Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging

Muhammad Irfan-ur-Rehman Khan A , Fernanda Caminha Faustino Dias A , Isabelle Dufort C , Vikram Misra B , Marc-Andre Sirard C and Jaswant Singh A D
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.

B Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.

C Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC, G1V 0A6, Canada.

D Corresponding author. Email: jaswant.singh@usask.ca

Reproduction, Fertility and Development 28(6) 795-805 https://doi.org/10.1071/RD14089
Submitted: 11 March 2014  Accepted: 25 September 2014   Published: 27 November 2014

Abstract

The aim of the present study was to determine a set of reference genes in granulosa cells of dominant follicles that are suitable for relative gene expression analyses during maternal and follicular aging. Granulosa cells of growing and preovulatory dominant follicles were collected from aged and young cows (maternal aging study) and from FSH-stimulated follicles developing under different durations of FSH treatment (follicular aging study). The mRNA levels of the two commonly used reference genes (GAPDH, ACTB) and four novel genes (UBE2D2, EIF2B2, SF3A1, RNF20) were analysed using cycle threshold values. Results revealed that mRNA levels of GAPDH, ACTB, EIF2B2, RNF20, SF3A1 and UBE2D2 were similar (P > 0.05) between dominant follicle type, age and among follicles obtained after FSH-stimulation, but differed (P = 0.005) due to mRNA processing (i.e. with versus without amplification). The stability of reference genes was analysed using GeNorm, DeltaCT and NormFinder programs and comprehensive ranking order was determined using RefFinder. The mRNA levels of GAPDH and ACTB were less stable than those of UBE2D2 and EIF2B2. The geometric mean of multiple genes (UBE2D2, EIF2B2, GAPDH and SF3A1) is a more appropriate reference control than the use of a single reference gene to compare relative gene expression among dominant and FSH-stimulated follicles during maternal and/or follicular aging studies.

Additional keywords: cattle, follicular aging, preovulatory follicle, superovulation.


References

Andersen, C. L., Jensen, J. L., and Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250.
Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtF2mtbg%3D&md5=5c927a2e14eeb4d86c4ff5928b021db6CAS | 15289330PubMed |

Barrett, S. L., and Albertini, D. F. (2010). Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J. Assist. Reprod. Genet. 27, 29–39.
Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence.Crossref | GoogleScholarGoogle Scholar | 20039198PubMed |

Berfelt, D. R., Lightfoot, K. C., and Adams, G. P. (1994). Ovarian synchronization following ultrasound-guided transvaginal follicle ablation in heifers. Theriogenology 42, 895–907.
Ovarian synchronization following ultrasound-guided transvaginal follicle ablation in heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVemsA%3D%3D&md5=b09c3710167a785dd901b08c46fc9adbCAS | 16727595PubMed |

Bettegowda, A., Patel, O. V., Lee, K. B., Park, K. E., Salem, M., Yao, J., Ireland, J. J., and Smith, G. W. (2008). Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biol. Reprod. 79, 301–309.
Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWmsLo%3D&md5=6bcca56a0ebb805abfb80198c59c3ec4CAS | 18417713PubMed |

Bionaz, M., and Loor, J. J. (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genomics 29, 312–319.
Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFylu7s%3D&md5=accc3c0af85bc54fe5e58eba248b0968CAS | 17284669PubMed |

Bougarn, S., Cunha, P., Gilbert, F. B., Meurens, F., and Rainard, P. (2011). Technical note: validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli. J. Dairy Sci. 94, 2425–2430.
Technical note: validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFCgsLc%3D&md5=0cc6c49ae90d7cf3c78e1f662cac7c1aCAS | 21524534PubMed |

Brower, P. T., and Schultz, R. M. (1982). Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev. Biol. 90, 144–153.
Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387jvFOrsQ%3D%3D&md5=1cbc4b37f0e556047f19b0d77849d29dCAS | 7199496PubMed |

Chen, J., Rider, D. A., and Ruan, R. (2006). Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver. J. Gerontol. A Biol. Sci. Med. Sci. 61, 20–27.
Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver.Crossref | GoogleScholarGoogle Scholar | 16456191PubMed |

