Transcriptome of early embryonic invasion at implantation sites in a murine model
J. M. Moreno-Moya A , N. A. Franchi B E , S. Martínez-Escribano A , J. A. Martínez-Conejero A , S. Bocca B , S. Oehninger B and J. A. Horcajadas C D FA Fundación IVI (FIVI)–Instituto Universitario IVI (IUIVI), University of Valencia, Parc Científic Universitat de València, Catedrático Agustín Escardino, 9, 46980 – Paterna, Valencia, Spain.
B The Jones Institute for Reproductive Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
C Araid at I+CS and Unviersidad Pablo de Olavide, Sevilla, Hospital Miguel Servet, Zaragoza, Spain.
D Universidad Pablo de Olavide, Sevilla, Spain.
E Present address: Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina.
F Corresponding author. Email: jose.horcajadas@gmail.com
Reproduction, Fertility and Development 28(10) 1487-1498 https://doi.org/10.1071/RD14166
Submitted: 20 May 2014 Accepted: 23 January 2015 Published: 5 May 2015
Abstract
Successful implantation relies on the interaction between a competent embryo and a receptive endometrium. The aim of the present study was to investigate genes differentially expressed in early invasive embryonic tissue versus decidual tissue in mice. Samples were obtained from the ectoplacental cone, the immediately surrounding deciduas and from deciduas from interimplantation sites. Microarray analysis showed that 817 genes were differentially expressed between extra-embryonic tissue and the surrounding decidua and that 360 genes were differentially expressed between the different deciduas, with a high representation of developmental processes. Genes differentially expressed in the maternal compartment included chemokines, lipoproteins, growth factors and transcription factors, whereas the embryonic invasive tissue expressed genes commonly observed in invasive tumour-like processes. These results provide information about genes involved in early embryonic invasion and the control exerted by the surrounding decidua. This information may be useful to find targets involved in pathologies associated with implantation failure and early pregnancy loss.
Additional keywords: ectoplacental cone, decidual tissue, microarray, mouse implantation, RNA expression patterns, trophoblast invasion.
References
Britschgi, M. R., Favre, S., and Luther, S. A. (2010). CCL21 is sufficient to mediate DC migration, maturation and function in the absence of CCL19. Eur. J. Immunol. 40, 1266–1271.| CCL21 is sufficient to mediate DC migration, maturation and function in the absence of CCL19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFSltLw%3D&md5=86f62b179c2583cc6f5a132cee167503CAS | 20201039PubMed |
Chen, Y., Ni, H., Ma, X. H., Hu, S. J., Luan, L. M., Ren, G., Zhao, Y. C., Li, S. J., Diao, H. L., Xu, X., Zhao, Z. A., and Yang, Z. M. (2006). Global analysis of differential luminal epithelial gene expression at mouse implantation sites. J. Mol. Endocrinol. 37, 147–161.
| Global analysis of differential luminal epithelial gene expression at mouse implantation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjtro%3D&md5=956d65410d888126f0159928bcfc543dCAS | 16901931PubMed |
Cross, J. C., Werb, Z., and Fisher, S. J. (1994). Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518.
| Implantation and the placenta: key pieces of the development puzzle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVGmu78%3D&md5=963658a9d2e4152a5609e87c06b33651CAS | 7985020PubMed |
Davies, M. C., Anderson, M. C., Mason, B. A., and Jacobs, H. S. (1990). Oocyte donation: the role of endometrial receptivity. Hum. Reprod. 5, 862–869.
| 1:STN:280:DyaK3M%2FptlCitQ%3D%3D&md5=8f219f0dea42a3c819626ee39cd4a691CAS | 2266161PubMed |
Dawson, P. A., Pirlo, K. J., Steane, S. E., Nguyen, K. A., Kunzelmann, K., Chien, Y. J., and Markovich, D. (2005). The rat Na+–sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflügers Arch. 450, 262–268.
| The rat Na+–sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVSnsro%3D&md5=2112d087875b1e352c2016966e2bc3d0CAS | 15889308PubMed |
Dawson, P. A., Rakoczy, J., and Simmons, D. G. (2012). Placental, renal, and ileal sulfate transporter gene expression in mouse gestation. Biol. Reprod. 87, 43.
| Placental, renal, and ileal sulfate transporter gene expression in mouse gestation.Crossref | GoogleScholarGoogle Scholar | 22674389PubMed |
Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., and Lempicki, R. A. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3.
