Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Comparative efficacies of six different media for cryopreservation of immature buffalo (Bubalus bubalis) calf testis

Lalitha Devi A , Himesh Makala A , Lavanya Pothana A , Khemlal Nirmalkar A and Sandeep Goel A B
+ Author Affiliations
- Author Affiliations

A Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India.

B Corresponding author. Email: sandeep@ccmb.res.in

Reproduction, Fertility and Development 28(7) 872-885 https://doi.org/10.1071/RD14171
Submitted: 23 May 2014  Accepted: 20 October 2014   Published: 8 December 2014

Abstract

Buffalo calves have a high mortality rate (~80%) in commercial dairies and testis cryopreservation can provide a feasible option for the preservation of germplasm from immature males that die before attaining sexual maturity. The aim of the present study was to evaluate combinations of 10 or 20% dimethylsulfoxide (DMSO) with 0, 20 or 80% fetal bovine serum (FBS) for cryopreservation of immature buffalo testicular tissues, subjected to uncontrolled slow freezing. Tissues cryopreserved in 20% DMSO with 20% FBS (D20S20) showed total, tubular and interstitial cell viability, number of early apoptotic and DNA-damaged cells, surviving germ and proliferating cells and expression of testicular cell-specific proteins (POU class 5 homeobox (POU5F1), vimentin (VIM) and actin α2 (ACTA2)) similar to that of fresh cultured control (FCC; P > 0.05). Expression of cytochrome P450, family 11, subfamily A (CYP11A1) protein and testosterone assay showed that only tissues cryopreserved in D20S20 had Leydig cells and secretory functions identical to that of FCC (P > 0.05). High expression of superoxide dismutase2 (SOD2), cold-inducible RNA-binding protein (CIRBP) and RNA-binding motif protein3 (RBM3) proteins in cryopreserved tissues indicated involvement of cell signalling pathways regulating cellular protective mechanisms. Similarity in expression of pro-apoptosis proteins transcription factor tumour protein P53 (TP53) and BCL2-associated X protein (BAX) in D20S20 cryopreserved tissues to that of FCC (P > 0.05) suggested lower apoptosis and DNA damage as key reasons for superior cryopreservation.

Additional keywords: apoptosis, FBS, germ cells, protein-expression.


References

Abrishami, M., Anzar, M., Yang, Y., and Honaramooz, A. (2010). Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice. Theriogenology 73, 86–96.
Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntbzN&md5=813668e69ee37c9b43d52cd582c14520CAS | 19853904PubMed |

Ahmad, N., Umair, S., Shahab, M., and Arslan, M. (2010). Testicular development and establishment of spermatogenesis in Nili–Ravi buffalo bulls. Theriogenology 73, 20–25.
Testicular development and establishment of spermatogenesis in Nili–Ravi buffalo bulls.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MjosFegsA%3D%3D&md5=530ffa6b742f637dd5bf1be2b1ee8c35CAS | 19815266PubMed |

Baert, Y., Van Saen, D., Haentjens, P., In’t Veld, P., Tournaye, H., and Goossens, E. (2013). What is the best cryopreservation protocol for human testicular tissue banking? Hum. Reprod. 28, 1816–1826.
What is the best cryopreservation protocol for human testicular tissue banking?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqu7zF&md5=b21e754e1c371729d563908d70e33a8eCAS | 23569082PubMed |

Bakhtiari, M., Mansouri, K., Sadeghi, Y., and Mostafaie, A. (2012). Proliferation and differentiation potential of cryopreserved human skin‐derived precursors. Cell Prolif. 45, 148–157.
Proliferation and differentiation potential of cryopreserved human skin‐derived precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVGlu74%3D&md5=2cc1caca6d7565f4412558b53c87c8e0CAS | 22260230PubMed |

Banerjee, G. C. (1996) ‘A Textbook of Animal Husbandry’. 7th edn. (Oxford and IBH Publishing Co. Pvt. Ltd: New Delhi.)

