Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15

Karen L. Reader A , David G. Mottershead B , Georgia A. Martin B , Robert B. Gilchrist B , Derek A. Heath C , Kenneth P. McNatty C and Jennifer L. Juengel A D
+ Author Affiliations
- Author Affiliations

A AgResearch, Animal Productivity, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand.

B Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, GPO Box 498, Adelaide, SA, Australia.

C Victoria University of Wellington, School of Biological Sciences, PO Box 600, Wellington, New Zealand.

D Corresponding author. Email: jenny.juengel@agresearch.co.nz

Reproduction, Fertility and Development 28(4) 491-498 https://doi.org/10.1071/RD14099
Submitted: 17 March 2014  Accepted: 17 July 2014   Published: 26 August 2014

Abstract

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) act synergistically to regulate granulosa cell proliferation and steroid production in several species. Several non-Sma and mothers against decapentaplegic (SMAD) signalling pathways are involved in the action of murine and ovine GDF9 and BMP15 in combination, with the pathways utilised differing between the two species. The aims of this research were to determine if human GDF9 and BMP15 also act in a synergistic manner to stimulate granulosa cell proliferation and to identify which non-SMAD signalling pathways are activated. Human GDF9 with BMP15 (GDF9 + BMP15) stimulated an increase in 3H-thymidine incorporation (P < 0.001), which was greater than the increase with BMP15 alone, while GDF9 alone had no effect. The stimulation of 3H-thymidine incorporation by GDF9 + BMP15 was reduced by the addition of inhibitors to the SMAD2/3, nuclear factor-KB (NF-KB) and c-Jun N-terminal kinase (JNK) signalling pathways. Inhibitors to the SMAD1/5/8, extracellular signal-regulated kinase mitogen-activated protein kinase (ERK-MAPK) or p38-MAPK pathways had no effect. The addition of the BMP receptor 2 (BMPR2) extracellular domain also inhibited stimulation of 3H-thymidine incorporation by GDF9 + BMP15. In conclusion, human GDF9 and BMP15 act synergistically to stimulate granulosa cell proliferation, a response that also involves species-specific non-SMAD signalling pathways.

Additional keywords: follicle, granulosa cells, oocyte, ovary, proliferation.


References

Chang, H. M., Cheng, J. C., Klausen, C., and Leung, P. C. (2013). BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells. Mol. Endocrinol. 27, 2093–2104.
BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWqt7rF&md5=cd8b08daeb36987563854f45ba9baa7fCAS | 24140593PubMed |

Di Pasquale, E., Beck-Peccoz, P., and Persani, L. (2004). Hypergonadotrophic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am. J. Hum. Genet. 75, 106–111.
Hypergonadotrophic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFCls7o%3D&md5=931216c59531b7a89ce2c405f1416f48CAS | 15136966PubMed |

Dixit, H., Rao, L. K., Padmalatha, V., Kanakavalli, M., Deenadayal, M., Gupta, N., Chakravarty, B., and Singh, L. (2005). Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause 12, 749–754.
Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure.Crossref | GoogleScholarGoogle Scholar | 16278619PubMed |

Edwards, S. J., Reader, K. L., Lun, S., Western, A., Lawrence, S., McNatty, K. P., and Juengel, J. L. (2008). The cooperative effect of growth and differentiation factor-9 and bone morphogenetic protein (BMP)-15 on granulosa cell function is modulated primarily through BMP receptor II. Endocrinology 149, 1026–1030.
The cooperative effect of growth and differentiation factor-9 and bone morphogenetic protein (BMP)-15 on granulosa cell function is modulated primarily through BMP receptor II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVaqsbc%3D&md5=b36ddd4f18a1ae49030abc0ff8793d76CAS | 18063682PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2001). Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev. Biol. 240, 289–298.
Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFegtrc%3D&md5=c4cd7b39dc8bf492229592f17fb5eeacCAS | 11784064PubMed |

