Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cooled semen for fixed-time artificial insemination in beef cattle

Juliana C. Borges-Silva A D F , Márcio R. Silva B , Daniel B. Marinho C , Eriklis Nogueira D , Deiler C. Sampaio E , Luiz Orcírio F. Oliveira D , Urbano G. P. Abreu D , Gerson B. Mourão A and Roberto Sartori A
+ Author Affiliations
- Author Affiliations

A University of São Paulo, Piracicaba, 13418-900, Brazil.

B Melhore Animal Consultoria LTDA, Jaboticabal, 14871-835, Brazil.

C Ema Agropecuária Pantanal LTDA, Corumbá, 79300-006, Brazil.

D Embrapa Pantanal, Corumbá, 79320-900, Brazil.

E Federal University of Mato Grosso do Sul, Campo Grande, 79090-900, Brazil.

F Corresponding author. Email: juliana.correa@embrapa.br

Reproduction, Fertility and Development 28(7) 1004-1008 https://doi.org/10.1071/RD14185
Submitted: 31 May 2014  Accepted: 16 November 2014   Published: 7 January 2015

Abstract

This study evaluated the use of cooled semen in a fixed-time artificial insemination (FTAI) program compared with frozen–thawed semen to improve pregnancy rates in beef cattle. Ejaculates of three bulls were collected and divided into two treatments: (1) frozen–thawed semen and (2) cooled semen. Egg-yolk extender without glycerol was used for the cooled semen treatment. Straws (25 × 106 spermatozoa) were submitted to cooling for preservation at 5°C for 24 h, after which FTAI was performed. Nelore cows (n = 838) submitted to FTAI were randomly inseminated using frozen–thawed semen or cooled semen. There was a 20% increase in the pregnancy per AI (P AI–1) using cooled semen compared with frozen–thawed semen (59.9 ± 4.7 vs 49.4 ± 5.0%; P < 0.005). There was no difference in P AI–1 among the bulls (P = 0.40). The frozen–thawed semen had fewer functional spermatozoa than did the cooled semen when evaluated by sperm motility (61.7 vs 81.0%), slow thermoresistance test (41.7 vs 66.7%) and hypoosmotic swelling test (38.3 vs 53.7%; P < 0.05). The percentage of sperm abnormalities did not differ between the freeze–thawing and cooling processes (18.6 vs 22.1%; P > 0.05). Because there was less damage to spermatozoa and improvement in P AI–1, the use of cooled semen instead of frozen–thawed semen is an interesting approach to increase reproductive efficiency in cattle submitted to a FTAI protocol.

Additional keywords: cooling, fertility, sperm cryopreservation.


References

Aitken, R. J. (1995). Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 7, 659–668.
Free radicals, lipid peroxidation and sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Clsrw%3D&md5=960b3a33fa1a7ccae8d9184813453668CAS | 8711202PubMed |

Amann, R. P., and Graham, J. K. (1993). Sperm function. In ‘Equine Reproduction’. (Eds A. O. Mckinnon and J. L. Voss.) pp. 735–736. (Lea & Febiger: Philadelphia.)

Bailey, J. L., Bilaodean, J. F., and Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging capacitating phenomenon. J. Androl. 21, 1–7.
Semen cryopreservation in domestic animals: a damaging capacitating phenomenon.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7jtl2ktg%3D%3D&md5=d21978545c8dfdef5a3ec9a6799df2c2CAS | 10670514PubMed |

Blässe, A. K., Oldenhof, H., Ekhlasi-Hundrieser, M., Wolkers, W. F., Sieme, H., and Bollwein, H. (2012). Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation. Theriogenology 78, 1312–1320.
Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation.Crossref | GoogleScholarGoogle Scholar | 22819283PubMed |

Blom, E. (1973). The ultrastructure of some characteristic sperm defects and a proposal for a new classification of the bull spermiogram. Nord. Vet. Med. 25, 383–391.
| 1:STN:280:DyaE2c%2FmvFOltw%3D%3D&md5=2595230bd96b7f0707c92cfd9b0d369fCAS | 4768226PubMed |