| DAVID: Database for Annotation, Visualization, and Integrated Discovery.Crossref | GoogleScholarGoogle Scholar | 12734009PubMed |
Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., and Bellet, D. (2007). Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update 13, 121–141.
| Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWlsrw%3D&md5=8bf240eb638f1083c5fbe68429b43ec0CAS | 17068222PubMed |
Fluhr, H., Bischof-Islami, D., Krenzer, S., Licht, P., Bischof, P., and Zygmunt, M. (2008). Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertil. Steril. 90, 1390–1395.
| Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSru77O&md5=a4db221f4cc09fedf5ef9c40203e7673CAS | 18291374PubMed |
Franco, H. L., Dai, D., Lee, K. Y., Rubel, C. A., Roop, D., Boerboom, D., Jeong, J. W., Lydon, J. P., Bagchi, I. C., Bagchi, M. K., and DeMayo, F. J. (2011). WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 25, 1176–1187.
| WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslSlu7k%3D&md5=2d7d90244e627a01c83daa629b05397bCAS | 21163860PubMed |
Giritharan, G., Li, M. W., De Sebastiano, F., Esteban, F. J., Horcajadas, J. A., Lloyd, K. C., Donjacour, A., Maltepe, E., and Rinaudo, P. F. (2010). Effect of ICSI on gene expression and development of mouse preimplantation embryos. Hum. Reprod. 25, 3012–3024.
| Effect of ICSI on gene expression and development of mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgtr7O&md5=7180d785412c70e4e88b13ac75cde50eCAS | 20889529PubMed |
Giritharan, G., Delle Piane, L., Donjacour, A., Esteban, F. J., Horcajadas, J. A., Maltepe, E., and Rinaudo, P. (2012). In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm. Reprod. Sci. 19, 243–252.
| In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFShtb0%3D&md5=2e1c842da9e8b7a1da9de8afa33c9f4eCAS | 22383776PubMed |
Gu, X. L., Ou, Z. L., Lin, F. J., Yang, X. L., Luo, J. M., Shen, Z. Z., and Shao, Z. M. (2012). Expression of CXCL14 and its anticancer role in breast cancer. Breast Cancer Res. Treat. 135, 725–735.
| Expression of CXCL14 and its anticancer role in breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGmsbfM&md5=6e3184deebef25fbb58ec3b66bdfec12CAS | 22910931PubMed |
Hess, A. P., Hamilton, A. E., Talbi, S., Dosiou, C., Nyegaard, M., Nayak, N., Genbecev-Krtolica, O., Mavrogianis, P., Ferrer, K., Kruessel, J., Fazleabas, A. T., Fisher, S. J., and Giudice, L. C. (2007). Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol. Reprod. 76, 102–117.
| Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Ojuw%3D%3D&md5=087510582bf3fe9d31f384063554567cCAS | 17021345PubMed |
Hochepied, T., Ameloot, P., Brouckaert, P., Van Leuven, F., and Libert, C. (2000). Differential response of a(2)-macroglobulin-deficient mice in models of lethal TNF-induced inflammation. Eur. Cytokine Netw. 11, 597–601.
| 1:CAS:528:DC%2BD3MXms1Skuw%3D%3D&md5=1e9198f9f9620ff12ada3cd4386f925bCAS | 11125302PubMed |
Horcajadas, J. A., Pellicer, A., and Simon, C. (2007). Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum. Reprod. Update 13, 77–86.
| Wide genomic analysis of human endometrial receptivity: new times, new opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtLfI&md5=577281e5724dd48b74be75434dfd2a6aCAS | 16960016PubMed |
Horcajadas, J. A., Goyri, E., Higon, M. A., Martinez-Conejero, J. A., Gambadauro, P., Garcia, G., Meseguer, M., Simon, C., and Pellicer, A. (2008). Endometrial receptivity and implantation are not affected by the presence of uterine intramural leiomyomas: a clinical and functional genomics analysis. J. Clin. Endocrinol. Metab. 93, 3490–3498.
| Endometrial receptivity and implantation are not affected by the presence of uterine intramural leiomyomas: a clinical and functional genomics analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFChurnL&md5=09ceaf577fb890c97e4778e720ee911aCAS | 18559911PubMed |
Hou, X., Tan, Y., Li, M., Dey, S. K., and Das, S. K. (2004). Canonical Wnt signaling is critical to estrogen-mediated uterine growth. Mol. Endocrinol. 18, 3035–3049.
