Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Role of Wnt signalling in early pregnancy

Sarmah B. Nayeem A B , Frank Arfuso B C , Arun Dharmarajan B C and Jeffrey A. Keelan A D
+ Author Affiliations
- Author Affiliations

A School of Women’s and Infant’s Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia.

B School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C School of Biomedical Sciences, Curtin University, Kent Street, Bentley, WA 6845, Australia.

D Corresponding author. Email: jeff.keelan@uwa.edu.au

Reproduction, Fertility and Development 28(5) 525-544 https://doi.org/10.1071/RD14079
Submitted: 27 February 2014  Accepted: 5 August 2014   Published: 5 September 2014

Abstract

The integration of a complex network of signalling molecules promotes implantation of the blastocyst and development of the placenta. These processes are crucial for a successful pregnancy and fetal growth and development. The signalling network involves both cell–cell and cell–extracellular matrix communication. The family of secreted glycoprotein ligands, the Wnts, plays a major role in regulating a wide range of biological processes, including embryonic development, cell fate, proliferation, migration, stem cell maintenance, tumour suppression, oncogenesis and tissue homeostasis. Recent studies have provided evidence that Wnt signalling pathways play an important role in reproductive tissues and in early pregnancy events. The focus of this review is to summarise our present knowledge of expression, regulation and function of the Wnt signalling pathways in early pregnancy events of human and other model systems, and its association with pathological conditions. Despite our recent progress, much remains to be learned about Wnt signalling in human reproduction. The advancement of knowledge in this area has applications in the reduction of infertility and the incidence and morbidity of gestational diseases.

Additional keywords: decidua, endometrium, placenta, trophoblast.


References

Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997). β-Catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 16, 3797–3804.
β-Catenin is a target for the ubiquitin–proteasome pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslShsbk%3D&md5=d80f7ea6606fdd59560b459db272a022CAS | 9233789PubMed |

Abu-Jawdeh, G., Comella, N., Tomita, Y., Brown, L. F., Tognazzi, K., Sokol, S. Y., and Kocher, O. (1999). Differential expression of frpHE: a novel human stromal protein of the secreted frizzled gene family, during the endometrial cycle and malignancy. Lab. Invest. 79, 439–447.
| 1:CAS:528:DyaK1MXivVGku70%3D&md5=eab157e131dcd476d746fd5dd687a438CAS | 10211996PubMed |

Aghajanova, L., Horcajadas, J. A., Weeks, J. L., Esteban, F. J., Nezhat, C. N., Conti, M., and Giudice, L. C. (2010). The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis. Endocrinology 151, 1341–1355.
The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVKqtL0%3D&md5=fdf3857300e882dcd41255b79c9ddd15CAS | 20068008PubMed |

Aoki, M., Mieda, M., Ikeda, T., Hamada, Y., Nakamura, H., and Okamoto, H. (2007). R-spondin3 is required for mouse placental development. Dev. Biol. 301, 218–226.
R-spondin3 is required for mouse placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WgtQ%3D%3D&md5=3083d2630743fafa60e33e357cefb7d4CAS | 16963017PubMed |

Araki, Y., Okamura, S., Hussain, S. P., Nagashima, M., He, P., Shiseki, M., Miura, K., and Harris, C. C. (2003). Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res. 63, 728–734.
| 1:CAS:528:DC%2BD3sXosVyhtw%3D%3D&md5=ce2dcf88ae9189bfe04fc60c1b13c8ffCAS | 12566320PubMed |

Arango, N. A., Szotek, P. P., Manganaro, T. F., Oliva, E., Donahoe, P. K., and Teixeira, J. (2005). Conditional deletion of β-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev. Biol. 288, 276–283.
Conditional deletion of β-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OltbzL&md5=cfb3abce1b08b1927387ebb569b00fb9CAS | 16256976PubMed |

Atli, M. O., Guzeloglu, A., and Dinc, D. A. (2011). Expression of wingless type (WNT) genes and their antagonists at mRNA levels in equine endometrium during the estrous cycle and early pregnancy. Anim. Reprod. Sci. 125, 94–102.
Expression of wingless type (WNT) genes and their antagonists at mRNA levels in equine endometrium during the estrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrurg%3D&md5=fd0b303bc38bf093777bf991052123aaCAS | 21550190PubMed |

Bafico, A., Gazit, A., Pramila, T., Finch, P. W., Yaniv, A., and Aaronson, S. A. (1999). Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 274, 16 180–16 187.
Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Ons7o%3D&md5=53f6c791d3953526134ba8857a01e3b8CAS |

Bao, S. H., Shuai, W., Tong, J., Wang, L., Chen, P., and Duan, T. (2013). Increased Dickkopf‐1 expression in patients with unexplained recurrent spontaneous miscarriage. Clin. Exp. Immunol. 172, 437–443.
Increased Dickkopf‐1 expression in patients with unexplained recurrent spontaneous miscarriage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVanu7w%3D&md5=0ec1a1a0541bfc33d22e6b84eb5e8b5fCAS | 23600832PubMed |

Bilic, J., Huang, Y. L., Davidson, G., Zimmermann, T., Cruciat, C. M., Bienz, M., and Niehrs, C. (2007). Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622.
Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2jsLo%3D&md5=ae1b1b39fff58c657ecae9ae63d79492CAS | 17569865PubMed |

Borthwick, J. M., Charnock‐Jones, D. S., Tom, B. D., Hull, M. L., Teirney, R., Phillips, S. C., and Smith, S. K. (2003). Determination of the transcript profile of human endometrium. Mol. Hum. Reprod. 9, 19–33.
Determination of the transcript profile of human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislSktrY%3D&md5=698c98ef8d5b4e461e20a6ee2bb0de76CAS | 12529417PubMed |

Brosens, J. J., and Gellersen, B. (2006). Death or survival: progesterone-dependent cell fate decisions in the human endometrial stroma. J. Mol. Endocrinol. 36, 389–398.
Death or survival: progesterone-dependent cell fate decisions in the human endometrial stroma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFSrt7c%3D&md5=01078e74469fdbfd90446b997379d588CAS | 16720711PubMed |

