Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod

E. Beltrán-Frutos A , V. Seco-Rovira A , C. Ferrer A , J. F. Madrid A , F. J. Sáez B , M. Canteras C and L. M. Pastor A D
+ Author Affiliations
- Author Affiliations

A Department of Cell Biology and Histology, Ageing Institute, IMIB-Arrixaca, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain.

B Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain.

C Department of Statistics, School of Medicine, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain.

D Corresponding author. Email: bioetica@um.es

Reproduction, Fertility and Development 28(6) 838-851 https://doi.org/10.1071/RD14117
Submitted: 3 April 2014  Accepted: 9 October 2014   Published: 2 December 2014

Abstract

The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an ‘age group’ with three subgroups – young, adult and old animals – and a ‘regressed group’ with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.

Additional keywords: apoptosis, Leydig cell, proliferation, testes, ultrastructure.


References

Berensztein, E. B., Sciara, M. I., Rivarola, M. A., and Belgorosky, A. (2002). Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: rate of testicular growth in newborns mediated by decreased apoptosis. J. Clin. Endocrinol. Metab. 87, 5113–5118.
Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: rate of testicular growth in newborns mediated by decreased apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1yntrc%3D&md5=b950cc4ff10daaedae1565e5af3970a0CAS | 12414880PubMed |

Bernal-Mañas, C. M., Pastor, L. M., Horn, R., Morales, E., Zuasti, A., Ferrer, C., Canteras, M., De la Rosa, P., and Suarez, M. (2005). Apoptotic activity in Leydig cells of ageing golden hamster testes. Reprod. Domest. Anim. 40, 374.

Bernal-Mañas, C. M., Cortes, S., Morales, E., Horn, R., Seco-Rovira, V., Beltran-Frutos, E., Ferrer, C., Canteras, M., and Pastor, L. M. (2014). Influence of histological degree of seminiferous tubular degeneration and stage of seminiferous cycle on the proliferation of spermatogonia in aged Syrian hamster (Mesocricetus auratus). Andrologia 46, 672–679.
Influence of histological degree of seminiferous tubular degeneration and stage of seminiferous cycle on the proliferation of spermatogonia in aged Syrian hamster (Mesocricetus auratus).Crossref | GoogleScholarGoogle Scholar | 23869747PubMed |

Blottner, S., and Schoen, J. (2005). Minimal activity in both proliferation and apoptosis of interstitial cells indicates seasonally persisting Leydig cell population in roe deer. Cell Tissue Res. 321, 473–478.
Minimal activity in both proliferation and apoptosis of interstitial cells indicates seasonally persisting Leydig cell population in roe deer.Crossref | GoogleScholarGoogle Scholar | 15988616PubMed |

Calvo, A., Pastor, L. M., Martínez, E., Vázquez, J. M., and Roca, J. (1999). Age-related changes in the hamster epididymis. Anat. Rec. 256, 335–346.
Age-related changes in the hamster epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FlslKgtA%3D%3D&md5=01cc04ea684b76cd75c2ef94f486a942CAS | 10589020PubMed |

Chen, H., Midzak, A., Luo, L., and Zirkin, B. (2007). Ageing and the decline of androgen production. In ‘The Leydig Cell in Health and Disease’. (Eds A. H. Payne and M. P. Hardy.) pp. 117–131. (Humana Press: New Jersey.)

Chen, H., Ge, R., and Zirkin, B. R. (2009). Leydig cells: from stem cells to ageing. Mol. Cell. Endocrinol. 306, 9–16.
Leydig cells: from stem cells to ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1aitL0%3D&md5=77c4d8d93f06098ab2a8d2ec8d5ffaddCAS | 19481681PubMed |

Coutu, D. L., Francois, M., and Galipeau, J. (2011). Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 117, 6801–6812.
Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslChsLo%3D&md5=cfd69e1452da5b084c10defb82d97f12CAS | 21527526PubMed |

Davidoff, M. S., Middendorff, R., Enikolopov, G., Riethmacher, D., Holstein, A. F., and Müller, D. (2004). Progenitor cells of the testosterone-producing Leydig cells revealed. J. Cell Biol. 167, 935–944.
Progenitor cells of the testosterone-producing Leydig cells revealed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOlsbvP&md5=30473e55138b95805af691d0cd0fb627CAS | 15569711PubMed |

Davidoff, M. S., Middendorff, R., Müller, D., and Hostein, A. F. (2009). History of and recent progress in Leydig cell research. Morphology of the Leydig cells. In ‘Advances in Anatomy, Embryology and Cell Biology’. (Ed. H. W. Korf.) pp. 3–19. (Springer-Verlag: Heidelberg.)