Gilchrist, R. B., Ritter, L. J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R. A., Hickey, T. E., Ritvos, O., and Mottershead, D. G. (2006). Molecular basis of oocyte–paracrine signalling that promotes granulosa cell proliferation. J. Cell Sci. 119, 3811–3821.
Molecular basis of oocyte–paracrine signalling that promotes granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7vJ&md5=272b839e363e70365d4469d6391993b1CAS | 16926195PubMed |

Huang, Q., Cheung, A. P., Zhang, Y., Huang, H.-F., Auersperg, N., and Leung, P. C. K. (2009). Effects of growth differentiation factor 9 on cell cycle regulators and ERK42/44 in human granulosa cell proliferation. Am. J. Physiol. Endocrinol. Metab. 296, E1344–E1353.
Effects of growth differentiation factor 9 on cell cycle regulators and ERK42/44 in human granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVCltLo%3D&md5=1408915df19f02b8c55766a2b53935d1CAS | 19366876PubMed |

Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum. Reprod. Update 11, 143–160.
| 1:CAS:528:DC%2BD2MXitV2jtrg%3D&md5=33675081ab24213f32622179debcafdbCAS | 15705960PubMed |

Kaivo-Oja, N., Mottershead, D. G., Mazerbourg, S., Myllymaa, S., Duprat, S., Gilchrist, R. B., Groome, N. P., Hsueh, A. J., and Ritvos, O. (2005). Adenoviral gene transfer allows SMAD-responsive gene promoter analyses and delineation of Type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. J. Clin. Endocrinol. Metab. 90, 271–278.
Adenoviral gene transfer allows SMAD-responsive gene promoter analyses and delineation of Type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFertw%3D%3D&md5=4ce270d50b1dfd43862119e49a7b37c7CAS | 15483083PubMed |

Lin, A. (2003). Activation of the JNK signalling pathway: breaking the brake on apoptosis. Bioessays 25, 17–24.
Activation of the JNK signalling pathway: breaking the brake on apoptosis.Crossref | GoogleScholarGoogle Scholar | 12508278PubMed |

Lin, J. Y., Pitman, J., Bibby, A. H., Hudson, N. L., McIntosh, C. J., Juengel, J. L., and McNatty, K. P. (2012). Effects of species differences on oocyte regulation of granulosa cell function. Reproduction 144, 557–567.
Effects of species differences on oocyte regulation of granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslClt7rM&md5=36e33b24221e35f3c2d1ce7bb9276ac3CAS | 22967842PubMed |

Mazerbourg, S., Klein, C., Roh, J., Kaivo-Oja, N., Mottershead, D. G., Korchynskyi, O., Ritvos, O., and Hsueh, A. J. (2004). Growth differentiation factor-9 signalling is mediated by the Type I receptor, activin receptor-like kinase 5. Mol. Endocrinol. 18, 653–665.
Growth differentiation factor-9 signalling is mediated by the Type I receptor, activin receptor-like kinase 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFCqtrs%3D&md5=f0b0d02684e87d323cb85a51756d3f07CAS | 14684852PubMed |

McIntosh, C. J., Lun, S., Lawrence, S., Western, A. H., McNatty, K. P., and Juengel, J. L. (2008). The pro-region of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9. Biol. Reprod. 79, 889–896.
The pro-region of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLvM&md5=eecf69dfa51d30426f1cd107a871f298CAS | 18633140PubMed |

McNatty, K. P., Juengel, J. L., Reader, K. L., Lun, S., Myllymaa, S., Lawrence, S. B., Western, A., Meerasahib, M. F., Mottershead, D. G., Groome, N. P., Ritvos, O., and Laitinen, M. P. (2005a). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction 129, 473–480.
Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertbw%3D&md5=0032f9598dde27b200e5285366a12d68CAS | 15798022PubMed |

McNatty, K. P., Juengel, J. L., Reader, K. L., Lun, S., Myllymaa, S., Lawrence, S. B., Western, A., Meerasahib, M. F., Mottershead, D. G., Groome, N. P., Ritvos, O., and Laitinen, M. P. (2005b). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129, 481–487.
Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertb0%3D&md5=fc67ed2c94424b9b600ae12acf5355b9CAS | 15798023PubMed |