Bui, T. D., Zhang, L., Rees, M. C. P., Bicknell, R., and Harris, A. L. (1997). Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br. J. Cancer 75, 1131–1136.
Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3lsVGmsg%3D%3D&md5=dc5b7af0bdaa1c95cca257b2fcb2f5dfCAS | 9099960PubMed |

Cadigan, K. M., and Peifer, M. (2009). Wnt signaling from development to disease: insights from model systems. Cold Spring Harb. Perspect. Biol. 1, a002881.
Wnt signaling from development to disease: insights from model systems.Crossref | GoogleScholarGoogle Scholar | 20066091PubMed |

Carmon, K. S., and Loose, D. S. (2008). Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells. Mol. Cancer Res. 6, 1017–1028.
Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVKhtbs%3D&md5=148e28bce41e24f2477609276bff7fe2CAS | 18567805PubMed |

Carroll, T. J., Park, J.-S., Hayashi, S., Majumdar, A., and McMahon, A. P. (2005). Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292.
Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFSgs70%3D&md5=c589052fa7799bdadcf99c8cd4e893baCAS | 16054034PubMed |

Carson, D. D., Lagow, E., Thathiah, A., Al-Shami, R., Farach-Carson, M. C., Vernon, M., Yuan, L., Fritz, M. A., and Lessey, B. (2002). Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol. Hum. Reprod. 8, 871–879.
Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvF2jurk%3D&md5=8e81c45fcecb9637f0b1d3282050f84fCAS | 12200466PubMed |

Cartwright, J. E., Fraser, R., Leslie, K., Wallace, A. E., and James, J. L. (2010). Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders. Reproduction 140, 803–813.
Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtLk%3D&md5=f879f0f26892db24483ce7ab754e34beCAS | 20837731PubMed |

Catalano, R. D., Critchley, H. O., Heikinheimo, O., Baird, D. T., Hapangama, D., Sherwin, J. R. A., Charnock-Jones, D. S., Smith, S. K., and Sharkey, A. M. (2007). Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol. Hum. Reprod. 13, 641–654.
Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgtL7J&md5=3813afd4ab29f33eeace29b13e23ca8dCAS | 17584828PubMed |

Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., Peifer, M., and Bejsovec, A. (1998). Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608.
Drosophila Tcf and Groucho interact to repress Wingless signalling activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1aqtbc%3D&md5=5493889a340e0684f8e48e290b09ef7eCAS | 9783586PubMed |

Cha, J., Sun, X., and Dey, S. K. (2012). Mechanisms of implantation: strategies for successful pregnancy. Nat. Med. 18, 1754–1767.
Mechanisms of implantation: strategies for successful pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslymsb3M&md5=c4c33426b5bad592bf9903db29f98534CAS | 23223073PubMed |

Chen, Q., Zhang, Y., Lu, J., Wang, Q., Wang, S., Cao, Y., Wang, H., and Duan, E. (2009). Embryo–uterine cross-talk during implantation: the role of Wnt signaling. Mol. Hum. Reprod. 15, 215–221.
Embryo–uterine cross-talk during implantation: the role of Wnt signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2ktb8%3D&md5=b723f5c51540dc625f90ec446fd14515CAS | 19223336PubMed |

Chen, H., Wang, Y., and Xue, F. (2013). Expression and the clinical significance of Wnt10a and Wnt10b in endometrial cancer are associated with the Wnt/β-catenin pathway. Oncol. Rep. 29, 507–514.
| 1:CAS:528:DC%2BC3sXis1Cns7c%3D&md5=6cd85354576d459f154a71eba62a0659CAS | 23135473PubMed |

Cheng, C.-W., Smith, S. K., and Charnock-Jones, D. S. (2008). Transcript profile and localization of Wnt signaling-related molecules in human endometrium. Fertil. Steril. 90, 201–204.
Transcript profile and localization of Wnt signaling-related molecules in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslKls78%3D&md5=262f1db277140a2eeeef9ecbbae6acdeCAS | 17889861PubMed |

Cho, S. W., Lee, E. J., Kim, H., Kim, S. H., Ahn, H. Y., Kim, Y. A., Park, D. J., Shin, C. S., Ahn, S.-H., and Chol, B. Y. (2013). Dickkopf-1 inhibits thyroid cancer cell survival and migration through regulation of β-catenin/E-cadherin signaling. Mol. Cell. Endocrinol. 366, 90–98.
Dickkopf-1 inhibits thyroid cancer cell survival and migration through regulation of β-catenin/E-cadherin signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFKisQ%3D%3D&md5=706e4b8ea6ebe78dc9cd545167cdf4fcCAS | 23261982PubMed |

Clevers, H. (2006). Wnt/β-catenin signaling in development and disease. Cell 127, 469–480.
Wnt/β-catenin signaling in development and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WhtbbN&md5=237131bce9b9c49567dbde3c6532876bCAS | 17081971PubMed |

Clevers, H., and Nusse, R. (2012). Wnt/β-catenin signaling and disease. Cell 149, 1192–1205.
Wnt/β-catenin signaling and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVaktrg%3D&md5=cdadcf0fe5edcc9ce917f40105af30c9CAS | 22682243PubMed |

Cloke, B., Huhtinen, K., Fusi, L., Kajihara, T., Yliheikkilä, M., Ho, K.-K., Teklenburg, G., Lavery, S., Jones, M. C., and Trew, G. (2008). The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology 149, 4462–4474.
The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKnu7rE&md5=309c6819a6adcc1dd1c82cdb1e374103CAS | 18511503PubMed |

Daikoku, T., Song, H., Guo, Y., Riesewijk, A., Mosselman, S., Das, S. K., and Dey, S. K. (2004). Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine–homeobox–Wnt signaling in implantation. Mol. Endocrinol. 18, 1238–1250.
Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine–homeobox–Wnt signaling in implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVOkt7o%3D&md5=6697754c7f2425a5d2a4ed592fd889b1CAS | 14976223PubMed |