Díaz-Flores, L., Gutiérrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., Martín-Vasallo, P., and Díaz-Flores, L. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 24, 909–969.
| 19475537PubMed |

Faria, M. J. S., Simoes, Z. L. P., Lunardi, L. O., and Hartfelder, K. (2003). Apoptosis process in mouse Leydig cells during postnatal development. Microsc. Microanal. 9, 68–73.
Apoptosis process in mouse Leydig cells during postnatal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVyntg%3D%3D&md5=ac7ea7cff5017bed0a86b80ea09f82d1CAS |

Galluzzi, L., and Kroener, G. (2008). Necroptosis: a specialised pathway of programmed necrosis. Cell 135, 1161–1163.
Necroptosis: a specialised pathway of programmed necrosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFOqtQ%3D%3D&md5=0e1f4138cd028362659db5fcbe934650CAS | 19109884PubMed |

Gerlach, T., and Aurich, J. E. (2000). Regulation of seasonal reproductive activity in the stallion, ram and hamster. Anim. Reprod. Sci. 58, 197–213.
Regulation of seasonal reproductive activity in the stallion, ram and hamster.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7nsFykuw%3D%3D&md5=c6b7f7a096de8e56ef0555835609238eCAS | 10708895PubMed |

Giannessi, F., Giambelluca, M. A., Scavuzzo, M. C., and Ruffoli, R. (2005). Ultrastructure of testicular macrophages in ageing mice. J. Morphol. 263, 39–46.
Ultrastructure of testicular macrophages in ageing mice.Crossref | GoogleScholarGoogle Scholar | 15536646PubMed |

Gray, L. E., Klinefelter, G., Kelce, W., Laskey, J., Ostby, J., and Ewing, L. (1995). Hamster Leydig cells are less sensitive to ethane dimethane sulfonate when compared to rat Leydig cells both in vivo and in vitro. Toxicol. Appl. Pharmacol. 130, 248–256.
Hamster Leydig cells are less sensitive to ethane dimethane sulfonate when compared to rat Leydig cells both in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFCnur4%3D&md5=a58970213d1f1107225ff3f26baf9a58CAS | 7871538PubMed |

Hance, M. W., Mason, J. I., and Mendis-Handagama, S. M. (2009). Effects of photo stimulation and nonstimulation of golden hamsters (Mesocricetus auratus) from birth to early puberty on testes structure and function. Histol. Histopathol. 24, 1417–1424.
| 19760591PubMed |

Hardy, M. P., Mendis-Handagama, S. M. L. C., Zirkin, B. R., and Ewing, L. L. (1987). Photoperiodic variation of Leydig cell numbers in the testis of the golden hamster: a possible mechanism for their renewal during recrudescence. Am. J. Anat. 178, 312–325.

Hardy, M. P., Gao, H. B., Dong, Q., Ge, R., Wang, Q., Chai, W. R., Feng, X., and Sottas, C. (2005). Stress hormone and male reproductive function. Cell Tissue Res. 322, 147–153.
Stress hormone and male reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gmu73M&md5=d338e06db42a265116f302e060728d01CAS | 16079965PubMed |

Horn, R., Pastor, L. M., Moreno, E., Calvo, A., Canteras, M., and Pallares, J. (1996). Morphological and morphometric study of early changes in the ageing golden hamster testis. J. Anat. 188, 109–117.
| 8655397PubMed |

Hsueh, A. J., Eisenhauer, K., Chun, S. Y., Hsu, S. Y., and Billig, H. (1996). Gonadal cell apoptosis. Recent Prog. Horm. Res. 51, 433–455.
| 1:CAS:528:DyaK2sXktFKis7o%3D&md5=9509a3b55e18428ee2a40a5088583395CAS | 8701090PubMed |

Hutson, J. C. (2006). Physiologic interactions between macrophages and Leydig cells. Exp. Biol. Med. (Maywood) 231, 1–7.
| 1:CAS:528:DC%2BD28XptF2n&md5=daa4e26e75d7c683cd2dd1545f586cbdCAS | 16380639PubMed |

Hutson, J. C. (1992). Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell Tissue Res. 267, 385–389.
| 1:STN:280:DyaK383ovV2ksQ%3D%3D&md5=6445da5ca37780cb46b687236b81556cCAS | 1600565PubMed |