Delidow, B. C., White, B. A., and Peluso, J. J. (1990). Gonadotropin induction of c-fos and c-myc expression and deoxyribonucleic acid synthesis in rat granulosa cells. Endocrinology 126, 2302–2306.
Gonadotropin induction of c-fos and c-myc expression and deoxyribonucleic acid synthesis in rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlSjsrg%3D&md5=b1596f6fd4a037b45d54e0102ff36f3bCAS | 2109683PubMed |

Dias, F. C. F., Costa, E., Adams, G. P., Mapletoft, R. J., Kastelic, J., Dochi, O., and Singh, J. (2012). Effect of duration of the growing phase of ovulatory follicles on oocyte competence in superstimulated cattle. Reprod. Fertil. Dev. 25, 523–530.
Effect of duration of the growing phase of ovulatory follicles on oocyte competence in superstimulated cattle.Crossref | GoogleScholarGoogle Scholar |

Dias, F. C., Khan, M. I. R., Sirard, M. A., Adams, G. P., and Singh, J. (2013). Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle. Reproduction 146, 181–191.
Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSnsb%2FM&md5=8f35aef4dd66fda7feb80ca5ff6f95d3CAS | 23740080PubMed |

Drost, M., Savio, J. D., Barros, C. M., Badinga, L., and Thatcher, W. W. (1992). Ovariectomy by colpotomy in cows. J. Am. Vet. Med. Assoc. 200, 337–339.
| 1:STN:280:DyaK387ptlWhsQ%3D%3D&md5=10cf6899de15f8cb1f0eee79e2ad8502CAS | 1548167PubMed |

Evans, A. C., and Fortune, J. E. (1997). Selection of the dominant follicle in cattle occurs in the absence of differences in the expression of messenger ribonucleic acid for gonadotropin receptors. Endocrinology 138, 2963–2971.
| 1:CAS:528:DyaK2sXktVyjur8%3D&md5=1f91c8716f98c03c82a981462c8016aeCAS | 9202241PubMed |

Fayad, T., Levesque, V., Sirois, J., Silversides, D. W., and Lussier, J. G. (2004). Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol. Reprod. 70, 523–533.
Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsl2itQ%3D%3D&md5=82cdfee814d5e3cd873502749e2c1df8CAS | 14568916PubMed |

Fleige, S., and Pfaffl, M. W. (2006). RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 27, 126–139.
RNA integrity and the effect on the real-time qRT-PCR performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisF2gsrg%3D&md5=fb2833cc583e4d45f79988266459a8c7CAS | 16469371PubMed |

Gilbert, I., Robert, C., Dieleman, S., Blondin, P., and Sirard, M. A. (2011). Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction 141, 193–205.
Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehsLs%3D&md5=1fdafe296f9ad02daaca7ac9bbaaf60fCAS | 21123518PubMed |

Gilbert, I., Robert, C., Vigneault, C., Blondin, P., and Sirard, M. A. (2012). Impact of the luteinizing hormone surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle. Reproduction 143, 735–747.
Impact of the luteinizing hormone surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFahs7w%3D&md5=b85678adc35366f0ee12999d474e963fCAS | 22457433PubMed |

Ginzinger, D. G. (2002). Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.
Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOksb8%3D&md5=5db79517484d2c8392f0d71e015da973CAS | 12063017PubMed |

Haller, F., Kulle, B., Schwager, S., Gunawan, B., von Heydebreck, A., Sultmann, H., and Fuzesi, L. (2004). Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization. Anal. Biochem. 335, 1–9.
Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Sqt74%3D&md5=0ed6d7a4132862463eb94199fe1ff065CAS | 15519565PubMed |

Hamel, M., Dufort, I., Robert, C., Gravel, C., Leveille, M.-C., Leader, A., and Sirard, M.-A. (2008). Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 23, 1118–1127.
Identification of differentially expressed markers in human follicular cells associated with competent oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1agsrc%3D&md5=628d5b541624526b302c130ff39c51daCAS | 18310048PubMed |

