Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Insulin regulates primordial-follicle assembly in vitro by affecting germ-cell apoptosis and elevating oestrogen

Xin-Lei Feng A , Yuan-Chao Sun A , Min Zhang A , Shun-Feng Cheng A , Yan-Ni Feng A , Jing-Cai Liu A B , Hong-Hui Wang A B , Lan Li A , Guo-Qing Qin C and Wei Shen A D
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.

B College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.

C EMF Nutrition, 715 Marion Street, Winnipeg, Manitoba, R2J 0K6, Canada.

D Corresponding author. Email: shenwei427@163.com

Reproduction, Fertility and Development 27(8) 1197-1204 https://doi.org/10.1071/RD14096
Submitted: 16 March 2014  Accepted: 28 April 2014   Published: 16 June 2014

Abstract

Insulin is a protein secreted by pancreatic β-cells, which plays an important role in the regulation of ovarian function. However, the specific molecular mechanism of its function remains largely unknown. This study aimed to assess the effect of insulin on mouse folliculogenesis using an in vitro ovary-culture model. The results demonstrated that insulin promoted the proliferation of ovarian granulosa cells in vitro, and thereby accelerated the progress of folliculogenesis (the percentage of oocytes in cysts declined from 42.6% to 29.3%); however, the percentage of apoptotic oocytes increased after insulin treatment. Further investigation indicated that apoptosis occurred mainly in germ-cell cysts. After 3 days of insulin treatment, oestrogen in the culture medium of mouse ovaries significantly increased (P < 0.01), while the lower dose of oestrogen promoted primordial-follicle assembly in vitro. In conclusion, insulin promoted folliculogenesis by facilitating germ-cell apoptosis within the cysts and upregulating oestrogen levels.

Additional keywords: folliculogenesis, oocyte.


References

Acevedo, N., Ding, J., and Smith, G. D. (2007). Insulin signalling in mouse oocytes. Biol. Reprod. 77, 872–879.
Insulin signalling in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Cnu77I&md5=090f9d2966d9d27c16b464ba1463a22fCAS | 17625112PubMed |

Chen, Y., Jefferson, W. N., Newbold, R. R., Padilla-Banks, E., and Pepling, M. E. (2007). Oestradiol, progesterone, and genistein inhibit oocyte-nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148, 3580–3590.
Oestradiol, progesterone, and genistein inhibit oocyte-nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OisLg%3D&md5=05d3c7f927ed319be918af58f9104aa8CAS | 17446182PubMed |

Chen, B., Zhang, L., Tang, J., Feng, X., Feng, Y., Liang, G., Wang, L., Feng, Y., Li, L., De Felici, M., Shi, Q., and Shen, W. (2013). Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation. Stem Cells Dev. 22, 567–580.
Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation.Crossref | GoogleScholarGoogle Scholar | 22978409PubMed |

Chen, C. L., Fu, X. F., Wang, L. Q., Wang, J. J., Ma, H. G., Cheng, S. F., Hou, Z. M., Ma, J. M., Quan, G. B., Shen, W., and Li, L. (2014). Primordial follicle assembly was regulated by notch signalling pathway in the mice. Mol. Biol. Rep. 41, 1891–1899.
Primordial follicle assembly was regulated by notch signalling pathway in the mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFOmug%3D%3D&md5=d8cb360a5588f5ead5dbd4f849b5f396CAS | 24430295PubMed |

Chun, S. Y., and Hsueh, A. J. (1998). Paracrine mechanisms of ovarian follicle apoptosis. J. Reprod. Immunol. 39, 63–75.
Paracrine mechanisms of ovarian follicle apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1yms78%3D&md5=9002aa2f77896b5e28ec580b1d0a3656CAS | 9786453PubMed |

Dong, H. S., Li, L., Song, Z. H., Tang, J., Xu, B., Zhai, X. W., Sun, L. L., Zhang, P., Li, Z. B., Pan, Q. J., and Shen, W. (2009). Premeiotic fetal murine germ cells cultured in vitro form typical oocyte-like cells but do not progress through meiosis. Theriogenology 72, 219–231.
Premeiotic fetal murine germ cells cultured in vitro form typical oocyte-like cells but do not progress through meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFSjtrg%3D&md5=0589ff4fc427ed723c8f0e4bf91414c5CAS | 19361852PubMed |

Dong, H. S., Pan, Q. J., Zhang, H. Q., Zhang, L. J., Chen, B., and Yue, W. B. (2011). Estrogen inhibits the early development of mouse follicles through regulating the expression of Kit ligand. Biochem. Biophys. Res. Commun. 410, 659–664.
Estrogen inhibits the early development of mouse follicles through regulating the expression of Kit ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCnt7w%3D&md5=30b437599457a3bc3c88d16499aaba32CAS |