Borghese, A., and Mazzi, M. (2005) Buffalo population and strategies in the world. In ‘Buffalo Production and Research’. (Eds A. Borghese.) pp. 1–39. (Food and Agriculture Organization (FAO) of the United Nations: Rome.)

Câmara, D. R., Silva, S. V., Almeida, F. C., Nunes, J. F., and Guerra, M. M. (2011). Effects of antioxidants and duration of pre-freezing equilibration on frozen–thawed ram semen. Theriogenology 76, 342–350.
Effects of antioxidants and duration of pre-freezing equilibration on frozen–thawed ram semen.Crossref | GoogleScholarGoogle Scholar | 21529917PubMed |

Castro, S. V., de Carvalho, A. A., da Silva, C. M. G., Faustino, L. R., Campello, C. C., Lucci, C. M., Báo, S. N., de Figueiredo, J. R., and Rodrigues, A. P. R. (2011). Freezing solution containing dimethylsulfoxide and fetal calf serum maintains survival and ultrastructure of goat preantral follicles after cryopreservation and in vitro culture of ovarian tissue. Cell Tissue Res. 346, 283–292.
Freezing solution containing dimethylsulfoxide and fetal calf serum maintains survival and ultrastructure of goat preantral follicles after cryopreservation and in vitro culture of ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyls7zK&md5=59f1c4edc41ae95a65b5c1b2f235a106CAS | 22006251PubMed |

Chambers, E. L., Gosden, R. G., Yap, C., and Picton, H. M. (2010). In situ identification of follicles in ovarian cortex as a tool for quantifying follicle density, viability and developmental potential in strategies to preserve female fertility. Hum. Reprod. 25, 2559–2568.
In situ identification of follicles in ovarian cortex as a tool for quantifying follicle density, viability and developmental potential in strategies to preserve female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyltLjM&md5=179910c639a48ddff69bae0b8c56fc01CAS | 20699246PubMed |

Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., and Green, D. R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilisation and apoptosis. Science 303, 1010–1014.
Direct activation of Bax by p53 mediates mitochondrial membrane permeabilisation and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlWnu7o%3D&md5=c9a86e5d47a261f0fc9c79daf0e1dac0CAS | 14963330PubMed |

Curaba, M., Poels, J., van Langendonckt, A., Donnez, J., and Wyns, C. (2011). Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil. Steril. 95, 2123e9–2123e12.
Can prepubertal human testicular tissue be cryopreserved by vitrification?Crossref | GoogleScholarGoogle Scholar |

Danno, S., Nishiyama, H., Higashitsuji, H., Yokoi, H., Xue, J. H., Itoh, K., Matsuda, T., and Fujita, J. (1997). Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress. Biochem. Biophys. Res. Commun. 236, 804–807.
Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVyisbg%3D&md5=ab4bfcfb558042c8ce632d4842be9ff8CAS | 9245737PubMed |

Danno, S., Itoh, K., Matsuda, T., and Fujita, J. (2000). Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. Am. J. Pathol. 156, 1685–1692.
Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslOhsLY%3D&md5=5d5bca8f82b2407a3d22407e0e6342eeCAS | 10793079PubMed |

Drane, P., Bravard, A., Bouvard, V., and May, E. (2001). Reciprocal down-regulation of p53 and SOD2 gene expression – implication in p53-mediated apoptosis. Oncogene 20, 430–439.
Reciprocal down-regulation of p53 and SOD2 gene expression – implication in p53-mediated apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtLw%3D&md5=a4fb709d2b8a074d045c3f10bf065fc7CAS | 11313974PubMed |

Gholami, M., Hemadi, M., Saki, G., Zendedel, A., Khodadadi, A., and Mohammadi-Asl, J. (2013). Does prepubertal testicular tissue vitrification influence spermatogonial stem cells (SSCs) viability? J. Assist. Reprod. Genet. 30, 1271–1277.
Does prepubertal testicular tissue vitrification influence spermatogonial stem cells (SSCs) viability?Crossref | GoogleScholarGoogle Scholar | 23877786PubMed |