Daikoku, T., Cha, J., Sun, X., Tranguch, S., Xie, H., Fujita, T., Hirota, Y., Lydon, J., DeMayo, F., and Maxson, R. (2011). Conditional deletion of MSX homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev. Cell 21, 1014–1025.
Conditional deletion of MSX homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CisL3N&md5=7754da8c6c1e950daa9763c4c3fee114CAS | 22100262PubMed |

de Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., Solter, D., and Knowles, B. B. (2004). Maternal β-catenin and E-cadherin in mouse development. Development 131, 4435–4445.
Maternal β-catenin and E-cadherin in mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVehtL8%3D&md5=619d96490b17ee1ab22e99a47a48c534CAS | 15306566PubMed |

Denicol, A. C., Dobbs, K. B., McLean, K. M., Carambula, S. F., Loureiro, B., and Hansen, P. J. (2013). Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage. Sci. Rep. 3, 1266.
Canonical WNT signaling regulates development of bovine embryos to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 23405280PubMed |

Dey, S. K., Lim, H., Das, S. K., Reese, J., Paria, B. C., Daikoku, T., and Wang, H. (2004). Molecular cues to implantation. Endocr. Rev. 25, 341–373.
Molecular cues to implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVeltL8%3D&md5=3c90b07504e424795899004fbd65cc73CAS | 15180948PubMed |

Dong, F., Zhang, Y., Xia, F., Yang, Y., Xiong, S., Jin, L., and Zhang, J. (2014). Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction 148, 33–41.
Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrtrbO&md5=7730be64055747accd24a9c0a995eaa5CAS | 24686457PubMed |

Dufourcq, P., Couffinhal, T., Ezan, J., Barandon, L., Moreau, C., Daret, D., and Duplàa, C. (2002). FrzA, a secreted frizzled related protein, induced angiogenic response. Circulation 106, 3097–3103.
FrzA, a secreted frizzled related protein, induced angiogenic response.Crossref | GoogleScholarGoogle Scholar | 12473558PubMed |

ESHRE Capri Workshop Group (2010). Europe the continent with the lowest fertility. Hum. Reprod. Update 16, 590–602.
Europe the continent with the lowest fertility.Crossref | GoogleScholarGoogle Scholar | 20603286PubMed |

Fan, X., Krieg, S., Hwang, J. Y., Dhal, S., Kuo, C. J., Lasley, B. L., Brenner, R. M., and Nayak, N. R. (2012). Dynamic regulation of Wnt7a expression in the primate endometrium: implications for postmenstrual regeneration and secretory transformation. Endocrinology 153, 1063–1069.
Dynamic regulation of Wnt7a expression in the primate endometrium: implications for postmenstrual regeneration and secretory transformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1ant7o%3D&md5=d9bc93bb3c661354c6cefbc90f5f5e2eCAS | 22294752PubMed |

Fitzgerald, J. S., Germeyer, A., Huppertz, B., Jeschke, U., Knöfler, M., Moser, G., Scholz, C., Sonderegger, S., Toth, B., and Markert, U. R. (2010). Governing the invasive trophoblast: current aspects on intra‐and extracellular regulation. Am. J. Reprod. Immunol. 63, 492–505.
Governing the invasive trophoblast: current aspects on intra‐and extracellular regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1KjtLw%3D&md5=21dd259c69597b2fc159e0e6a7f02f98CAS | 20236263PubMed |

Fouladi-Nashta, A. A., Jones, C. J. P., Nijjar, N., Mohamet, L., Smith, A., Chambers, I., and Kimber, S. J. (2005). Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice. Dev. Biol. 281, 1–21.
Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFGqsro%3D&md5=4578c982d79930bb9ba24406c1570417CAS | 15848385PubMed |

Franco, H. L., Dai, D., Lee, K. Y., Rubel, C. A., Roop, D., Boerboom, D., Jeong, J.-W., Lydon, J. P., Bagchi, I. C., and Bagchi, M. K. (2011). WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 25, 1176–1187.
WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslSlu7k%3D&md5=e5dac1c56b6638153a28ac309db469a0CAS | 21163860PubMed |

Gaetje, R., Holtrich, U., Karn, T., Cikrit, E., Engels, K., Rody, A., and Kaufmann, M. (2007). Characterization of WNT7A expression in human endometrium and endometriotic lesions. Fertil. Steril. 88, 1534–1540.
Characterization of WNT7A expression in human endometrium and endometriotic lesions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVygtro%3D&md5=43c7d6f46652ba50989f4ccf7e57314eCAS | 17588571PubMed |

Galceran, J., Fariñas, I., Depew, M. J., Clevers, H., and Grosschedl, R. (1999). Wnt3a–/–-like phenotype and limb deficiency in Lef1–/– Tcf1–/– mice. Genes Dev. 13, 709–717.
Wnt3a–/–-like phenotype and limb deficiency in Lef1–/– Tcf1–/– mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1eisbg%3D&md5=e3f98d04d734447023417806e4cabd00CAS | 10090727PubMed |

Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C., and Niehrs, C. (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362.
Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXot1Glug%3D%3D&md5=0e1cd10616eed56f50a2331e89055cb2CAS | 9450748PubMed |

Gordon, M. D., and Nusse, R. (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22 429–22 433.
Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVSquro%3D&md5=95c162da85bebe024770c92777b38ccfCAS |

Gray, C. A., Bartol, F. F., Tarleton, B. J., Wiley, A. A., Johnson, G. A., Bazer, F. W., and Spencer, T. E. (2001). Developmental biology of uterine glands. Biol. Reprod. 65, 1311–1323.
Developmental biology of uterine glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVeku7g%3D&md5=d5ea9123be271c504d14a077885643cfCAS | 11673245PubMed |

