantation in the rat.

Additional keywords: actin binding, actin remodeling, decidualisation, ovarian hormone, uterine receptivity.


References

Abrahamsohn, P. A., and Zorn, T. M. (1993). Implantation and decidualisation in rodents. J. Exp. Zool. 266, 603–628.
Implantation and decidualisation in rodents.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3szotFCnuw%3D%3D&md5=79c6186a7d6ca1595def5ace3d508b9eCAS | 8371101PubMed |

Adams, S. M., Gayer, N., Hosie, M. J., and Murphy, C. R. (2002). Human uterodomes (pinopods) do not display pinocytotic function. Hum. Reprod. 17, 1980–1986.
Human uterodomes (pinopods) do not display pinocytotic function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vgt1alsA%3D%3D&md5=ebf79269ded1449a2d1c6e61b5e87480CAS | 12151424PubMed |

Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Wu, G. (2009). Comparative aspects of implantation. Reproduction 138, 195–209.
Comparative aspects of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt74%3D&md5=004657dc95deb8c9d20e9b7fee5476d7CAS | 19502456PubMed |

Beckerle, M. C., Burridge, K., DeMartino, G. N., and Croall, D. E. (1987). Colocalisation of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell 51, 569–577.
Colocalisation of calcium-dependent protease II and one of its substrates at sites of cell adhesion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlahsA%3D%3D&md5=2f4e54714ab3bb1e5545fbef14b1290eCAS | 2824061PubMed |

Boxer, L. A., and Stossel, T. P. (1976). Interactions of actin, myosin and an actin-binding protein of chronic myelogenous leukaemia leukocytes. J. Clin. Invest. 57, 964–976.
Interactions of actin, myosin and an actin-binding protein of chronic myelogenous leukaemia leukocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhs1Srsbo%3D&md5=37c97d59bb48ff002b5131cb95284694CAS | 133121PubMed |

Carson, D. D., Julian, J., and Jacobs, A. L. (1992). Uterine stromal cell chondroitin sulfate proteoglycans bind to collagen type I and inhibit embryo outgrowth in vitro. Dev. Biol. 149, 307–316.
Uterine stromal cell chondroitin sulfate proteoglycans bind to collagen type I and inhibit embryo outgrowth in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XotFSgtA%3D%3D&md5=fa39abb9b2fcab6b00925948706c7239CAS | 1730387PubMed |

Cunningham, C. C., Gorlin, J. B., Kwiatkowski, D. J., Hartwig, J. H., Janmey, P. A., Byers, H. R., and Stossel, T. P. (1992). Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327.
Actin-binding protein requirement for cortical stability and efficient locomotion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVegsL8%3D&md5=4321719bcf1620261815e15a2353d717CAS | 1549777PubMed |

Davies, P. J. A., Wallach, D., Willingham, M. C., Pastan, I., Yamaguchi, M., and Robson, R. M. (1978). Filamin–actin interaction. Dissociation of binding from gelatin by Ca2+-activated proteolysis. J. Biol. Chem. 253, 4036–4042.
| 1:CAS:528:DyaE1cXksFGis74%3D&md5=4585f487a33a0fc034fe5bf6a2271a0cCAS |

DeSouza, L., Diehl, G., Yang, E. C., Guo, J., Rodrigues, M. J., Romaschin, A. D., Colgan, T. J., and Siu, K. W. (2005). Proteomic analysis of the proliferative and secretory phases of the human endometrium: protein identification and differential protein expression. Proteomics 5, 270–281.
Proteomic analysis of the proliferative and secretory phases of the human endometrium: protein identification and differential protein expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleisLo%3D&md5=56ce743069552a316aae39a398bf4781CAS | 15602768PubMed |

Esue, O., Tseng, Y., Fau-Wirtz, D., and Wirtz, D. (2009). Alpha-actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLoS One 4, e4411.
Alpha-actinin and filamin cooperatively enhance the stiffness of actin filament networks.Crossref | GoogleScholarGoogle Scholar | 19198659PubMed |

Feng, Y., and Walsh, C. A. (2004). The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 6, 1034–1038.
The many faces of filamin: a versatile molecular scaffold for cell motility and signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFent7w%3D&md5=db06016d1cfb9a39912cbe96775c07a6CAS | 15516996PubMed |

Finn, C. A., and Keen, P. M. (1963). The induction of deciduomata in the rat. J. Embryol. Exp. Morphol. 11, 673–682.
| 1:CAS:528:DyaF2cXktFemtbg%3D&md5=9e06801dc0fb6ae355d0fb1203e457e2CAS | 14081987PubMed |