Johnson, L., and Neaves, W. (1981). Age-related changes in the Leydig cell population, seminiferous tubules and sperm production in stallions. Biol. Reprod. 24, 703–712.
Age-related changes in the Leydig cell population, seminiferous tubules and sperm production in stallions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3gvVGmsw%3D%3D&md5=5a95799039c78c0762695bab98829790CAS | 7236827PubMed |

Johnson, L., Matt, K. S., Bartke, A., Nguyen, H. B., and Le, H. T. (1987). Effect of photoperiod on the size of the Leydig cell population and the rate of recruitment of Leydig cells in adult Syrian hamsters. Biol. Reprod. 37, 727–738.
Effect of photoperiod on the size of the Leydig cell population and the rate of recruitment of Leydig cells in adult Syrian hamsters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FltFWhuw%3D%3D&md5=0f0684ff76767848883b746d8260b0ecCAS | 3676416PubMed |

Kaler, L. W., and Neaves, W. B. (1978). Attrition of the human Leydig cell population with advancing age. Anat. Rec. 192, 513–518.
Attrition of the human Leydig cell population with advancing age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7gtFOhtg%3D%3D&md5=f9ae039ae8d9936e0ca39365fe291424CAS | 736271PubMed |

King, K. L., and Cidlowski, J. A. (1998). Cell cycle regulation and apoptosis. Annu. Rev. Physiol. 60, 601–617.
Cell cycle regulation and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVOhsbo%3D&md5=eb8d22da7448b705d45d37fa9920e047CAS | 9558478PubMed |

Liang, J.-H., Sankai, T., Yoshida, T., and Yoshikawa, Y. (2001). Immunolocalisation of proliferating cell nuclear antigen (PCNA) in cynomolgus monkey (Macaca fascicularis) testes during postnatal development. J. Med. Primatol. 30, 107–111.
Immunolocalisation of proliferating cell nuclear antigen (PCNA) in cynomolgus monkey (Macaca fascicularis) testes during postnatal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvksFSlsA%3D%3D&md5=665012d4e745131729d510530b990920CAS | 11491403PubMed |

Limonta, P., Dondi, D., Maggi, R., Martín, L., and Piva, F. (1987). Effects of ageing on pituitary and testicular luteinising hormone-releasing hormone receptors in the rat. Life Sci. 42, 335–342.

Mayerhofer, A., Sinha Hikim, A. P., Bartke, A., and Russell, L. D. (1989). Changes in the testicular microvasculature during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster. Anat. Rec. 224, 495–507.
Changes in the testicular microvasculature during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzptV2ktw%3D%3D&md5=6bcb851d54b6b6fe0cb3b0da63e06084CAS | 2476952PubMed |

Mendis-Handagama, S. M. L. C., and Gelber, S. J. (1995). Signs of ageing are apparent in the testis interstitium of Sprague–Dawley rats at 6 months of age. Tissue Cell 27, 689–699.
Signs of ageing are apparent in the testis interstitium of Sprague–Dawley rats at 6 months of age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287jslWrsQ%3D%3D&md5=062920384ddfe47f9e285be1a6cc7f29CAS |

Mendis-Handagama, S. M. L. C., Zirkin, B. R., and Ewing, L. L. (1988). Comparison of components of the testis interstitium with testosterone secretion in hamster, rat and guinea pig testes perfused in vitro. Am. J. Anat. 181, 12–22.
Comparison of components of the testis interstitium with testosterone secretion in hamster, rat and guinea pig testes perfused in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVelsbc%3D&md5=b8886d6fc27984e2f9932d301e39d9bcCAS |

Morales, E., Pastor, L. M., Ferrer, C., Zuasti, A., Pallarés, J., Horn, R., Calvo, A., Santamaría, L., and Canteras, M. (2002). Proliferation and apoptosis in the seminiferous epithelium of photoinhibited Syrian hamsters (Mesocricetus auratus). Int. J. Androl. 25, 281–287.
Proliferation and apoptosis in the seminiferous epithelium of photoinhibited Syrian hamsters (Mesocricetus auratus).Crossref | GoogleScholarGoogle Scholar | 12270025PubMed |

Morales, E., Pastor, L. M., Horn, R., Zuasti, A., Ferrer, C., Calvo, A., Santamaría, L., and Canteras, M. (2003). Effect of ageing on the proliferation and apoptosis of testicular germ cells in the Syrian hamster Mesocricetus auratus. Reprod. Fertil. Dev. 15, 89–98.
Effect of ageing on the proliferation and apoptosis of testicular germ cells in the Syrian hamster Mesocricetus auratus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szmsVansA%3D%3D&md5=d60c68e6fe011fe4238290b1299f9d4aCAS | 12895405PubMed |