Eppig, J. J., and O’Brien, M. J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod. 54, 197–207.
Development in vitro of mouse oocytes from primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLjO&md5=c30b5c85fbb0b1f9f6aa2f1202df74aeCAS | 8838017PubMed |

Eppig, J. J., O’Brien, M. J., Pendola, F. L., and Watanabe, S. (1998). Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol. Reprod. 59, 1445–1453.
Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVOit7s%3D&md5=c9da3b5390de642c603c2114522133f2CAS | 9828191PubMed |

Faddy, M., and Gosden, R. (2007). Numbers of ovarian follicles and testing germ-line renewal in the postnatal ovary: facts and fallacies. Cell Cycle 6, 1951–1952.
Numbers of ovarian follicles and testing germ-line renewal in the postnatal ovary: facts and fallacies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWmu77I&md5=0bd802bddefa0afd43891ad50b30e7a5CAS | 17660713PubMed |

Farini, D., Scaldaferri, M. L., Iona, S., La Sala, G., and De Felici, M. (2005). Growth factors sustain primordial germ-cell survival, proliferation and entering into meiosis in the absence of somatic cells. Dev. Biol. 285, 49–56.
Growth factors sustain primordial germ-cell survival, proliferation and entering into meiosis in the absence of somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvV2rtb0%3D&md5=7cd731f54790f3f8cf9c98a083495e10CAS | 16139834PubMed |

Freund, G. G., Kulas, D. T., Way, B. A., and Mooney, R. A. (1994). Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines. Cancer Res. 54, 3179–3185.
| 1:CAS:528:DyaK2cXkt1Oqs78%3D&md5=30f8c6a650d73ebad0db378f46d584e3CAS | 8205537PubMed |

Klinger, F. G., and De Felici, M. (2002). In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem-cell factor and granulosa cells. Dev. Biol. 244, 85–95.
In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem-cell factor and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVaju78%3D&md5=c5046bebfae8a3f0da183736ae6e76f0CAS | 11900461PubMed |

Li, Z., Zhang, P., Pan, B., Chao, H., Li, L., Pan, Q., and Shen, W. (2011). A co-culture system with preantral follicular granulosa cells in vitro induces meiotic maturation of immature oocytes. Histochem. Cell Biol. 135, 513–522.
A co-culture system with preantral follicular granulosa cells in vitro induces meiotic maturation of immature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1eltbo%3D&md5=b9cbacc71696f7a496c7b50d4415f9d4CAS | 21533555PubMed |

Matzuk, M. M., Burns, K. H., Viveiros, M. M., and Eppig, J. J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–2180.
Intercellular communication in the mammalian ovary: oocytes carry the conversation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsbw%3D&md5=4f03fdbfff4053f0d9c419e376742147CAS | 12077402PubMed |

Mèndez, R., Myers, M. G., White, M. F., and Rhoads, R. E. (1996). Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol. Cell. Biol. 16, 2857–2864.
| 8649395PubMed |

Niwa, M., Patil, C. K., DeRisi, J., and Walter, P. (2004). Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol. 6, R3.
Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease.Crossref | GoogleScholarGoogle Scholar | 15642095PubMed |

Pepling, M. E., and Spradling, A. C. (1998). Female mouse germ cells form synchronously dividing cysts. Development 125, 3323–3328.
| 1:CAS:528:DyaK1cXmtlyhsL0%3D&md5=d2c982966e947dd84c8ff98da2a24d83CAS | 9693136PubMed |

Pepling, M. E., and Spradling, A. C. (2001). Mouse ovarian germ-cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234, 339–351.
Mouse ovarian germ-cell cysts undergo programmed breakdown to form primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKjur8%3D&md5=c0d5c8d8f74645291921b5f67454d03dCAS | 11397004PubMed |

Rodrigues, P., Limback, D., McGinnis, L. K., Plancha, C. E., and Albertini, D. F. (2009). Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137, 709–720.
Multiple mechanisms of germ cell loss in the perinatal mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2ntbs%3D&md5=ca0277b475947f478c15b33606b27e2aCAS | 19176312PubMed |

Schams, D. (1987). Luteal peptides and intercellular communication. J. Reprod. Fertil. Suppl. 34, 87–99.
| 1:CAS:528:DyaL2sXltV2nsrw%3D&md5=aae6c193b4c091240da008a82cdb1b74CAS | 3305925PubMed |

Shen, W., Li, L., Zhang, D. H., Pan, Q., Ding, M. X., and Deng, H. K. (2006a). Mouse oocytes derived from fetal germ cells are competent to support the development of embryos by in vitro fertilisation. Mol. Reprod. Dev. 73, 1312–1317.
Mouse oocytes derived from fetal germ cells are competent to support the development of embryos by in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSnu7Y%3D&md5=16c690bdd7e220d82fcb6f6fc54fde82CAS | 16868930PubMed |