Hamel, M., Dufort, I., Robert, C., Laveilla, M.-C., Leader, A., and Sirard, M.-A. (2010). Identification of follicular marker genes as pregnancy predictors for human IVF: new evidence for the involvement of luteinization process. Mol. Hum. Reprod. 16, 548–556.
Identification of follicular marker genes as pregnancy predictors for human IVF: new evidence for the involvement of luteinization process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt7w%3D&md5=57221b64bd6742ea791d97ac9a870f52CAS | 20610614PubMed |

Hosseini, A., Sauerwein, H., and Mielenz, M. (2010). Putative reference genes for gene expression studies in propionate and beta-hydroxybutyrate treated bovine adipose tissue explants. J. Anim. Physiol. Anim. Nutr. (Berl.) 94, e178–e184.
Putative reference genes for gene expression studies in propionate and beta-hydroxybutyrate treated bovine adipose tissue explants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgtLvN&md5=533a90df87caff25f7e5b9f260249c48CAS | 20579188PubMed |

Hruz, T., Wyss, M., Docquier, M., Pfaffl, M. W., Masanetz, S., Borghi, L., Verbrugghe, P., Kalaydjieva, L., Bleuler, S., Laule, O., Descombes, P., Gruissem, W., and Zimmermann, P. (2011). RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics 12, 156.
RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlCgtbs%3D&md5=9c5fd29285e078e45509ee3eb4eff53cCAS | 21418615PubMed |

Ito, M., Muraki, M., Takahashi, Y., Imai, M., Tsukui, T., Yamakawa, N., Nakagawa, K., Ohgi, S., Horikawa, T., Iwasaki, W., Iida, A., Nishi, Y., Yanase, T., Nawata, H., Miyado, K., Kono, T., Hosoi, Y., and Saito, H. (2008). Glutathione S-transferase theta 1 expressed in granulosa cells as a biomarker for oocyte quality in age-related infertility. Fertil. Steril. 90, 1026–1035.
Glutathione S-transferase theta 1 expressed in granulosa cells as a biomarker for oocyte quality in age-related infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrsrfE&md5=bf51c25fc27c456c1f20f67e051e4801CAS | 17919612PubMed |

Kadegowda, A. K., Bionaz, M., Thering, B., Piperova, L. S., Erdman, R. A., and Loor, J. J. (2009). Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements. J. Dairy Sci. 92, 2007–2019.
Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFynu7c%3D&md5=c770b6cb89421627d2f5e106dccb5352CAS | 19389958PubMed |

Khan, M. I. R., Dias, F. C. F., Sirard, M. A., Adams, G. P., and Singh, J. (2012). Transcriptome analysis of granulosa cells from growing dominant follicle reveals age-associated changes at the time of follicle selection in aged beef cattle. Reprod. Fertil. Dev. 25, 148.
Transcriptome analysis of granulosa cells from growing dominant follicle reveals age-associated changes at the time of follicle selection in aged beef cattle.Crossref | GoogleScholarGoogle Scholar |

Lecchi, C., Dilda, F., Sartorelli, P., and Ceciliani, F. (2012). Widespread expression of SAA and Hp RNA in bovine tissues after evaluation of suitable reference genes. Vet. Immunol. Immunopathol. 145, 556–562.
Widespread expression of SAA and Hp RNA in bovine tissues after evaluation of suitable reference genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVeqtb4%3D&md5=6a0fe2f4ffb49575adddaf161905f556CAS | 22230385PubMed |

Lisowski, P., Pierzchala, M., Goscik, J., Pareek, C. S., and Zwierzchowski, L. (2008). Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J. Appl. Genet. 49, 367–372.
Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid.Crossref | GoogleScholarGoogle Scholar | 19029684PubMed |

Luo, W., and Wiltbank, M. C. (2006). Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells. Biol. Reprod. 75, 217–225.
Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgsLg%3D&md5=02fe5975d70ce6fca7b792b1df8645d8CAS | 16641147PubMed |

Machado, M. F., Portela, V. M., Price, C. A., Costa, I. B., Ripamonte, P., Amorim, R. L., and Buratini, J. (2009). Regulation and action of fibroblast growth factor 17 in bovine follicles. J. Endocrinol. 202, 347–353.
Regulation and action of fibroblast growth factor 17 in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFahtLnN&md5=122c3a83a17f246f622c63d172c70e1cCAS | 19535432PubMed |