Finn, C. A., and Lawn, A. M. (1967). Specialised junctions between decidual cells in the uterus of the pregnant mouse. J. Ultrastruct. Res. 20, 321–327.
Specialised junctions between decidual cells in the uterus of the pregnant mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c7itlSrtQ%3D%3D&md5=824c6970f3e612cc56fc171d1239cc89CAS | 5625084PubMed |

Finn, C. A., and McLaren, A. (1967). A study of the early stages of implantation in mice. J. Reprod. Fertil. 13, 259–267.
A study of the early stages of implantation in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s7jtlKktw%3D%3D&md5=91c4f097703e34356968b3b3fdb55141CAS | 4164526PubMed |

Franco, S. J., Rodgers, M. A., Perrin, B. J., Han, J., Bennin, D. A., Critchley, D. R., and Huttenlocher, A. (2004). Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol. 6, 977–983.
Calpain-mediated proteolysis of talin regulates adhesion dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFGqs7Y%3D&md5=86775e757a21f1d2e537697cfe2a924cCAS | 15448700PubMed |

Gorlin, J. B., Yamin, R., Egan, S., Stewart, M., Stossel, T. P., Kwiatkowski, D. J., and Hartwig, J. H. (1990). Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J. Cell Biol. 111, 1089–1105.
Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Kmur0%3D&md5=dbd7cce29f5c2c534e5cefe46507ac6dCAS | 2391361PubMed |

Hartwig, J. H., and Stossel, T. P. (1975). Isolation and properties of actin, myosin and a new actin-binding protein in rabbit alveolar macrophages. J. Biol. Chem. 250, 5696–5705.
| 1:CAS:528:DyaE2MXltFSjt7c%3D&md5=99d2270a72a744bb28ab803e57849c21CAS | 124734PubMed |

Kaneko, Y., Lindsay, L. A., and Murphy, C. R. (2008). Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells. Reprod. Fertil. Dev. 20, 892–899.
Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Oks77E&md5=33d7a7b79c046fc0923e1442635e8783CAS | 19007553PubMed |

Kaneko, Y., Lecce, L., and Murphy, C. R. (2009). Ovarian hormones regulate expression of the focal adhesion proteins, talin and paxillin, in rat uterine luminal but not glandular epithelial cells. Histochem. Cell Biol. 132, 613–622.
Ovarian hormones regulate expression of the focal adhesion proteins, talin and paxillin, in rat uterine luminal but not glandular epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWms7%2FK&md5=664f79cc4eec198b2d9120c15abfb86cCAS | 19779731PubMed |

Kaneko, Y., Day, M. L., and Murphy, C. R. (2011a). Integrin beta3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection. Hum. Reprod. 26, 1665–1674.
Integrin beta3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFantLo%3D&md5=a75cfe97f553b2b3f28207de735a682cCAS | 21531996PubMed |

Kaneko, Y., Lecce, L., Day, M. L., and Murphy, C. R. (2011b). β1 and β3 integrins disassemble from basal focal adhesions and β3 integrin is later localised to the apical plasma membrane of rat uterine luminal epithelial cells at the time of implantation. Reprod. Fertil. Dev. 23, 481–495.
β1 and β3 integrins disassemble from basal focal adhesions and β3 integrin is later localised to the apical plasma membrane of rat uterine luminal epithelial cells at the time of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12ntrw%3D&md5=7827847653c9c22468f870984489c27cCAS | 21426865PubMed |

Kaneko, Y., Murphy, C. R., and Day, M. L. (2013a). Extracellular matrix proteins secreted from both the endometrium and the embryo are required for attachment: a study using a co-culture model of rat blastocysts and Ishikawa cells. J. Morphol. 274, 63–72.
Extracellular matrix proteins secreted from both the endometrium and the embryo are required for attachment: a study using a co-culture model of rat blastocysts and Ishikawa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSqtL3F&md5=a0cfdd68f218a4696c27eb9373f3d235CAS | 22972746PubMed |

Kaneko, Y., Murphy, C. R., and Day, M. L. (2013b). Calpain 2 activity increases at the time of implantation in rat uterine luminal epithelial cells and administration of calpain inhibitor significantly reduces implantation sites. Histochem. Cell Biol. 141, 423–430.
Calpain 2 activity increases at the time of implantation in rat uterine luminal epithelial cells and administration of calpain inhibitor significantly reduces implantation sites.Crossref | GoogleScholarGoogle Scholar | 24271063PubMed |

Kearns, M., and Lala, P. K. (1983). Life history of decidual cells: a review. Am. J. Reprod. Immunol. 3, 78–82.
Life history of decidual cells: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3ivVKmtQ%3D%3D&md5=acc83509c0e68cc7fbe6d8ed8b093360CAS | 6344664PubMed |