Morales, E., Horn, R., Pastor, L. M., Santamaría, L., Pallarés, J., Zuasti, A., Ferrer, C., and Canteras, M. (2004). Involution of seminiferous tubules in aged hamsters: an ultrastructural immunohistochemical and quantitative morphological study. Histol. Histopathol. 19, 445–455.
| 1:STN:280:DC%2BD2c7jtFGqsQ%3D%3D&md5=f3ac6014eae9c992d684f9165d279b4aCAS | 15024705PubMed |

Morales, E., Ferrer, C., Zuasti, A., García-Borrón, J. C., Canteras, M., and Pastor, L. M. (2007). Apoptosis and molecular pathways in the seminiferous epithelium of aged and photoinhibited Syrian hamsters (Mesocricetus auratus). J. Androl. 28, 123–135.
Apoptosis and molecular pathways in the seminiferous epithelium of aged and photoinhibited Syrian hamsters (Mesocricetus auratus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtleqsL4%3D&md5=a35abe92c9ce4a3d8796e79b6bc14e0eCAS | 16957139PubMed |

Myers, R. B., and Abney, T. O. (1990). Testosterone and androstanediol production by regenerating Leydig cells in the ethylene dimethane sulphonate-treated mature rat. Int. J. Androl. 13, 4–16.
Testosterone and androstanediol production by regenerating Leydig cells in the ethylene dimethane sulphonate-treated mature rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFWju7s%3D&md5=aa2972adacb181add94b0ee8fe7f38aaCAS | 2155879PubMed |

Neaves, W. B., Johnson, L., Porter, J. C., Parker, C. R., and Petty, C. S. (1984). Leydig cell numbers, daily sperm production and serum gonadotrophin levels in ageing men. J. Clin. Endocrinol. Metab. 59, 756–763.
Leydig cell numbers, daily sperm production and serum gonadotrophin levels in ageing men.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fgslemug%3D%3D&md5=b5d6afbb75da4c622c7acbaf837d972eCAS | 6434579PubMed |

Neaves, W. B., Johnson, L., and Petty, C. S. (1985). Age-related change in numbers of other interstitial cells in testes of adult men: evidence bearing on the fate of Leydig cells lost with increasing age. Biol. Reprod. 33, 259–269.
Age-related change in numbers of other interstitial cells in testes of adult men: evidence bearing on the fate of Leydig cells lost with increasing age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FltFOgug%3D%3D&md5=4192ca4752d188fe1d5ea5b1c9ec43e4CAS | 4063443PubMed |

Paniagua, R., Amat, P., Nistal, M., and Martín, A. (1986). Ultrastructure of Leydig cells in human ageing testes. J. Anat. 146, 173–183.
| 1:STN:280:DyaL1c%2Fos1CgsA%3D%3D&md5=2cd9a47f880ab71faa344ac843ff0c09CAS | 3693056PubMed |

Paniagua, R., Nistal, M., Sáez, F. J., and Fraile, B. (1991). Ultrastructure of the ageing human testis. J. Electron Microsc. Tech. 19, 241–260.
Ultrastructure of the ageing human testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FosFWgsg%3D%3D&md5=034414715dabf4c77c5a3c57a54f6f31CAS | 1748904PubMed |

Pastor, L. M., Zuasti, A., Ferrer, C., Bernal-Mañas, C. M., Morales, E., Beltrán-Frutos, E., and Seco-Rovira, V. (2011). Proliferation and apoptosis in aged and photoregressed mammalian seminiferous epithelium, with particular attention to rodents and humans. Reprod. Domest. Anim. 46, 155–164.
Proliferation and apoptosis in aged and photoregressed mammalian seminiferous epithelium, with particular attention to rodents and humans.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlCrtw%3D%3D&md5=68ab19cf7a8bff28abb15c1c7528d704CAS | 20149139PubMed |

Rana, B. K., and Bilaspuri, G. S. (2000). Changes in interstitial cells during development of buffalo testis. Vet. J. 159, 179–185.
Changes in interstitial cells during development of buffalo testis.Crossref | GoogleScholarGoogle Scholar |