Malcuit, C., Trask, M. C., Santiago, L., Beaudoin, E., Tremblay, K. D., and Mager, J. (2009). Identification of novel oocyte and granulosa cell markers. Gene Expr. Patterns 9, 404–410.
Identification of novel oocyte and granulosa cell markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVehtLg%3D&md5=36ea19df6149aa08f6da86da3ee6f9d3CAS | 19539053PubMed |

Malhi, P. S., Adams, G. P., and Singh, J. (2005). Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol. Reprod. 73, 45–53.
Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srtrg%3D&md5=bf89e84253be082d322fb4deb9361df6CAS | 15744017PubMed |

Mansur, N. R., Meyer-Siegler, K., Wurzer, J. C., and Sirover, M. A. (1993). Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acids Res. 21, 993–998.
Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Ogtb8%3D&md5=4e1132c871b0d0b037ef6c4f790e2256CAS | 8451199PubMed |

Marinelli, L., Trevisi, E., Da Dalt, L., Merlo, M., Bertoni, G., and Gabai, G. (2007). Dehydroepiandrosterone secretion in dairy cattle is episodic and unaffected by ACTH stimulation. J. Endocrinol. 194, 627–635.
Dehydroepiandrosterone secretion in dairy cattle is episodic and unaffected by ACTH stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKms7nN&md5=2c0a7b23ce568f96927c2e1b0ca7a789CAS | 17761902PubMed |

Pérez, R., Tupac-Yupanqui, I., and Dunner, S. (2008). Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol. Biol. 9, 79.
Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue.Crossref | GoogleScholarGoogle Scholar | 18786244PubMed |

Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515.
Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2mtLk%3D&md5=6a2360a699196d152c2821ed6b31ca25CAS | 15127793PubMed |

Provenzano, M., and Mocellin, S. (2007). Complementary techniques: validation of gene expression data by quantitative real time PCR. Adv. Exp. Med. Biol. 593, 66–73.
Complementary techniques: validation of gene expression data by quantitative real time PCR.Crossref | GoogleScholarGoogle Scholar | 17265717PubMed |

Ricken, A., Lochhead, P., Kontogiannea, M., and Farookhi, R. (2002). Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology 143, 2741–2749.
Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVymt7w%3D&md5=7512a9459e656c65445dc1aaa427eb29CAS | 12072409PubMed |

Robert, C., Nieminen, J., Dufort, I., Gagne, D., Grant, J. R., Cagnone, G., Plourde, D., Nivet, A. L., Fournier, E., Paquet, E., Blazejczyk, M., Rigault, P., Juge, N., and Sirard, M. A. (2011). Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Mol. Reprod. Dev. 78, 651–664.
Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGns7vK&md5=e53ac4bb161cf485d1b52bc51d8ddbb1CAS | 21812063PubMed |

Rodríguez, A., Díez, C., Caamaño, J. N., de Frutos, C., Royo, L. J., Muñoz, M., Ikeda, S., Facal, N., Álvarez-Viejo, M., and Gómez, E. (2007). Retinoid receptor-specific agonists regulate bovine in vitro early embryonic development, differentiation and expression of genes related to cell cycle arrest and apoptosis. Theriogenology 68, 1118–1127.
Retinoid receptor-specific agonists regulate bovine in vitro early embryonic development, differentiation and expression of genes related to cell cycle arrest and apoptosis.Crossref | GoogleScholarGoogle Scholar | 17869331PubMed |

Schmahl, J., Rizzolo, K., and Soriano, P. (2008). The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev. 22, 3255–3267.
The PDGF signaling pathway controls multiple steroid-producing lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaiu7jL&md5=100da123c33dab7ad0ceafe1a5a862e2CAS | 19056881PubMed |

Silver, N., Best, S., Jiang, J., and Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7, 33.
Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR.Crossref | GoogleScholarGoogle Scholar | 17026756PubMed |