Bo, G. A., Baruselli, P. S., and Martinez, M. F. (2003). Pattern and manipulation of follicular development in Bos indicus cattle. Anim. Reprod. Sci. 78, 307–326.
Pattern and manipulation of follicular development in Bos indicus cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gtrY%3D&md5=c6a44a672f114644fb47e17d80bf2878CAS | 12818651PubMed |

Borges, J. C., Silva, M. R., Guimarães, J. D., Esper, C. R., and Franceschini, P. H. (2011). Plasmatic membrane of bovine spermatozoa: effect of reactive oxygen species, antioxidants and cryopreservation. Rev. Bras. Reprod. Anim 35, 303–314.

Bucher, A., Kasimanickam, R., Hall, J. B., Dejarnette, J. M., Whittier, W. D., Kähn, W., and Xu, Z. (2009). Fixed-time AI pregnancy rate following insemination with frozen-thawed or fresh–extended semen in progesterone-supplemented CO-Synch protocol in beef cows. Theriogenology 71, 1180–1185.
Fixed-time AI pregnancy rate following insemination with frozen-thawed or fresh–extended semen in progesterone-supplemented CO-Synch protocol in beef cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2qs7o%3D&md5=ed13577ddf77f4bafdb8ff98299ef0bfCAS | 19195696PubMed |

Celeghini, E. C. C., Arruda, R. P., de Andrade, A. F. C., Nascimento, J., Raphael, C. F., and Rodrigues, P. H. M. (2008). Effects that bovine sperm cryopreservation using two different extenders has on sperm membranes and chromatin. Anim. Reprod. Sci. 104, 119–131.
Effects that bovine sperm cryopreservation using two different extenders has on sperm membranes and chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOms7Y%3D&md5=9177b42af62ef7712a0654cafb86d9d6CAS |

Chen, Y., Foote, R. H., Tobback, C., Zhang, L., and Hough, S. (1993). Survival of bull spermatozoa seeded and frozen at different rates in egg yolk–Tris and whole-milk extenders. J. Dairy Sci. 76, 1028–1034.
Survival of bull spermatozoa seeded and frozen at different rates in egg yolk–Tris and whole-milk extenders.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3ltlWnsQ%3D%3D&md5=be573c548c6ea5b4f6452348a561dffcCAS | 8486834PubMed |

Crespilho, A. M., Papa, F. O., Santos, M. D. P., and Filho, M. F. D. S. (2012). Use of cooled bull semen as a strategy to increase the pregnancy rate in fixed-time artificial insemination programs – case report. Am. J. Anim. Vet. Sci. 7, 175–179.
Use of cooled bull semen as a strategy to increase the pregnancy rate in fixed-time artificial insemination programs – case report.Crossref | GoogleScholarGoogle Scholar |

Dimitropoulos, R. (1967). La signification du test de la thermorésistance dans l’appreciation de la valeur fécondant du sperma congele. Anim. Med. Vet 4, 215–224.

Funahashi, H., and Sano, T. (2005). Select antioxidants improve the function of extended boar semen stored at 10 degrees C. Theriogenology 63, 1605–1616.
Select antioxidants improve the function of extended boar semen stored at 10 degrees C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2jsro%3D&md5=8d27e86c6776da20d13d68b2a26cad50CAS | 15763105PubMed |

Gravance, C. G., Vishwanath, R., Pitt, C., Garner, D. L., and Casey, P. J. (1998). Effects of cryopreservation on bull sperm-head morphometry. J. Androl. 19, 704–709.
| 1:STN:280:DyaK1M%2FptFanuw%3D%3D&md5=11418e2c0863018433b29fbf46b47cfbCAS | 9876021PubMed |

Hammerstedt, R. H., Graham, J. K., and Nolan, J. P. (1990). Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl. 11, 73–88.
| 1:CAS:528:DyaK3cXhtlKgs7c%3D&md5=4753ee9e9401b7baea65eb2d5c8d7e69CAS | 2179184PubMed |

Hancock, J. L. (1957). The morphology of boar spermatozoa. J. R. Microsc. Soc. 76, 84–97.
| 1:STN:280:DyaG1c%2FhvFWhsg%3D%3D&md5=3cdb37c0b17d6067aaad59c5dfbacbdbCAS | 13476430PubMed |

Henry, M., and Neves, J. P. (1998). ‘Manual Para Exame Andrológico e Avaliação de Sêmen Animal’. (CBRA Press: Belo Horizonte, Brazil.)