| Canonical Wnt signaling is critical to estrogen-mediated uterine growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFShur%2FI&md5=0070452c84e31118ec09dc2f01c6f2faCAS | 15358837PubMed |
Ishida, M., Ohashi, S., Kizaki, Y., Naito, J., Horiguchi, K., and Harigaya, T. (2007). Expression profiling of mouse placental lactogen II and its correlative genes using a cDNA microarray analysis in the developmental mouse placenta. J. Reprod. Dev. 53, 69–76.
| Expression profiling of mouse placental lactogen II and its correlative genes using a cDNA microarray analysis in the developmental mouse placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1GntLc%3D&md5=8de26aefa54052dd581003ebc216e2adCAS | 17062983PubMed |
Jabbour, H. N., Kelly, R. W., Fraser, H. M., and Critchley, H. O. (2006). Endocrine regulation of menstruation. Endocr. Rev. 27, 17–46.
| Endocrine regulation of menstruation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFSit7Y%3D&md5=255b65ff2eecdf2807c93b27b14ecb69CAS | 16160098PubMed |
Johnson, P. M., Christmas, S. E., and Vince, G. S. (1999). Immunological aspects of implantation and implantation failure. Hum. Reprod. 14, 26–36.
| Immunological aspects of implantation and implantation failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVertLk%3D&md5=2ae70bb5064d5fd4ac9feb53504d0f9eCAS | 10690798PubMed |
Kuang, H., Chen, Q., Zhang, Y., Zhang, L., Peng, H., Ning, L., Cao, Y., and Duan, E. (2009). The cytokine gene CXCL14 restricts human trophoblast cell invasion by suppressing gelatinase activity. Endocrinology 150, 5596–5605.
| The cytokine gene CXCL14 restricts human trophoblast cell invasion by suppressing gelatinase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqtbvM&md5=c0d5bd2fddc7b617862999ff51df01d0CAS | 19833716PubMed |
Lea, R. G., and Sandra, O. (2007). Immunoendocrine aspects of endometrial function and implantation. Reproduction 134, 389–404.
| Immunoendocrine aspects of endometrial function and implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnur3M&md5=afcab8e891d84229a11ef3daa1723c4cCAS | 17709558PubMed |
Li, Q., Kannan, A., Wang, W., Demayo, F. J., Taylor, R. N., Bagchi, M. K., and Bagchi, I. C. (2007). Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human. J. Biol. Chem. 282, 31 725–31 732.
| Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyku77O&md5=649ab50410bb92a6907c7eac6ac868e5CAS |
Lobo, S. C., Huang, S. T., Germeyer, A., Dosiou, C., Vo, K. C., Tulac, S., Nayak, N. R., and Giudice, L. C. (2004). The immune environment in human endometrium during the window of implantation. Am. J. Reprod. Immunol. 52, 244–251.
| The immune environment in human endometrium during the window of implantation.Crossref | GoogleScholarGoogle Scholar | 15494045PubMed |
Marchand, M., Horcajadas, J. A., Esteban, F. J., McElroy, S. L., Fisher, S. J., and Giudice, L. C. (2011). Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model. Biol. Reprod. 84, 1258–1271.
| Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemu7g%3D&md5=5d1b5ac995a73d0be506564c558bf53cCAS | 21368299PubMed |
Masson, V., de la Ballina, L. R., Munaut, C., Wielockx, B., Jost, M., Maillard, C., Blacher, S., Bajou, K., Itoh, T., Itohara, S., Werb, Z., Libert, C., Foidart, J. M., and Noel, A. (2005). Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J. 19, 234–236.
| 1:CAS:528:DC%2BD2MXhtFehsrs%3D&md5=04a77db67f2a0c5f3465b133057f6b51CAS | 15550552PubMed |
Meekins, J. W., McLaughlin, P. J., West, D. C., McFadyen, I. R., and Johnson, P. M. (1994). Endothelial cell activation by tumour necrosis factor-alpha (TNF-alpha) and the development of pre-eclampsia. Clin. Exp. Immunol. 98, 110–114.
| Endothelial cell activation by tumour necrosis factor-alpha (TNF-alpha) and the development of pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FgvVehtA%3D%3D&md5=d0933feec01841c4cdcf68773ea6865bCAS | 7523006PubMed |
Moreno, E. (2008). Is cell competition relevant to cancer? Nat. Rev. Cancer 8, 141–147.
| Is cell competition relevant to cancer?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGhsL4%3D&md5=9dab9efce8a1e3b7a605ac21971bbeeaCAS | 18185517PubMed |
Murray, M. J., and Lessey, B. A. (1999). Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin. Reprod. Endocrinol. 17, 275–290.
| Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3lvVarsw%3D%3D&md5=732a81b5c0eb1536bbe9454dbee5067eCAS | 10797946PubMed |
Popovici, R. M., Betzler, N. K., Krause, M. S., Luo, M., Jauckus, J., Germeyer, A., Bloethner, S., Schlotterer, A., Kumar, R., Strowitzki, T., and von Wolff, M. (2006). Gene expression profiling of human endometrial–trophoblast interaction in a coculture model. Endocrinology 147, 5662–5675.
| Gene expression profiling of human endometrial–trophoblast interaction in a coculture model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtr%2FM&md5=3de182627509a7e46bd82d5f2f9c29f3CAS | 16946011PubMed |
Rakoczy, J., Dawson, P., and Simmons, D. (2014). Loss of placental sulphate transporter Slc13a4 causes severe developmental defects and embryonic lethality. Placenta 35, A96–A97.
| Loss of placental sulphate transporter Slc13a4 causes severe developmental defects and embryonic lethality.Crossref | GoogleScholarGoogle Scholar |
Ren, L., Liu, Y. Q., Zhou, W. H., and Zhang, Y. Z. (2012). Trophoblast-derived chemokine CXCL12 promotes CXCR4 expression and invasion of human first-trimester decidual stromal cells. Hum. Reprod. 27, 366–374.
| Trophoblast-derived chemokine CXCL12 promotes CXCR4 expression and invasion of human first-trimester decidual stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGhtLk%3D&md5=8085aff36c4b6adcb3eaea4a75972244CAS | 22114110PubMed |
Shea, K., and Geijsen, N. (2007). Dissection of 6.5 dpc mouse embryos. J. Vis. Exp. 2, e160.
Smith, S. K. (2000). Angiogenesis and implantation. Hum. Reprod. 15, 59–66.
| 11261484PubMed |
Stuckenholz, C., Lu, L., Thakur, P. C., Choi, T. Y., Shin, D., and Bahary, N. (2013). Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogensis in the zebrafish, Danio rerio. PLoS ONE 8, e62470.
| Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogensis in the zebrafish, Danio rerio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlCrsbY%3D&md5=e1abad695275553c5b116436386cefb2CAS | 23638093PubMed |
Su, H. Y., Lai, H. C., Lin, Y. W., Liu, C. Y., Chen, C. K., Chou, Y. C., Lin, S. P., Lin, W. C., Lee, H. Y., and Yu, M. H. (2010). Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int. J. Cancer 127, 555–567.
| Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSntLw%3D&md5=1e682eec72d69c6aa1c98909acc691a2CAS | 19957335PubMed |
Takagi, H., Sasaki, S., Suzuki, H., Toyota, M., Maruyama, R., Nojima, M., Yamamoto, H., Omata, M., Tokino, T., Imai, K., and Shinomura, Y. (2008). Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J. Gastroenterol. 43, 378–389.
| Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma.Crossref | GoogleScholarGoogle Scholar | 18592156PubMed |
The R Development Core Team (2004). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.)
Tulppala, M., Julkunen, M., Tiitinen, A., Stenman, U. H., and Seppala, M. (1995). Habitual abortion is accompanied by low serum levels of placental protein 14 in the luteal phase of the fertile cycle. Fertil. Steril. 63, 792–795.
| 1:STN:280:DyaK2M7ps1yqsw%3D%3D&md5=8d0df26128c5b33e23876c892a640b06CAS | 7890064PubMed |
van der Horst, P. H., Wang, Y., Vandenput, I., Kuhne, L. C., Ewing, P. C., van Ijcken, W. F., van der Zee, M., Amant, F., Burger, C. W., and Blok, L. J. (2012). Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer. PLoS ONE 7, e30840.
| Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1CgsLY%3D&md5=13663d4dd0553b7cd12d5bd2fc713c23CAS | 22295114PubMed |
Yoshinaga, K. (2008). Review of factors essential for blastocyst implantation for their modulating effects on the maternal immune system. Semin. Cell Dev. Biol. 19, 161–169.
| Review of factors essential for blastocyst implantation for their modulating effects on the maternal immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGrsro%3D&md5=387002f8aa93027148fd18066510922dCAS | 18054836PubMed |
Zhou, Y., Damsky, C. H., and Fisher, S. J. (1997). Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest. 99, 2152–2164.
| Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFCisbk%3D&md5=1f5cce61a693eef6c2e2d41e91a7daddCAS | 9151787PubMed |