Singh, J., Pierson, R. A., and Adams, G. P. (1997). Ultrasound image attributes of the bovine corpus luteum: structural and functional correlates. J. Reprod. Fertil. 109, 35–44.
Ultrasound image attributes of the bovine corpus luteum: structural and functional correlates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1GntLs%3D&md5=0fb1e890e26d9c8f15fc97da46dce9f7CAS | 9068411PubMed |

Spalenza, V., Girolami, F., Bevilacqua, C., Riondato, F., Rasero, R., Nebbia, C., Sacchi, P., and Martin, P. (2011). Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes. Vet. J. 189, 278–283.
Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2is7fO&md5=31c9673d7eaea41dc83bcd0fd2953d39CAS | 21169039PubMed |

Ståhlberg, A., Kubista, M., and Pfaffl, M. (2004). Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 50, 1678–1680.
Comparison of reverse transcriptases in gene expression analysis.Crossref | GoogleScholarGoogle Scholar | 15331507PubMed |

Suslov, O., and Steindler, D. A. (2005). PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res. 33, e181.
PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency.Crossref | GoogleScholarGoogle Scholar | 16314311PubMed |

Suzuki, T., Higgins, P. J., and Crawford, D. R. (2000). Control selection for RNA quantitation. Biotechniques 29, 332–337.
| 1:CAS:528:DC%2BD3cXls12jsr0%3D&md5=60547ede172bd289566315afb34fbe9dCAS | 10948434PubMed |

Touchberry, C. D., Wacker, M. J., Richmond, S. R., Whitman, S. A., and Godard, M. P. (2006). Age-related changes in relative expression of real-time PCR housekeeping genes in human skeletal muscle. J. Biomol. Tech. 17, 157–162.
| 16741243PubMed |

Uddin, M. J., Cinar, M. U., Tesfaye, D., Looft, C., Tholen, E., and Schellander, K. (2011). Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues. BMC Res. Notes 4, 441.
Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ltb7N&md5=ccc2f9baa29e66691cf01d2b3ea32b7bCAS | 22023805PubMed |

Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 87, 1663–1667.
Amplified RNA synthesized from limited quantities of heterogeneous cDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFejsLg%3D&md5=5ecbf54e8b54e51c3f6151f0e30b33d4CAS | 1689846PubMed |

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034–research0034.11.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar | 12184808PubMed |

Voge, J. L., Santiago, C. A., Aad, P. Y., Goad, D. W., Malayer, J. R., and Spicer, L. J. (2004). Quantification of insulin-like growth factor binding protein mRNA using real-time PCR in bovine granulosa and theca cells: effect of estradiol, insulin, and gonadotropins. Domest. Anim. Endocrinol. 26, 241–258.
Quantification of insulin-like growth factor binding protein mRNA using real-time PCR in bovine granulosa and theca cells: effect of estradiol, insulin, and gonadotropins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKgtro%3D&md5=b5d5b8a0660d329928cae5118c54b2b7CAS | 15036378PubMed |

Walker, C. G., Meier, S., Mitchell, M. D., Roche, J. R., and Littlejohn, M. (2009). Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium. BMC Mol. Biol. 10, 100.
Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 19878604PubMed |

Zampieri, M., Ciccarone, F., Guastafierro, T., Bacalini, M. G., Calabrese, R., Moreno-Villanueva, M., Reale, A., Chevanne, M., Burkle, A., and Caiafa, P. (2010). Validation of suitable internal control genes for expression studies in aging. Mech. Ageing Dev. 131, 89–95.
Validation of suitable internal control genes for expression studies in aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVKjt70%3D&md5=3824d64daae73dc63eb6dbb0ca5032b9CAS | 20038437PubMed |

Zielak, A. E., Canty, M. J., Forde, N., Coussens, P. M., Smith, G. W., Lonergan, P., Ireland, J. J., and Evans, A. C. (2008). Differential expression of genes for transcription factors in theca and granulosa cells following selection of a dominant follicle in cattle. Mol. Reprod. Dev. 75, 904–914.
Differential expression of genes for transcription factors in theca and granulosa cells following selection of a dominant follicle in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGhtrc%3D&md5=95eded1b3185e20b3d4e744f64c67c6aCAS | 17948250PubMed |