Grisaru‐Granovsky, S., Maoz, M., Barzilay, O., Yin, Y. J., Prus, D., and Bar‐Shavit, R. (2009). Protease activated receptor‐1, PAR1, promotes placenta trophoblast invasion and β‐catenin stabilization. J. Cell. Physiol. 218, 512–521.
Protease activated receptor‐1, PAR1, promotes placenta trophoblast invasion and β‐catenin stabilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kht74%3D&md5=a8f463c79d3ededdb6513122c430a798CAS | 19040205PubMed |

Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., and Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development 121, 3529–3537.
| 1:CAS:528:DyaK2MXps1aktb4%3D&md5=9e93c96ad70fe66d64326b1f9b920869CAS | 8582267PubMed |

Hamatani, T., Daikoku, T., Wang, H., Matsumoto, H., Carter, M. G., Ko, M. S., and Dey, S. K. (2004). Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl Acad. Sci. USA 101, 10 326–10 331.
Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVyrsrw%3D&md5=5c7a969722da52346f4ad5fc742b3721CAS |

Hatta, K., Chen, Z., Carter, A., Leno-Durán, E., Zhang, J., Ruiz-Ruiz, C., Olivares, E., MacLeod, R., and Croy, B. (2010). Orphan receptor kinase ROR2 is expressed in the mouse uterus. Placenta 31, 327–333.
Orphan receptor kinase ROR2 is expressed in the mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFGksLw%3D&md5=897ec08f5640654fec4064a561525e06CAS | 20149452PubMed |

Hayashi, K., Burghardt, R., Bazer, F., and Spencer, T. (2007). WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development. Endocrinology 148, 3496–3506.
WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOnsLk%3D&md5=4c0d2c9b7e6959e62568fd664f6a3600CAS | 17431004PubMed |

Hayashi, K., Erikson, D. W., Tilford, S. A., Bany, B. M., Maclean, J. A., Rucker, E. B., Johnson, G. A., and Spencer, T. E. (2009). Wnt genes in the mouse uterus: potential regulation of implantation. Biol. Reprod. 80, 989–1000.
Wnt genes in the mouse uterus: potential regulation of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVajsro%3D&md5=419d937bf86f9c3799a72db2ba054082CAS | 19164167PubMed |

He, S., Pant, D., Schiffmacher, A., Meece, A., and Keefer, C. L. (2008). Lymphoid enhancer factor 1‐mediated wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells. Stem Cells 26, 842–849.
Lymphoid enhancer factor 1‐mediated wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFKltLs%3D&md5=2d50972288f55462a8dce3197a8ab864CAS | 18192238PubMed |

Hess, A. P., Hamilton, A. E., Talbi, S., Dosiou, C., Nyegaard, M., Nayak, N., Genbecev-Krtolica, O., Mavrogianis, P., Ferrer, K., Kruessel, J., Fazleabas, A. T., Fisher, S. J., and Giudice, L. C. (2007). Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol. Reprod. 76, 102–117.
Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Ojuw%3D%3D&md5=e2ed98a6c5dfda5e6ffa7ae342883411CAS | 17021345PubMed |

Hou, X., Tan, Y., Li, M., Dey, S. K., and Das, S. K. (2004). Canonical Wnt signaling is critical to estrogen-mediated uterine growth. Mol. Endocrinol. 18, 3035–3049.
Canonical Wnt signaling is critical to estrogen-mediated uterine growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFShur%2FI&md5=cfdf89aafe4ca962f4bfb4b553d5baeeCAS | 15358837PubMed |

Huang, H., and Tindall, D. J. (2007). Dynamic FoxO transcription factors. J. Cell Sci. 120, 2479–2487.
Dynamic FoxO transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVelsrnJ&md5=c149e5f24127f78cc97ad90c260baa8aCAS | 17646672PubMed |

Huang, Y., Ouyang, H., Xie, W., Chen, X., Yao, C., Han, Y., Han, X., Song, Q., Pang, D., and Tang, X. (2013). Moderate expression of Wnt signaling genes is essential for porcine parthenogenetic embryo development. Cell. Signal. 25, 778–785.
Moderate expression of Wnt signaling genes is essential for porcine parthenogenetic embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksV2it70%3D&md5=ac66e1bcb79b2343a8a1c2b21cacaf70CAS | 23333243PubMed |

Huber, A. H., Nelson, W. J., and Weis, W. I. (1997). Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90, 871–882.
Three-dimensional structure of the armadillo repeat region of β-catenin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtV2hsbY%3D&md5=da02974d46e99e9d54b0843ea1568d50CAS | 9298899PubMed |

Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384.
Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFOqsL0%3D&md5=21a13423305a9537abc2cabf3a45aa6fCAS | 9482734PubMed |

Ishikawa, T.-o., Tamai, Y., Zorn, A. M., Yoshida, H., Seldin, M. F., Nishikawa, S.-i., and Taketo, M. M. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33.
| 1:CAS:528:DC%2BD3MXotVGlsw%3D%3D&md5=d695a8a03105db3eaddead86d961f577CAS |

Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., and Garcia, K. C. (2012). Structural basis of Wnt recognition by Frizzled. Science 337, 59–64.
Structural basis of Wnt recognition by Frizzled.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFKksrk%3D&md5=552fa0b98f80962c9fb7791f3f2bd8a5CAS | 22653731PubMed |

Jeong, J. W., Lee, H. S., Franco, H. L., Broaddus, R. R., Taketo, M. M., Tsai, S. Y., Lydon, J. P., and DeMayo, F. J. (2009). β-Catenin mediates glandular formation and dysregulation of β-catenin induces hyperplasia formation in the murine uterus. Oncogene 28, 31–40.
β-Catenin mediates glandular formation and dysregulation of β-catenin induces hyperplasia formation in the murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1OrsQ%3D%3D&md5=35bca2d657c2b3e840ae49d0eb4c0073CAS | 18806829PubMed |