Li, R., and Gundersen, G. G. (2008). Beyond polymer polarity: how the cytoskeleton builds a polarised cell. Nat. Rev. Mol. Cell Biol. 9, 860–873.
Beyond polymer polarity: how the cytoskeleton builds a polarised cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ont7vL&md5=b3a2e59d22380b37230c3eac813977d8CAS | 18946475PubMed |

Loo, D. T., Kanner, S. B., and Aruffo, A. (1998). Filamin binds to the cytoplasmic domain of the beta(1)-integrin – identification of amino acids responsible for this interaction. J. Biol. Chem. 273, 23 304–23 312.
Filamin binds to the cytoplasmic domain of the beta(1)-integrin – identification of amino acids responsible for this interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFaksb0%3D&md5=ba5d1edd1975fc52a98f50b64d48ee34CAS |

Luxford, K. A., and Murphy, C. R. (1989). Cytoskeletal alterations in the microvilli of uterine epithelial cells during early pregnancy. Acta Histochem. 87, 131–136.
Cytoskeletal alterations in the microvilli of uterine epithelial cells during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7nslGluw%3D%3D&md5=fbdb39ee2407dde9b66ed80ea0ea334dCAS | 2516678PubMed |

Luxford, K. A., and Murphy, C. R. (1992a). Changes in the apical microfilaments of rat uterine epithelial cells in response to oestradiol and progesterone. Anat. Rec. 233, 521–526.
Changes in the apical microfilaments of rat uterine epithelial cells in response to oestradiol and progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Crurg%3D&md5=73af476a21cb73a07ce7a05ffda0f46dCAS | 1626711PubMed |

Luxford, K. A., and Murphy, C. R. (1992b). Reorganisation of the apical cytoskeleton of uterine epithelial cells during early pregnancy in the rat: a study with myosin subfragment 1. Biology of the cell/under the auspices of the European Cell Biology Organization 74, 195–202.
Reorganisation of the apical cytoskeleton of uterine epithelial cells during early pregnancy in the rat: a study with myosin subfragment 1.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383ot1alug%3D%3D&md5=15da96e560bc270c1edbaef2c5cc3cffCAS | 1596639PubMed |

Luxford, K. A., and Murphy, C. R. (1993). Cytoskeletal control of the apical surface transformation of rat uterine epithelium. Biology of the cell/under the auspices of the European Cell Biology Organization 79, 111–116.
Cytoskeletal control of the apical surface transformation of rat uterine epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3hsVekug%3D%3D&md5=9009e91e4e23618c2f91e09f7a370cc9CAS | 8161965PubMed |

Miehe, U., Neumaier-Wagner, P., Fau-Kadyrov, M., Kadyrov, M., Fau-Goyal, P., Goyal, P., Fau-Alfer, J., Alfer, J., Fau-Rath, W., Rath, W., Fau-Huppertz, B., and Huppertz, B. (2005). Concerted upregulation of CLP36 and smooth-muscle actin protein expression in human endometrium during decidualisation. 179, 109–114.
Concerted upregulation of CLP36 and smooth-muscle actin protein expression in human endometrium during decidualisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVSlurg%3D&md5=d69f5f60add728ed14f8c516bcc4400eCAS | 15947461PubMed |

Mikhailov, V. M. (2003). Life cycle of decidual cells. Int. Rev. Cytol. 227, 1–63.
Life cycle of decidual cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFKisro%3D&md5=20a8b871faec2db95a0c3ede2d12472bCAS | 14518549PubMed |

Muriel, O., Echarri, A., Hellriegel, C., Pavon, D. M., Beccari, L., and Del Pozo, M. A. (2011). Phosphorylated filamin A regulates actin-linked caveolae dynamics. J. Cell Sci. 124, 2763–2776.
Phosphorylated filamin A regulates actin-linked caveolae dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWitbbN&md5=4942e0b0d1382183a0e9c3a4d9333cc5CAS | 21807941PubMed |

Murphy, C. R. (2000). Understanding the apical surface markers of uterine receptivity: pinopods – or uterodomes? Hum. Reprod. 15, 2451–2454.
Understanding the apical surface markers of uterine receptivity: pinopods – or uterodomes?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWhuw%3D%3D&md5=fafe0eef96a2051e59afe720fd1c3ac2CAS | 11098008PubMed |

Murphy, C. R. (2001). The plasma membrane transformation: a key concept in uterine receptivity. Reprod. Med. Rev. 9, 197–208.
The plasma membrane transformation: a key concept in uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFOlur0%3D&md5=65c890be1209bfff3e192abe65e0e488CAS |

Murphy, C. R. (2004). Uterine receptivity and the plasma membrane transformation. Cell Res. 14, 259–267.
Uterine receptivity and the plasma membrane transformation.Crossref | GoogleScholarGoogle Scholar | 15353123PubMed |