Holt, W. V. (2000). Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 62, 3–22.
Basic aspects of frozen storage of semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Kgsbo%3D&md5=ccec61cde0e440d46733b4ff64686a9dCAS | 10924818PubMed |

Kankofer, M., Kolm, G., Aurich, J., and Aurich, C. (2005). Activity of glutathione peroxidase, superoxide dismutase and catalase and lipid peroxidation intensity in stallion semen during storage at 5°C. Theriogenology 63, 1354–1365.
Activity of glutathione peroxidase, superoxide dismutase and catalase and lipid peroxidation intensity in stallion semen during storage at 5°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslWntbc%3D&md5=8e2201f0b138890532246485be481041CAS | 15725443PubMed |

Lamb, G. C., Dahlen, C. R., Larson, J. E., Marquezini, G., and Stevenson, J. S. (2010). Control of the oestrous cycle to improve fertility for fixed-time artificial insemination in beef cattle: a review. J. Anim. Sci. 88, E181–E192.
Control of the oestrous cycle to improve fertility for fixed-time artificial insemination in beef cattle: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslOgug%3D%3D&md5=721cc6649445f3e03b76d737d06615caCAS | 19783709PubMed |

Lindahl, J., Dalin, A. M., Stuhtmann, G., and Morrell, J. M. (2012). Stallion spermatozoa selected by single-layer centrifugation are capable of fertilisation after storage for up to 96 h at 6°C prior to artificial insemination. Acta Vet. Scand. 54, 40.
Stallion spermatozoa selected by single-layer centrifugation are capable of fertilisation after storage for up to 96 h at 6°C prior to artificial insemination.Crossref | GoogleScholarGoogle Scholar | 22788670PubMed |

Moran, D. M., Jasko, D. J., Squires, E. L., and Amann, R. P. (1992). Determination of temperature and cooling rate which induce cold shock in stallion spermatozoa. Theriogenology 38, 999–1012.
Determination of temperature and cooling rate which induce cold shock in stallion spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvF2muw%3D%3D&md5=ea719f5f78caf2e7ad49c889eff61d30CAS | 16727198PubMed |

Munsi, M. N., Bhuiyan, M. M., Majumder, S., and Alam, M. G. (2007). Effects of exogenous glutathione on the quality of chilled bull semen. Reprod. Domest. Anim. 42, 358–362.
Effects of exogenous glutathione on the quality of chilled bull semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlKnsrY%3D&md5=28dcfa0964048a9278abb16da2505b08CAS | 17635771PubMed |

Nagy, S., Hallap, T., Johannisson, A., and Rodriguez-Martinez, H. (2004). Changes in plasma membrane and acrosome integrity of frozen–thawed bovine spermatozoa during 4°C incubation as measured by multicolour flow cytometry. Anim. Reprod. Sci. 80, 225–235.
Changes in plasma membrane and acrosome integrity of frozen–thawed bovine spermatozoa during 4°C incubation as measured by multicolour flow cytometry.Crossref | GoogleScholarGoogle Scholar | 15036499PubMed |

Parks, J. E., and Graham, J. K. (1992). Effects of cryopreservation procedures on sperm membranes. Theriogenology 38, 209–222.
Effects of cryopreservation procedures on sperm membranes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFyqtg%3D%3D&md5=21f7be3038a4a70646c83f4bdf324b8dCAS | 16727131PubMed |

Petrunkina, A. M., and Harrison, R. A. P. (2013). Fluorescence technologies for evaluating male gamete (dys)function. Reprod. Domest. Anim. 48, 11–24.
Fluorescence technologies for evaluating male gamete (dys)function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlalsrrK&md5=00a96e45bfc5b6160f857c43b0a0e4f2CAS | 23962211PubMed |