Kao, L. C., Tulac, S., Lobo, S., Imani, B., Yang, J. P., Germeyer, A., Osteen, K., Taylor, R. N., Lessey, B., and Giudice, L. C. (2002). Global gene profiling in human endometrium during the window of implantation. Endocrinology 143, 2119–2138.
Global gene profiling in human endometrium during the window of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFKjt7Y%3D&md5=db9efcdb142e882dade0ae161a510ba2CAS | 12021176PubMed |

Kawano, Y., and Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634.
Secreted antagonists of the Wnt signalling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFamtLs%3D&md5=0fc0204a290d9806057703a6d0540772CAS | 12775774PubMed |

Keller, R. (2002). Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954.
Shaping the vertebrate body plan by polarized embryonic cell movements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Wisbg%3D&md5=c3f9515da533a5a2b7648d32d3a789e0CAS | 12471247PubMed |

Kemp, C., Willems, E., Abdo, S., Lambiv, L., and Leyns, L. (2005). Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev. Dyn. 233, 1064–1075.
Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFKgtr8%3D&md5=a1de795a929498f7a8ee381ef8920f0cCAS | 15880404PubMed |

Kiewisz, J., Kaczmarek, M. M., Andronowska, A., Blitek, A., and Ziecik, A. J. (2011). Gene expression of WNTs, β-catenin and E-cadherin during the periimplantation period of pregnancy in pigs: involvement of steroid hormones. Theriogenology 76, 687–699.
Gene expression of WNTs, β-catenin and E-cadherin during the periimplantation period of pregnancy in pigs: involvement of steroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFyhtrk%3D&md5=c255ad6b3f9ca701378cc05223491f03CAS | 21652061PubMed |

Kim, S.-E., Lee, W.-J., and Choi, K.-Y. (2007). The PI3 kinase–Akt pathway mediates Wnt3a-induced proliferation. Cell. Signal. 19, 511–518.
The PI3 kinase–Akt pathway mediates Wnt3a-induced proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlCmuw%3D%3D&md5=930aec80c5db2cf26cb31c216ba64944CAS | 17011750PubMed |

Klapholz-Brown, Z., Walmsley, G. G., Nusse, Y. M., Nusse, R., and Brown, P. O. (2007). Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments. PLoS ONE 2, e945.
Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments.Crossref | GoogleScholarGoogle Scholar | 17895986PubMed |

Kobayashi, A., Shawlot, W., Kania, A., and Behringer, R. R. (2004). Requirement of Lim1 for female reproductive tract development. Development 131, 539–549.
Requirement of Lim1 for female reproductive tract development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslOmtLk%3D&md5=550bdd47ea174aa136cbae4f03c1501bCAS | 14695376PubMed |

Kohn, A. D., and Moon, R. T. (2005). Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38, 439–446.
Wnt and calcium signaling: beta-catenin-independent pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvV2lsLk%3D&md5=6175f324021bc41687b5117172e85a7fCAS | 16099039PubMed |

Koler, M., Achache, H., Tsafrir, A., Smith, Y., Revel, A., and Reich, R. (2009). Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum. Reprod. 24, 2541–2548.
Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqu77O&md5=07a67206a1980840d3d912401a35acb6CAS | 19542175PubMed |

Labied, S., Kajihara, T., Madureira, P. A., Fusi, L., Jones, M. C., Higham, J. M., Varshochi, R., Francis, J. M., Zoumpoulidou, G., and Essafi, A. (2006). Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol. Endocrinol. 20, 35–44.
Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslemtQ%3D%3D&md5=2b305cd062a1fb20c38675d8e5c3fe90CAS | 16123151PubMed |

Lee, K. Y., Jeong, J.-W., Wang, J., Ma, L., Martin, J. F., Tsai, S. Y., Lydon, J. P., and DeMayo, F. J. (2007). Bmp2 is critical for the murine uterine decidual response. Mol. Cell. Biol. 27, 5468–5478.
Bmp2 is critical for the murine uterine decidual response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslKru7c%3D&md5=4d159e95dfad60f271b611bd0a36bc2dCAS | 17515606PubMed |

Li, Q., Kannan, A., Wang, W., DeMayo, F. J., Taylor, R. N., Bagchi, M. K., and Bagchi, I. C. (2007). Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human. J. Biol. Chem. 282, 31 725–31 732.
Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyku77O&md5=1c27815e671d7c7a5dd078b85a7f4f09CAS |

Li, Q., Kannan, A., Das, A., DeMayo, F. J., Hornsby, P. J., Young, S. L., Taylor, R. N., Bagchi, M. K., and Bagchi, I. C. (2013). WNT4 acts downstream of BMP2 and functions via β-catenin signaling pathway to regulate human endometrial stromal cell differentiation. Endocrinology 154, 446–457.
WNT4 acts downstream of BMP2 and functions via β-catenin signaling pathway to regulate human endometrial stromal cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1CrtA%3D%3D&md5=b42274dceda48f399252b42b0b44f738CAS | 23142810PubMed |

Lim, H., Gupta, R. A., Ma, W.-g., Paria, B. C., Moller, D. E., Morrow, J. D., DuBois, R. N., Trzaskos, J. M., and Dey, S. K. (1999). Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARδ. Genes Dev. 13, 1561–1574.
Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARδ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlOhsbw%3D&md5=3321733065da2d19a6091e1ae48fa4e2CAS | 10385625PubMed |

Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.-H., Tan, Y., Zhang, Z., Lin, X., and He, X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847.
Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFOgs70%3D&md5=a2f52331f6174298b40ca00dd1bebbcaCAS | 11955436PubMed |

Liu, Y., Kodithuwakku, S. P., Ng, P.-Y., Chai, J., Ng, E. H., Yeung, W. S., Ho, P.-C., and Lee, K.-F. (2010). Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum. Reprod. 25, 479–490.
Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study.Crossref | GoogleScholarGoogle Scholar | 19955106PubMed |

Lloyd, S., Fleming, T., and Collins, J. (2003). Expression of Wnt genes during mouse preimplantation development. Gene Expr. Patterns 3, 309–312.
Expression of Wnt genes during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGiu7w%3D&md5=7c4096183a28654aab0c2db58cafe704CAS | 12799076PubMed |