Goel, S., Reddy, N., Mandal, S., Fujihara, M., Kim, S. M., and Imai, H. (2010). Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilisation for isolation and in vitro cultivation of spermatogonia. Theriogenology 74, 1221–1232.
Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilisation for isolation and in vitro cultivation of spermatogonia.Crossref | GoogleScholarGoogle Scholar | 20708247PubMed |

Goossens, E., Frederickx, V., Geens, M., De Block, G., and Tournaye, H. (2008). Cryosurvival and spermatogenesis after allografting prepubertal mouse tissue: comparison of two cryopreservation protocols. Fertil. Steril. 89, 725–727.
Cryosurvival and spermatogenesis after allografting prepubertal mouse tissue: comparison of two cryopreservation protocols.Crossref | GoogleScholarGoogle Scholar | 17517406PubMed |

Gouk, S. S., Loh, Y. F., Kumar, S. D., Watson, P. F., and Kuleshova, L. L. (2011). Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil. Steril. 95, 2399–2403.
Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation.Crossref | GoogleScholarGoogle Scholar | 21481372PubMed |

Griswold, M. D. (1998). The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 9, 411–416.
The central role of Sertoli cells in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFyl&md5=b5b24202d84f322a5c5673c66d349a63CAS | 9813187PubMed |

Honaramooz, A., Snedaker, A., Boiani, M., Scholer, H., Dobrinski, I., and Schlatt, S. (2002). Sperm from neonatal mammalian testes grafted in mice. Nature 418, 778–781.
Sperm from neonatal mammalian testes grafted in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtV2gu7s%3D&md5=5f92f0d221d93a70534209fe4262fe99CAS | 12181567PubMed |

Hovatta, O. (2003). Cryobiology of ovarian and testicular tissue. Best Pract. Res. Clin. Obstet. Gynaecol. 17, 331–342.
Cryobiology of ovarian and testicular tissue.Crossref | GoogleScholarGoogle Scholar | 12758103PubMed |

Izadyar, F., Matthijs‐Rijsenbilt, J. J., den Ouden, K., Creemers, L. B., Woelders, H., and de Rooij, D. G. (2002). Development of a cryopreservation protocol for type A spermatogonia. J. Androl. 23, 537–545.
| 1:CAS:528:DC%2BD38Xlt1KhsLY%3D&md5=c29e9b90a639b5b6b21b1c63c2ccd1ecCAS | 12065461PubMed |

Jahnukainen, K., Ehmcke, J., Hergenrother, S. D., and Schlatt, S. (2007). Effect of cold storage and cryopreservation of immature non-human primate testicular tissue on spermatogonial stem cell potential in xenografts. Hum. Reprod. 22, 1060–1067.
Effect of cold storage and cryopreservation of immature non-human primate testicular tissue on spermatogonial stem cell potential in xenografts.Crossref | GoogleScholarGoogle Scholar | 17166865PubMed |

Kaneko, H., Kikuchi, K., Nakai, M., Somfai, T., Noguchi, J., Tanihara, F., Ito, J., and Kashiwazaki, N. (2013). Generation of live piglets for the first time using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice. PLoS ONE 8, e70989.
Generation of live piglets for the first time using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ygurnP&md5=4d73e52a83904479db23dc0d34835a01CAS | 23923039PubMed |

Keros, V., Rosenlund, B., Hultenby, K., Aghajanova, L., Levkov, L., and Hovatta, O. (2005). Optimising cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulfoxide as cryoprotectants. Hum. Reprod. 20, 1676–1687.
Optimising cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulfoxide as cryoprotectants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVSjs7Y%3D&md5=4d9316586e3851dd8d62b4d5aa972d49CAS | 15860503PubMed |