Murphy, C. R., and Rogers, A. W. (1981). Effects of ovarian hormones on cell membranes in the rat uterus. III. The surface carbohydrates at the apex of the luminal epithelium. Cell Biophys. 3, 305–320.
Effects of ovarian hormones on cell membranes in the rat uterus. III. The surface carbohydrates at the apex of the luminal epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhvFeltb4%3D&md5=20bfff594c356a5d5b8b35168ea1fafaCAS | 6175417PubMed |

Nicholson, M. D., Lindsay, L. A., and Murphy, C. R. (2010). Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy. Acta Histochem. 112, 42–52.
Ovarian hormones control the changing expression of claudins and occludin in rat uterine epithelial cells during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVyksb8%3D&md5=aa25824debcc54994526d7df86adbc9eCAS | 19555995PubMed |

Orchard, M. D., and Murphy, C. R. (2002). Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat. Acta Histochem. 104, 149–155.
Alterations in tight junction molecules of uterine epithelial cells during early pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslOktr0%3D&md5=4bde94924754dc6b53f4adccf31c7826CAS | 12086335PubMed |

Parr, M. B., Tung, H. N., and Parr, E. L. (1986). The ultrastructure of the rat primary decidual zone. Am. J. Anat. 176, 423–436.
The ultrastructure of the rat primary decidual zone.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28zitVSiuw%3D%3D&md5=ee9c8ccb25461f4521684135b636cfdeCAS | 3751948PubMed |

Planagumà, J., Minsaas, L., Pons, M., Myhren, L., Garrido, G., and Aragay, A. M. (2012). Filamin A-hinge region 1-EGFP: a novel tool for tracking the cellular functions of filamin A in real time. PLoS ONE 7, e40864.
Filamin A-hinge region 1-EGFP: a novel tool for tracking the cellular functions of filamin A in real time.Crossref | GoogleScholarGoogle Scholar | 22870205PubMed |

Psychoyos, A. (1974). Hormonal control of ovoimplantation. Vitam. Horm. 31, 201–256.
Hormonal control of ovoimplantation.Crossref | GoogleScholarGoogle Scholar |

Shaw, T. J., Terry, V., Shorey, C. D., and Murphy, C. R. (1998). Alterations in distribution of actin-binding proteins in uterine stromal cells during decidualisation in the rat. Cell Biol. Int. 22, 237–243.
Alterations in distribution of actin-binding proteins in uterine stromal cells during decidualisation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVSjsbo%3D&md5=20330f5e64ea7f85bd41d2ee8baf5c62CAS | 9974217PubMed |

Shion, Y. L., and Murphy, C. R. (1995). The basal plasma membrane and lamina densa of uterine epithelial cells are both altered during early pregnancy and by ovarian hormones in the rat. Eur. J. Morphol. 33, 257–264.
| 1:STN:280:DyaK28%2FovFGhsA%3D%3D&md5=44f949eda312b10ee1b9c2afd79d7070CAS | 8534579PubMed |

Stossel, T. P., Condeelis, J., Cooley, L., Hartwig, J. H., Noegel, A., Schleicher, M., and Shapiro, S. S. (2001). Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138–145.
Filamins as integrators of cell mechanics and signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVWntL4%3D&md5=747331fbe404a2ded3ddf05d508ad2e8CAS | 11252955PubMed |

Terry, V., Shaw, T. J., Shorey, C. D., and Murphy, C. R. (1996). Actin-binding proteins undergo major alterations during the plasma membrane transformation in uterine epithelial cells. Anat. Rec. 246, 71–77.
Actin-binding proteins undergo major alterations during the plasma membrane transformation in uterine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVKnsrk%3D&md5=19ea87deb24c2b9fc5b9f48c1c345e6eCAS | 8876825PubMed |

Thomas, G., Thomas, G., and Luther, H. (1981). Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc. Natl. Acad. Sci. USA 78, 5712–5716.
Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvVCrsb4%3D&md5=9cd9da42ea58233e1c245e248305f616CAS | 6946510PubMed |

van der Flier, A., and Sonnenberg, A. (2001). Structural and functional aspects of filamins. Biochim. Biophys. Acta 1538, 99–117.
Structural and functional aspects of filamins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFehsbs%3D&md5=ee3d25439c5ed965357ac699f6cbbe55CAS | 11336782PubMed |

Venuto, L., Lindsay, L. A., and Murphy, C. R. (2008). Moesin is involved in the cytoskeletal remodelling of rat decidual cells. Acta Histochem. 110, 491–496.
Moesin is involved in the cytoskeletal remodelling of rat decidual cells.Crossref | GoogleScholarGoogle Scholar | 18541292PubMed |