Logan, C. Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810.
The Wnt signaling pathway in development and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVejsr7I&md5=886c91f648e5f38234e9fabb2189ecc1CAS | 15473860PubMed |

Longman, D., Arfuso, F., Viola, H. M., Hool, L. C., and Dharmarajan, A. M. (2012). The role of the cysteine-rich domain and netrin-like domain of secreted frizzled-related protein 4 in angiogenesis inhibition in vitro. Oncol. Res. 20, 1–6.
The role of the cysteine-rich domain and netrin-like domain of secreted frizzled-related protein 4 in angiogenesis inhibition in vitro.Crossref | GoogleScholarGoogle Scholar | 23035359PubMed |

Lu, J., Zhang, S., Nakano, H., Simmons, D. G., Wang, S., Kong, S., Wang, Q., Shen, L., Tu, Z., and Wang, W. (2013). A positive feedback loop involving Gcm1 and Fzd5 directs chorionic branching morphogenesis in the placenta. PLoS Biol. 11, e1001536.
A positive feedback loop involving Gcm1 and Fzd5 directs chorionic branching morphogenesis in the placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFKmsrk%3D&md5=21b2a3c4e98279997e5390c1e757de98CAS | 23610556PubMed |

Macdonald, L. J., Sales, K. J., Grant, V., Brown, P., Jabbour, H. N., and Catalano, R. D. (2011). Prokineticin 1 induces Dickkopf 1 expression and regulates cell proliferation and decidualization in the human endometrium. Mol. Hum. Reprod. 17, 626–636.
Prokineticin 1 induces Dickkopf 1 expression and regulates cell proliferation and decidualization in the human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SitbfO&md5=86927d49e3c118b10fca0712438c180dCAS | 21546446PubMed |

Marchand, M., Horcajadas, J. A., Esteban, F. J., McElroy, S. L., Fisher, S. J., and Giudice, L. C. (2011). Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model. Biol. Reprod. 84, 1258–1271.
Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemu7g%3D&md5=7b0dfc3a293797c232b8511048bc8b09CAS | 21368299PubMed |

Marlow, F., Topczewski, J., Sepich, D., and Solnica-Krezel, L. (2002). Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884.
Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOjtLo%3D&md5=11a7164ce2dc9f968f73aae7cad5986cCAS | 12062050PubMed |

Matsuura, K., Jigami, T., Taniue, K., Morishita, Y., Adachi, S., Senda, T., Nonaka, A., Aburatani, H., Nakamura, T., and Akiyama, T. (2011). Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway. Nat. Commun. 2, 548.
Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway.Crossref | GoogleScholarGoogle Scholar | 22109522PubMed |

Matsuzaki, S., Darcha, C., Maleysson, E., Canis, M., and Mage, G. (2010). Impaired down-regulation of E-cadherin and β-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J. Clin. Endocrinol. Metab. 95, 3437–3445.
Impaired down-regulation of E-cadherin and β-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps12rtLg%3D&md5=65322fbe5d2bf1802cdd559609c58f4dCAS | 20410224PubMed |

Meinhardt, G., Haider, S., Haslinger, P., Proestling, K., Fiala, C., Pollheimer, J., and Knöfler, M. (2014). Wnt-dependent T-cell factor-4 controls human etravillous trophoblast motility. Endocrinology 155, 1908–1920.
Wnt-dependent T-cell factor-4 controls human etravillous trophoblast motility.Crossref | GoogleScholarGoogle Scholar | 24605829PubMed |

Mericskay, M., Kitajewski, J., and Sassoon, D. (2004). Wnt5a is required for proper epithelial–mesenchymal interactions in the uterus. Development 131, 2061–2072.
Wnt5a is required for proper epithelial–mesenchymal interactions in the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFGjurg%3D&md5=e9149788e1b0075bbec4c9ddcf1518deCAS | 15073149PubMed |

Migone, F. F., Ren, Y., Cowan, R. G., Harman, R. M., Nikitin, A. Y., and Quirk, S. M. (2012). Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract. Genesis 50, 28–40.
Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2ltLo%3D&md5=988f1a45d914d4766049118ec83b0af4CAS | 21809434PubMed |

Miller, C., and Sassoon, D. A. (1998). Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development 125, 3201–3211.
| 1:CAS:528:DyaK1cXmtVahtb8%3D&md5=39418687b6b87bbabe5c35581de95491CAS | 9671592PubMed |

Minas, V., Loutradis, D., and Makrigiannakis, A. (2005). Factors controlling blastocyst implantation. Reprod. Biomed. Online 10, 205–216.
Factors controlling blastocyst implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFGnurc%3D&md5=1968650f15c971f741c3feaa0fe01e0cCAS | 15823225PubMed |

Mlodzik, M. (2002). Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet. 18, 564–571.
Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFyqu7o%3D&md5=eb839ab8eb20477dafd50def5358a786CAS | 12414186PubMed |

Mohamed, O. A., Dufort, D., and Clarke, H. J. (2004). Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo–maternal signaling at implantation. Biol. Reprod. 71, 417–424.
Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo–maternal signaling at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtL0%3D&md5=4fb877963b11f1c2b3376cebf6adde6aCAS | 15044261PubMed |

Mohamed, O. A., Jonnaert, M., Labelle-Dumais, C., Kuroda, K., Clarke, H. J., and Dufort, D. (2005). Uterine Wnt/β-catenin signaling is required for implantation. Proc. Natl Acad. Sci. USA 102, 8579–8584.
Uterine Wnt/β-catenin signaling is required for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCgtrg%3D&md5=7ee04f026e6032b30a9535cf73781f5fCAS | 15930138PubMed |

Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H., and Wainwright, B. J. (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development 122, 3343–3353.
| 1:CAS:528:DyaK28XntlSkt7g%3D&md5=b57818b3f87ef84b381e7cf247d4035cCAS | 8951051PubMed |