Keros, V., Hultenby, K., Borgstrom, B., Fridstrom, M., Jahnukainen, K., and Hovatta, O. (2007). Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum. Reprod. 22, 1384–1395.
Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlWmsb8%3D&md5=19e9ede02ae0d0e31fc777bba3fadadfCAS | 17259225PubMed |

Kvist, K., Thorup, J., Byskov, A. G., Hoyer, P. E., Mollgard, K., and Yding Andersen, C. (2006). Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum. Reprod. 21, 484–491.
Cryopreservation of intact testicular tissue from boys with cryptorchidism.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2FosValsg%3D%3D&md5=d8192012ae56a836654dac475173ea07CAS | 16210383PubMed |

Lee, Y. A., Kim, Y. H., Kim, B. J., Jung, M. S., Auh, J. H., Seo, J. T., Park, Y. S., Lee, S. H., and Ryu, B. Y. (2013). Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol. Biol. Reprod. 89, 109.
Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol.Crossref | GoogleScholarGoogle Scholar | 24025741PubMed |

Liu, Y., Xu, X., Ma, X., Liu, J., and Cui, Z. (2011). Effect of various freezing solutions on cryopreservation of mesenchymal stem cells from different animal species. Cryo Letters 32, 425–435.
| 1:CAS:528:DC%2BC3MXhsFCrsL3F&md5=3e943d7f263909eeebd0180d34656ad1CAS | 22020465PubMed |

Liu, J., Cheng, K. M., and Silversides, F. G. (2013). Production of live offspring from testicular tissue cryopreserved by vitrification procedures in Japanese quail (Coturnix japonica). Biol. Reprod. 88, 124.
Production of live offspring from testicular tissue cryopreserved by vitrification procedures in Japanese quail (Coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 23575148PubMed |

Lleonart, M. E. (2010). A new generation of proto-oncogenes: cold-inducible RNA binding proteins. Biochim. Biophys. Acta 1805, 43–52.
| 1:CAS:528:DC%2BC3cXktVGksg%3D%3D&md5=a6ae2d44e0215a7da3fa15f3fd248579CAS | 19900510PubMed |

Maekawa, M., Kamimura, K., and Nagano, T. (1996). Peritubular myoid cells in the testis: their structure and function. Arch. Histol. Cytol. 59, 1–13.
Peritubular myoid cells in the testis: their structure and function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ovVGlug%3D%3D&md5=1bb96e30e5fc48dcb5aad81e4fc48263CAS | 8727359PubMed |

Mahla, R. S., Reddy, N., and Goel, S. (2012). Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS ONE 7, e36020.
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Cgur4%3D&md5=ef37442ef1abd5ddc480d2e888e24411CAS | 22536454PubMed |

Milazzo, J. P., Vaudreuil, L., Cauliez, B., Gruel, E., Masse, L., Mousset-Simeon, N., Mace, B., and Rives, N. (2008). Comparison of conditions for cryopreservation of testicular tissue from immature mice. Hum. Reprod. 23, 17–28.
Comparison of conditions for cryopreservation of testicular tissue from immature mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgsbzE&md5=6402741f56019b188b0a14cc5b8378d6CAS | 17989070PubMed |

Milazzo, J. P., Travers, A., Bironneau, A., Safsaf, A., Gruel, E., Arnoult, C., Mace, B., Boyer, O., and Rives, N. (2010). Rapid screening of cryopreservation protocols for murine prepubertal testicular tissue by histology and PCNA immunostaining. J. Androl. 31, 617–630.
Rapid screening of cryopreservation protocols for murine prepubertal testicular tissue by histology and PCNA immunostaining.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbms1aksQ%3D%3D&md5=fbba20032047e07d8bd3917ff225fbc7CAS | 20203335PubMed |