Polge, C., Smith, A. U., and Parkes, A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164, 666.
Revival of spermatozoa after vitrification and dehydration at low temperatures.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaH1M%2FksV2gtQ%3D%3D&md5=f6cb0d552f9567006dd6505e4a9e9754CAS | 18143360PubMed |

Revell, S. G., and Mrode, R. A. (1994). An osmotic resistance test for bovine semen. Anim. Reprod. Sci. 36, 77–86.
An osmotic resistance test for bovine semen.Crossref | GoogleScholarGoogle Scholar |

Shannon, P., Curson, B., and Rhodes, A. P. (1984). Relationship between total spermatozoa per insemination and fertility of bovine semen stored in Caprogen at ambient temperature. N. Z. J. Agric. Res. 27, 35–41.
Relationship between total spermatozoa per insemination and fertility of bovine semen stored in Caprogen at ambient temperature.Crossref | GoogleScholarGoogle Scholar |

Verberckmoes, S., Soom, A. V., Dewulf, J., and de Kruif, A. (2005). Comparison of three diluents for the storage of fresh bovine semen. Theriogenology 63, 912–922.
Comparison of three diluents for the storage of fresh bovine semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVWq&md5=9e6ec414e9242e6bfeb9fba16c282c44CAS | 15629807PubMed |

Verstegen, J. P., Onclin, K., and Iguer-ouada, M. (2005). Long-term motility and fertility conservation of chilled canine semen using egg yolk-added Tris-glucose extender: in vitro and in vivo studies. Theriogenology 64, 720–733.
Long-term motility and fertility conservation of chilled canine semen using egg yolk-added Tris-glucose extender: in vitro and in vivo studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzmslKmuw%3D%3D&md5=06a88406b0e605dc3cb3c71c30c11cedCAS | 15970316PubMed |

Vishwanath, R. (2003). Artificial insemination: the state of the art. Theriogenology 59, 571–584.
Artificial insemination: the state of the art.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38jjslKrsw%3D%3D&md5=adeeadc878f7762c21355c43619312a7CAS | 12499005PubMed |

Vishwanath, R., and Shannon, P. (1997). Do sperm cells age? A review of the physiological changes in sperm during storage at ambient temperature. Reprod. Fertil. Dev. 9, 321–331.
Do sperm cells age? A review of the physiological changes in sperm during storage at ambient temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFCisbo%3D&md5=d4f1992d95014c211e6159411374529fCAS | 9261880PubMed |

Watson, P. F. (1995). Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7, 871–891.
Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ns1alsQ%3D%3D&md5=368343d88edba9b5012d4dc3341aa1e0CAS | 8711221PubMed |

Watson, P. F. (2000). The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60–61, 481–492.
The causes of reduced fertility with cryopreserved semen.Crossref | GoogleScholarGoogle Scholar | 10844218PubMed |

Wiltbank, M. C., Sartori, R., Vasconcelos, J. L., Nascimento, A. B., Souza, A. H., Cunha, A. P., Gumen, A., Sangsritavong, S., Guenther, J. N., Lopez, H., and Pursley, J. R. (2010). Managing the dominant follicle in high-producing dairy cows. Soc. Reprod. Fertil. Suppl. 67, 231–245.
| 1:STN:280:DC%2BC3MnosFentA%3D%3D&md5=c1f0c3356ad1bb8f8e6fbcce7a1f4bc5CAS | 21755676PubMed |

Yoshida, M. (2000). Conservation of sperms: current status and new trends. Anim. Reprod. Sci. 60–61, 349–355.
Conservation of sperms: current status and new trends.Crossref | GoogleScholarGoogle Scholar | 10844206PubMed |

Zou, C.-X., and Yang, Z.M. (2000). Evaluation on sperm quality of freshly ejaculated boar semen during in vitro storage under different temperatures. Theriogenology 53, 1477–1488.
Evaluation on sperm quality of freshly ejaculated boar semen during in vitro storage under different temperatures.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvitVCjtQ%3D%3D&md5=b4f2849c0b7d6d61cf82d8914ed5e50dCAS | 10898217PubMed |