Shen, W., Zhang, D. H., Qing, T. T., Cheng, J., Bai, D. Z., Shi, Y., Ding, M. X., and Deng, H. K. (2006b). Live offspring produced by mouse oocytes derived from premeiotic fetal germ cells. Biol. Reprod. 75, 615–623.
Live offspring produced by mouse oocytes derived from premeiotic fetal germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgs7rI&md5=11e655616d9caba43765293952fb9681CAS | 16723508PubMed |

Shen, W., Li, L., Bai, Z. D., Pan, Q. J., Ding, M. X., and Deng, H. K. (2007). In vitro development of the mouse fetal germ cells to mature oocytes. Reproduction 134, 223–231.
In vitro development of the mouse fetal germ cells to mature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrfP&md5=8e9bcc5c78064f412792fb12572b056eCAS | 17660232PubMed |

Silva, J. M., and Price, C. A. (2000). Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro. Biol. Reprod. 62, 186–191.
Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKkug%3D%3D&md5=748674e583705bfa594b9fbff7cb47f5CAS | 10611084PubMed |

Skinner, M. K. (2005). Regulation of primordial-follicle assembly and development. Hum. Reprod. Update 11, 461–471.
Regulation of primordial-follicle assembly and development.Crossref | GoogleScholarGoogle Scholar | 16006439PubMed |

Sun, L. L., Sun, Z. Y., Zhang, P., Zhai, X. W., Tang, J., Pan, Q. J., Shi, Q. H., and Shen, W. (2010). Effect of insulin on oogenesis from mouse fetal germ cells in a serum-free 3D culture system. Reprod. Biomed. Online 20, 11–25.
Effect of insulin on oogenesis from mouse fetal germ cells in a serum-free 3D culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFegsLjL&md5=269998597dff7ecdfe3561f0a0be464dCAS | 20129134PubMed |

Torner, H., Brüssow, K. P., Alm, H., Ratky, J., Pöhland, R., Tuchscherer, A., and Kanitz, W. (2004). Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depend on the stage of pre-ovulatory maturation. Theriogenology 61, 1675–1689.
Mitochondrial aggregation patterns and activity in porcine oocytes and apoptosis in surrounding cumulus cells depend on the stage of pre-ovulatory maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWnu70%3D&md5=e7eb594309d6256c41190aad9a44d127CAS | 15019463PubMed |

Zhang, P., Chao, H., Sun, X., Li, L., Shi, Q., and Shen, W. (2010). Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signalling pathway. Histochem. Cell Biol. 134, 75–82.
Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signalling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVaitr4%3D&md5=0f5dbc272fa364d62cedfc10b94ce242CAS | 20495820PubMed |

Zhang, H. Q., Zhang, X. F., Zhang, L. J., Chao, H. H., Pan, B., Feng, Y. M., Li, L., Sun, X. F., and Shen, W. (2012a). Fetal exposure to bisphenol A affects primordial-follicle formation by inhibiting the meiotic progression of oocytes. Mol. Biol. Rep. 39, 5651–5657.
Fetal exposure to bisphenol A affects primordial-follicle formation by inhibiting the meiotic progression of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVCitLc%3D&md5=aeba7ba97358b9ec9d5f74437c2082f2CAS | 22187349PubMed |

Zhang, Z. P., Liang, G. J., Zhang, X. F., Zhang, G. L., Chao, H. H., Li, L., Sun, X. F., Min, L. J., Pan, Q. J., Shi, Q. H., Sun, Q. Y., DeFelici, M., and Shen, W. (2012b). Growth of mouse oocytes to maturity from premeiotic germ cells in vitro. PLoS ONE 7, e41771.
Growth of mouse oocytes to maturity from premeiotic germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWisbjM&md5=22953e780b6532d6e8e75c81606e01ecCAS | 22848595PubMed |

Zhang, L. J., Chen, B., Feng, X. L., Ma, H. G., Sun, L. L., Feng, Y. M., Liang, G. J., Cheng, S. F., Li, L., and Shen, W. (2013). Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells. Reprod. Fertil. Dev , .
Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells.Crossref | GoogleScholarGoogle Scholar | 24209976PubMed |

Zhang, T., Li, L., Qin, X. S., Zhou, Y., Zhang, X. F., Wang, L. Q., De Felici, M., Chen, H., Qin, G. Q., and Shen, W. (2014). Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial-follicle assembly in vitro. Environ. Mol. Mutagen. 55, 343–353.
Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial-follicle assembly in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ektL4%3D&md5=653ffe723e033464fe4bc218f6969028CAS | 24458533PubMed |