Poels, J., Van Langendonckt, A., Dehoux, J. P., Donnez, J., and Wyns, C. (2012). Vitrification of non-human primate immature testicular tissue allows maintenance of proliferating spermatogonial cells after xenografting to recipient mice. Theriogenology 77, 1008–1013.
Vitrification of non-human primate immature testicular tissue allows maintenance of proliferating spermatogonial cells after xenografting to recipient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOmsbg%3D&md5=896652f27af4b596e83b89bf907b9848CAS | 22153273PubMed |

Poels, J., Van Langendonckt, A., Many, M. C., Wese, F. X., and Wyns, C. (2013). Vitrification preserves proliferation capacity in human spermatogonia. Hum. Reprod. 28, 578–589.
Vitrification preserves proliferation capacity in human spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislOmtLs%3D&md5=70f207d69f45b8622b0564425df30a3dCAS | 23315062PubMed |

Pukazhenthi, B., Comizzoli, P., Travis, A. J., and Wildt, D. E. (2006). Applications of emerging technologies to the study and conservation of threatened and endangered species. Reprod. Fertil. Dev. 18, 77–90.
Applications of emerging technologies to the study and conservation of threatened and endangered species.Crossref | GoogleScholarGoogle Scholar | 16478605PubMed |

Reddy, N., Mahla, R. S., Thathi, R., Suman, S. K., Jose, J., and Goel, S. (2012). Gonadal status of male recipient mice influences germ-cell development in immature buffalo testis tissue xenograft. Reproduction 143, 59–69.
Gonadal status of male recipient mice influences germ-cell development in immature buffalo testis tissue xenograft.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1yhtL8%3D&md5=41ecf40e0ab62d52d373e1e6e5ae86fcCAS | 22046056PubMed |

Reddy, N., Sreshtha, S., Katakam, M., Ashwini, M., Sonam, S., Kumar, V., and Goel, S. (2013). Prepubertal buffalo (Bubalus bubalis) Leydig cells: isolation, culture and characterization. Journal of Buffalo Science 2, 25–33.
| 1:CAS:528:DC%2BC2cXhslKhs73I&md5=9242d860c74d8bb1b908ffd3bb5f9bcaCAS |

Rodriguez-Sosa, J. R., and Dobrinski, I. (2009). Recent developments in testis tissue xenografting. Reproduction 138, 187–194.
Recent developments in testis tissue xenografting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemtrc%3D&md5=f50a1b3dc6374a93a3e2894571b7bf37CAS | 19372227PubMed |

Sato, N. (1995). A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Res. 23, 2161–2167.
A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVGjtr4%3D&md5=fe4c6786c6c9e038288e646c766024cfCAS | 7541909PubMed |

Shin, M. R., Choi, H. W., Kim, M. K., Lee, S. H., Lee, H. S., and Lim, C. K. (2011). In vitro development and gene expression of frozen–thawed eight-cell stage mouse embryos following slow freezing or vitrification. Clin. Exp. Reprod. Med. 38, 203–209.
In vitro development and gene expression of frozen–thawed eight-cell stage mouse embryos following slow freezing or vitrification.Crossref | GoogleScholarGoogle Scholar | 22384443PubMed |

Song, Y., and Silversides, F. G. (2007). Production of offspring from cryopreserved chicken testicular tissue. Poult. Sci. 86, 1390–1396.
Production of offspring from cryopreserved chicken testicular tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2szmtVWlsQ%3D%3D&md5=ad0c2606bb1134faf63101871932c162CAS | 17575187PubMed |

Storz, P., Doppler, H., and Toker, A. (2005). Protein kinase D mediates mitochondrion-to-nucleus signalling and detoxification from mitochondrial reactive oxygen species. Mol. Cell. Biol. 25, 8520–8530.
Protein kinase D mediates mitochondrion-to-nucleus signalling and detoxification from mitochondrial reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqsLbK&md5=297db1b164be53ea6f9ade52042ae2b4CAS | 16166634PubMed |