Regadera, J., Codesal, J., Paniagua, R., Gonzalez-Peramato, P., and Nistal, M. (1991). Immunohistochemical and quantitative study of interstitial and intratubular Leydig cells in normal men, cryptorchidism and Klinefelter's syndrome. J. Pathol. 164, 299–306.
Immunohistochemical and quantitative study of interstitial and intratubular Leydig cells in normal men, cryptorchidism and Klinefelter's syndrome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FhsVCrsA%3D%3D&md5=77263959d701cbc79dcd54525ce0f52fCAS | 1681041PubMed |

Rommerts, F. F. G., Kühne, L., Van Cappellen, G. W. A., Stocco, D. M., King, S. R., and Jankowska, A. (2004). Specific dose-dependent effects of ethane 1,2-dimethanesulfonate in rat and mouse Leydig cells non-steroidogenic cells on programmed cell death. J. Endocrinol. 181, 169–178.
Specific dose-dependent effects of ethane 1,2-dimethanesulfonate in rat and mouse Leydig cells non-steroidogenic cells on programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVaqs7s%3D&md5=d67ddcdcc1482b120ab92bc45ef49177CAS |

Sinha Hikim, A. P., Bartke, A., and Russell, L. D. (1988a). Morphometric studies on hamster testes in gonadally active and inactive states: light microscope findings. Biol. Reprod. 39, 1225–1237.
Morphometric studies on hamster testes in gonadally active and inactive states: light microscope findings.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7hvVCjtw%3D%3D&md5=c329d2d123708c0a5c004f254b5c0139CAS | 3219392PubMed |

Sinha Hikim, A. P., Bartke, A., and Russell, L. D. (1988b). The seasonal-breeding hamster as a model to study structure–function relationships in the testis. Tissue Cell 20, 63–78.
The seasonal-breeding hamster as a model to study structure–function relationships in the testis.Crossref | GoogleScholarGoogle Scholar |

Sriraman, V., Rao, V. S., Sairam, M. R., and Rao, A. J. (2000). Effect of deprival of LH on Leydig cell proliferation: involvement of PCNA, cyclin D3 and IGF-1. Mol. Cell. Endocrinol. 162, 113–120.
Effect of deprival of LH on Leydig cell proliferation: involvement of PCNA, cyclin D3 and IGF-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFKnsrg%3D&md5=fd8f0c67605dd040d5455857cb90d850CAS | 10854704PubMed |

Swanson, L. J., Desjardins, C., and Turek, F. W. (1982). Ageing of reproductive system in the male hamster: behavioural and endocrine patterns. Biol. Reprod. 26, 791–799.
Ageing of reproductive system in the male hamster: behavioural and endocrine patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksV2qsbc%3D&md5=70b82af6b831bd89d7dcb0a973f91294CAS | 6807362PubMed |

Teerds, K. J., De Rooij, D. G., Rommerts, F. F., van der Tweel, I., and Wensing, C. J. (1989). Turnover time of Leydig cells and other interstitial cells in testes of adult rats. Arch. Androl. 23, 105–111.
Turnover time of Leydig cells and other interstitial cells in testes of adult rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FntlWjsA%3D%3D&md5=4511484c328cb9957e2ad382eb638b09CAS | 2589905PubMed |

Tripepi, S., Carelli, A., Perrota, E., Brunelli, E., Talovaro, R., Facciolo, R. M., and Canonaco, M. (2000). Morphological and functional variations of Leydig cells in testis of the domestic pig during the different biological stages of development. J. Exp. Zool. 287, 167–175.
Morphological and functional variations of Leydig cells in testis of the domestic pig during the different biological stages of development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czoslKjtQ%3D%3D&md5=dc907a1ef3fa15d588bb480daedef58aCAS | 10900436PubMed |

Wing, T. Y., and Lin, H. S. (1977). The fine structure of testicular interstitial cells in the adult golden hamster with special reference to seasonal changes. Cell Tissue Res. 183, 385–393.
The fine structure of testicular interstitial cells in the adult golden hamster with special reference to seasonal changes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c%2FktFyktw%3D%3D&md5=f3e2a5f265ce8cdc9c4e21be8bd6c0eeCAS | 922845PubMed |

Zirkin, B. R., Ewing, L. L., and Cochran, R. C. (1980). Testosterone secretion by rat, rabbit, guinea pig, dog and hamster testes perfused in vitro: correlation with Leydig cell ultrastructure. Endocrinology 107, 1867–1874.
Testosterone secretion by rat, rabbit, guinea pig, dog and hamster testes perfused in vitro: correlation with Leydig cell ultrastructure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXisl2lsg%3D%3D&md5=8c09fb277404231d7785c06b594d80acCAS | 7428694PubMed |