McNatty, K. P., Smith, P., Moore, L. G., Reader, K., Lun, S., Hanrahan, J. P., Groome, N. P., Laitinen, M., Ritvos, O., and Juengel, J. L. (2005c). Oocyte-expressed genes affecting ovulation rate. Mol. Cell. Endocrinol. 234, 57–66.
Oocyte-expressed genes affecting ovulation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1SqtLs%3D&md5=402038ae129850bdf163cb60bcc8f4c0CAS | 15836953PubMed |

Montgomery, G. W., Zhao, Z. Z., Marsh, A. J., Mayne, R., Treloar, S. A., James, M., Martin, N. G., Boomsma, D. I., and Duffy, D. L. (2004). A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res. 7, 548–555.
A deletion mutation in GDF9 in sisters with spontaneous DZ twins.Crossref | GoogleScholarGoogle Scholar | 15607004PubMed |

Moore, R. K., Otsuka, F., and Shimasaki, S. (2003). Molecular basis of bone morphogenetic protein-15 signalling in granulosa cells. J. Biol. Chem. 278, 304–310.
Molecular basis of bone morphogenetic protein-15 signalling in granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVWgtLc%3D&md5=c5ef7fe194d23a6961b5124b22884776CAS | 12419820PubMed |

Moore, R. K., Erickson, G. F., and Shimasaki, S. (2004). Are BMP-15 and GDF-9 primary determinants of ovulation quota in mammals? Trends Endocrinol. Metab. 15, 356–361.
Are BMP-15 and GDF-9 primary determinants of ovulation quota in mammals?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslGjtbk%3D&md5=e518642cc667e8763fa676c5470b7ed4CAS | 15380806PubMed |

Mottershead, D. G., and Watson, A. J. (2009). Oocyte peptides as paracrine tools for ovarian stimulation and oocyte maturation. Mol. Hum. Reprod. 15, 789–794.
Oocyte peptides as paracrine tools for ovarian stimulation and oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVajsL%2FJ&md5=85fdad65b767c6bbbb324c59e04aba4fCAS | 19846464PubMed |

Mottershead, D. G., Pulkki, M. M., Muggalla, P., Pasternack, A., Tolonen, M., Myllymaa, S., Korchynskyi, O., Nishi, Y., Yanase, T., Lun, S., Juengel, J. L., Laitinen, M., and Ritvos, O. (2008). Characterisation of recombinant human growth differentiation factor-9 signalling in ovarian granulosa cells. Mol. Cell. Endocrinol. 283, 58–67.
Characterisation of recombinant human growth differentiation factor-9 signalling in ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegtr4%3D&md5=eb8c8b8f7fd7559b47984aad135f2e15CAS | 18162287PubMed |

Mottershead, D. G., Ritter, L. J., and Gilchrist, R. B. (2012). Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15. Mol. Hum. Reprod. 18, 121–128.
Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKjur8%3D&md5=342e7c8b89d9da81986e8a37f2af053eCAS | 21911477PubMed |

Mottershead, D. G., Harrison, C. A., Mueller, T. D., Stanton, P. G., Gilchrist, R. B., and McNatty, K. P. (2013). Growth differentiation factor 9:bone morphogenetic protein 15 (GDF9:BMP15) synergism and protein heterodimerisation. Proc. Natl. Acad. Sci. USA 110, E2257.
Growth differentiation factor 9:bone morphogenetic protein 15 (GDF9:BMP15) synergism and protein heterodimerisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOmsLvK&md5=c132b6918e6a05cca9c64ee317be67f4CAS | 23650403PubMed |

Neyman, J., and Scott, E. L. (1960). Correction for bias introduced by a transformation of variables. Ann. Math. Stat. 31, 643–655.
Correction for bias introduced by a transformation of variables.Crossref | GoogleScholarGoogle Scholar |

Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–554.
Recovery of inter-block information when block sizes are unequal.Crossref | GoogleScholarGoogle Scholar |

Peng, J., Li, Q., Wigglesworth, K., Rangarajan, A., Kattamuri, C., Peterson, R. T., Eppig, J. J., Thompson, T. B., and Matzuk, M. M. (2013). Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl. Acad. Sci. USA 110, E776–E785.
Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFSlur8%3D&md5=7ea1177391b2f4d6c677d41a2ea54fffCAS | 23382188PubMed |

Pulkki, M. M., Myllymaa, S., Pasternack, A., Lun, S., Ludlow, H., Al-Qahtani, A., Korchynskyi, O., Groome, N., Juengel, J. L., Kalkkinen, N., Laitinen, M., Ritvos, O., and Mottershead, D. G. (2011). The bioactivity of human bone morphogenetic protein-15 is sensitive to C-terminal modification: characterisation of the purified untagged processed mature region. Mol. Cell. Endocrinol. 332, 106–115.
The bioactivity of human bone morphogenetic protein-15 is sensitive to C-terminal modification: characterisation of the purified untagged processed mature region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLbO&md5=3215f17cc270daf96d468ee254f66eb3CAS | 20937357PubMed |

Pulkki, M. M., Mottershead, D. G., Pasternack, A. H., Muggalla, P., Ludlow, H., van Dinther, M., Myllymaa, S., Koli, K., ten Dijke, P., Laitinen, M., and Ritvos, O. (2012). A covalently dimerised recombinant human bone morphogenetic protein-15 variant identifies bone morphogenetic protein receptor Type 1B as a key cell surface receptor on ovarian granulosa cells. Endocrinology 153, 1509–1518.
A covalently dimerised recombinant human bone morphogenetic protein-15 variant identifies bone morphogenetic protein receptor Type 1B as a key cell surface receptor on ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1amsbc%3D&md5=a0100745659fdca8b991f54535a57106CAS | 22294741PubMed |

Reader, K. L., Heath, D. A., Lun, S., McIntosh, C. J., Western, A. H., Littlejohn, R. P., McNatty, K. P., and Juengel, J. L. (2011). Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated thymidine uptake by rat granulosa cells. Reproduction 142, 123–131.
Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated thymidine uptake by rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqu7zJ&md5=bea38a1fa2ac9ce7e6418075d5bbadc3CAS | 21474603PubMed |

Shimasaki, S., Moore, R. K., Otsuka, F., and Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 25, 72–101.
The bone morphogenetic protein system in mammalian reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOmt78%3D&md5=083695f54ff16f0c5fb0e83bc75a8b89CAS | 14769828PubMed |

Sugiura, K., Su, Y.-Q., Li, Q., Wigglesworth, K., Matzuk, M. M., and Eppig, J. J. (2010). Oestrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Mol. Endocrinol. 24, 2303–2314.
Oestrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVenu78%3D&md5=a2fb6361795739a43f34655e2a13bcdaCAS | 21047911PubMed |

Teixeira Filho, F. L., Baracat, E. C., Lee, T. H., Suh, C. S., Matsui, M., Chang, R. J., Shimasaki, S., and Erickson, G. F. (2002). Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87, 1337–1344.
Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnsLc%3D&md5=f02530e89179805060be9c0af14ecc31CAS | 11889206PubMed |

Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999). The analysis of designed experiments and longitudinal data by using smoothing splines. J. R. Stat. Soc. Ser. C Appl. Stat. 48, 269–311.
The analysis of designed experiments and longitudinal data by using smoothing splines.Crossref | GoogleScholarGoogle Scholar |

Vitt, U. A., Mazerbourg, S., Klein, C., and Hsueh, A. J. (2002). Bone morphogenetic protein receptor Type II is a receptor for growth differentiation factor-9. Biol. Reprod. 67, 473–480.
Bone morphogenetic protein receptor Type II is a receptor for growth differentiation factor-9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqt7o%3D&md5=0761cc2bfca0a264cbdc54437ac965d1CAS | 12135884PubMed |