Thuwanut, P., and Chatdarong, K. (2012). Cryopreservation of cat testicular tissues: effects of storage temperature, freezing protocols and cryoprotective agents. Reprod. Domest. Anim. 47, 777–781.
Cryopreservation of cat testicular tissues: effects of storage temperature, freezing protocols and cryoprotective agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2jur%2FE&md5=d0625701855448f4e67d3c0311e80989CAS | 22151534PubMed |

Tiwari, R., Sharma, M., and Singh, B. (2007). Buffalo calf health care in commercial dairy farms: a field study in Uttar Pradesh (India). Livestock Research for Rural Development 19, 8.

Tong, G., Endersfelder, S., Rosenthal, L. M., Wollersheim, S., Sauer, I. M., Buhrer, C., Berger, F., and Schmitt, K. R. (2013). Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expression in murine hippocampal brain slices. Brain Res. 1504, 74–84.
Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expression in murine hippocampal brain slices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyrsL8%3D&md5=befe8bfbc7e5e79f88ed061e176e4329CAS | 23415676PubMed |

Travers, A., Milazzo, J. P., Perdrix, A., Metton, C., Bironneau, A., Mace, B., and Rives, N. (2011). Assessment of freezing procedures for rat immature testicular tissue. Theriogenology 76, 981–990.
Assessment of freezing procedures for rat immature testicular tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MfgvV2rug%3D%3D&md5=77e82ae2aaf82fc1b0c69d4c3a46a87eCAS | 21664672PubMed |

Unni, S., Kasiviswanathan, S., D’Souza, S., Khavale, S., Mukherjee, S., Patwardhan, S., and Bhartiya, D. (2012). Efficient cryopreservation of testicular tissue: effect of age, sample state and concentration of cryoprotectant. Fertil. Steril. 97, 200–8e1.
Efficient cryopreservation of testicular tissue: effect of age, sample state and concentration of cryoprotectant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12qug%3D%3D&md5=a4dcfb7575e7f9e514ecc488710b79b5CAS | 22100171PubMed |

Wu, J. J., Hu, T. J., Guo, B., Yue, Z. P., Yang, Z. T., and Zhang, X. M. (2011). Cryopreservation of adult bovine testicular tissue for spermatogonia enrichment. Cryo Letters 32, 402–409.
| 1:CAS:528:DC%2BC3MXhsFCrsL3K&md5=0573f24eea52f26e96a46a5098d07fdaCAS | 22020462PubMed |

Wu, J. Y., Sun, Y. X., Wang, A. B., Che, G. Y., Hu, T. J., and Zhang, X. M. (2014). Effect of newborn bovine serum on cryopreservation of adult bovine testicular tissue. Andrologia 46, 308–312.
Effect of newborn bovine serum on cryopreservation of adult bovine testicular tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslWktbY%3D&md5=480f1e4cc164015cfd0f339031f6dfe0CAS | 23488796PubMed |

Wyns, C., Van Langendonckt, A., Wese, F. X., Donnez, J., and Curaba, M. (2008). Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum. Reprod. 23, 2402–2414.
Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue.Crossref | GoogleScholarGoogle Scholar | 18664476PubMed |

Yang, Y., Steeg, J., and Honaramooz, A. (2010). The effects of tissue sample size and media on short-term hypothermic preservation of porcine testis tissue. Cell Tissue Res. 340, 397–406.
The effects of tissue sample size and media on short-term hypothermic preservation of porcine testis tissue.Crossref | GoogleScholarGoogle Scholar | 20232215PubMed |

Zeng, W., Snedaker, A. K., Megee, S., Rathi, R., Chen, F., Honaramooz, A., and Dobrinski, I. (2009). Preservation and transplantation of porcine testis tissue. Reprod. Fertil. Dev. 21, 489–497.
Preservation and transplantation of porcine testis tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemtrw%3D&md5=117b6397b71b99ec2122d4f9a5697b63CAS | 19261226PubMed |