Moreno-Bueno, G., Hardisson, D., Sanchez, C., Sarrio, D., Cassia, R., Garcia-Rostan, G., Prat, J., Mingzhou, G., Herman, J. G., and Matias-Guiu, X. (2002). Abnormalities of the APC/β-catenin pathway in endometrial cancer. Oncogene 21, 7981–7990.
Abnormalities of the APC/β-catenin pathway in endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslGlsLk%3D&md5=cdc4de9395ca9521c62be6b62d8c2e5dCAS | 12439748PubMed |

Muley, A., Majumder, S., Kolluru, G. K., Parkinson, S., Viola, H., Hool, L., Arfuso, F., Ganss, R., Dharmarajan, A., and Chatterjee, S. (2010). Secreted frizzled-related protein 4: an angiogenesis inhibitor. Am. J. Pathol. 176, 1505–1516.
Secreted frizzled-related protein 4: an angiogenesis inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVOitr4%3D&md5=b3ce24b14048dce2354e2447da697a6cCAS | 20056841PubMed |

Na, J., Lykke-Andersen, K., Torres Padilla, M. E., and Zernicka-Goetz, M. (2007). Dishevelled proteins regulate cell adhesion in mouse blastocyst and serve to monitor changes in Wnt signaling. Dev. Biol. 302, 40–49.
Dishevelled proteins regulate cell adhesion in mouse blastocyst and serve to monitor changes in Wnt signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOktg%3D%3D&md5=1cdf451032e4e413e06b1d44d6686a25CAS | 17005174PubMed |

Nallasamy, S., Li, Q., Bagchi, M. K., and Bagchi, I. C. (2012). Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium. PLoS Genet. 8, e1002500.
Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFyhsrc%3D&md5=76e7c5752d35054382a6688e326f6b72CAS | 22383889PubMed |

Nei, H., Saito, T., Yamasaki, H., Mizumoto, H., Ito, E., and Kudo, R. (1999). Nuclear localization of β‐catenin in normal and carcinogenic endometrium. Mol. Carcinog. 25, 207–218.
Nuclear localization of β‐catenin in normal and carcinogenic endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVWjsb8%3D&md5=da2d570f526ab74e680425728cefdf81CAS | 10411147PubMed |

Nguyen, H. P., Sprung, C. N., and Gargett, C. E. (2012). Differential expression of Wnt signaling molecules between pre-and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinology 153, 2870–2883.
Differential expression of Wnt signaling molecules between pre-and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1eiur0%3D&md5=230c5a502f602ebce279149fc464f5c6CAS | 22474188PubMed |

Niehrs, C. (2012). The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779.
The complex world of WNT receptor signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Klsr%2FM&md5=3c442778e04e1c77d009233a4ae8292dCAS | 23151663PubMed |

Niwa, H., Burdon, T., Chambers, I., and Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060.
Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFygtbk%3D&md5=9c787b07fcad95dcdb08096128aa9bc2CAS | 9649508PubMed |

Novakovic, B., Rakyan, V., Ng, H., Manuelpillai, U., Dewi, C., Wong, N., Morley, R., Down, T., Beck, S., and Craig, J. (2008). Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Mol. Hum. Reprod. 14, 547–554.
Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOgtr%2FP&md5=08c5dd765e2a7c757cc47a9aa230f931CAS | 18708652PubMed |

Nuñez, F., Bravo, S., Cruzat, F., Montecino, M., and De Ferrari, G. V. (2011). Wnt/β-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. PLoS ONE 6, e18562.
Wnt/β-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells.Crossref | GoogleScholarGoogle Scholar | 21494638PubMed |

Nusse, R., and Varmus, H. E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109.
Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1aluw%3D%3D&md5=981987b171325c1b5b31597a26695712CAS | 6297757PubMed |

Paria, B. C., Lim, H., Wang, X. N., Liehr, J., Das, S. K., and Dey, S. K. (1998). Coordination of differential effects of primary estrogen and catecholestrogen on two distinct targets mediates embryo implantation in the mouse. Endocrinology 139, 5235.
| 1:CAS:528:DyaK1cXns1ehuro%3D&md5=760722a6ede495f8d4008c93b053977cCAS | 9832464PubMed |

Paria, B. C., Ma, W.-g., Tan, J., Raja, S., Das, S. K., Dey, S. K., and Hogan, B. L. (2001). Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc. Natl Acad. Sci. USA 98, 1047–1052.
Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1SmsLk%3D&md5=10b62521b4184b087fa63a3724cbb3c3CAS | 11158592PubMed |

Parr, B. A., and McMahon, A. P. (1998). Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 395, 707–710.
Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1OjsbY%3D&md5=d28282d67d119610171aab9aca07a64eCAS | 9790192PubMed |

Parr, B. A., Cornish, V. A., Cybulsky, M. I., and McMahon, A. P. (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237, 324–332.
Wnt7b regulates placental development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFyiurw%3D&md5=bdd5ecab4090fc90ea71e26d88b2f2eeCAS | 11543617PubMed |

Peng, S., Miao, C., Li, J., Fan, X., Cao, Y., and Duan, E. (2006). Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem. Biophys. Res. Commun. 350, 641–647.
Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyisbjP&md5=82139ad05d6d41b100b25a250aa70a5eCAS | 17026960PubMed |

Peng, S., Li, J., Miao, C., Jia, L., Hu, Z., Zhao, P., Li, J., Zhang, Y., Chen, Q., and Duan, E. (2008). Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation. Reproduction 135, 367–375.
Dickkopf-1 secreted by decidual cells promotes trophoblast cell invasion during murine placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVajur4%3D&md5=5ac62ce1b24295d2d9c14e5c7b8f3e45CAS | 18299430PubMed |

Pey, R., Vial, C., Schatten, G., and Hafner, M. (1998). Increase of intracellular Ca2+ and relocation of E-cadherin during experimental decompaction of mouse embryos. Proc. Natl Acad. Sci. USA 95, 12 977–12 982.
Increase of intracellular Ca2+ and relocation of E-cadherin during experimental decompaction of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWktLc%3D&md5=ecdd743f22a14d72e6d3750c2757e1cbCAS |

Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., Czerwenka, K., Husslein, P., and Knöfler, M. (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am. J. Pathol. 168, 1134–1147.
Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslOht7k%3D&md5=31a73ae22b609a6235a1058568161ec5CAS | 16565489PubMed |

Port, F., and Basler, K. (2010). Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 11, 1265–1271.
Wnt trafficking: new insights into Wnt maturation, secretion and spreading.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmsLzI&md5=b6f53bd82e29d7dd42a29b43827900e3CAS | 20477987PubMed |

Ramachandran, I., Thavathiru, E., Ramalingam, S., Natarajan, G., Mills, W., Benbrook, D., Zuna, R., Lightfoot, S., Reis, A., and Anant, S. (2012). Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 31, 2725–2737.
Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlartrvN&md5=903a9fadb10fbc17f016c98f54e7c7f1CAS | 22002305PubMed |

Ramathal, C. Y., Bagchi, I. C., Taylor, R. N., and Bagchi, M. K. (2010). Endometrial decidualization: of mice and men. Semin. Reprod. Med. 28, 17–26.
Endometrial decidualization: of mice and men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlahs70%3D&md5=743d35a6df92e1e597f80182c5fb121fCAS | 20104425PubMed |

Rao, T. P., and Kühl, M. (2010). An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106, 1798–1806.
An updated overview on Wnt signaling pathways: a prelude for more.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFWnsb0%3D&md5=7a90d9e36bc79001e2f8be6af51f714fCAS | 20576942PubMed |

Rattner, A., Hsieh, J. C., Smallwood, P. M., Gilbert, D. J., Copeland, N. G., Jenkins, N. A., and Nathans, J. (1997). A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl Acad. Sci. USA 94, 2859–2863.
A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVKgs7k%3D&md5=d7b47c157d3b6a2f621b55d8f54b3ce8CAS | 9096311PubMed |

Ray, S., Xu, F., Wang, H., and Das, S. K. (2008). Cooperative control via lymphoid enhancer factor 1/T cell factor 3 and estrogen receptor-α for uterine gene regulation by estrogen. Mol. Endocrinol. 22, 1125–1140.
Cooperative control via lymphoid enhancer factor 1/T cell factor 3 and estrogen receptor-α for uterine gene regulation by estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVSru70%3D&md5=a912d813236f9747d5eff87d196cb7d3CAS | 18202148PubMed |

Red-Horse, K., Zhou, Y., Genbacev, O., Prakobphol, A., Foulk, R., McMaster, M., and Fisher, S. J. (2004). Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Invest. 114, 744–754.
Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslWitbk%3D&md5=8723eabf70a968db33b3f741467a44f3CAS | 15372095PubMed |

Rena, V., Angeletti, S., Panzetta-Dutari, G., and Genti-Raimondi, S. (2009). Activation of β-catenin signalling increases StarD7 gene expression in JEG-3 cells. Placenta 30, 876–883.
Activation of β-catenin signalling increases StarD7 gene expression in JEG-3 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKgu7fP&md5=f9d20d9633b9f25f0ef047239288f97fCAS | 19679347PubMed |

Rena, V., Flores-Martín, J., Angeletti, S., Panzetta-Dutari, G. M., and Genti-Raimondi, S. (2011). StarD7 gene expression in trophoblast cells: contribution of SF-1 and Wnt–β-catenin signaling. Mol. Endocrinol. 25, 1364–1375.
StarD7 gene expression in trophoblast cells: contribution of SF-1 and Wnt–β-catenin signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCnt77L&md5=1288f51772d7c8b9f94bf3ac578c9a4cCAS | 21622533PubMed |

Revel, A., Achache, H., Stevens, J., Smith, Y., and Reich, R. (2011). MicroRNAs are associated with human embryo implantation defects. Hum. Reprod. 26, 2830–2840.
MicroRNAs are associated with human embryo implantation defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SiurzN&md5=922b5a96dac56fec896f9b3846d575e6CAS | 21849299PubMed |

Rider, V., Isuzugawa, K., Twarog, M., Jones, S., Cameron, B., Imakawa, K., and Fang, J. (2006). Progesterone initiates Wnt-β-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells. J. Endocrinol. 191, 537–548.
Progesterone initiates Wnt-β-catenin signaling but estradiol is required for nuclear activation and synchronous proliferation of rat uterine stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1egu74%3D&md5=2c1fec0dc133d44d51a4741ff7e32842CAS | 17170212PubMed |

Ruiz-Alonso, M., Blesa, D., and Simón, C. (2012). The genomics of the human endometrium. Biochim. Biophys. Acta 1822, 1931–1942.
The genomics of the human endometrium. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12ms7o%3D&md5=a238d4ee5a0b1b79e0c5636ae30d5de3CAS | 22634130PubMed |

Santamaria, X., Massasa, E. E., and Taylor, H. S. (2012). Migration of cells from experimental endometriosis to the uterine endometrium. Endocrinology 153, 5566–5574.
Migration of cells from experimental endometriosis to the uterine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Onsb%2FN&md5=ae7d671903a44afdc3d3cf4661b81c62CAS | 22968642PubMed |

Saran, U., Arfuso, F., Zeps, N., and Dharmarajan, A. (2012). Secreted frizzled-related protein 4 expression is positively associated with responsiveness to Cisplatin of ovarian cancer cell lines in vitro and with lower tumour grade in mucinous ovarian cancers. BMC Cell Biol. 13, 25.
Secreted frizzled-related protein 4 expression is positively associated with responsiveness to Cisplatin of ovarian cancer cell lines in vitro and with lower tumour grade in mucinous ovarian cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yrsLY%3D&md5=c0a5a8eb9c0889f03823da0b94bb8063CAS | 23039795PubMed |

Semënov, M. V., Tamai, K., Brott, B. K., Kühl, M., Sokol, S., and He, X. (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951–961.
Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6.Crossref | GoogleScholarGoogle Scholar | 11448771PubMed |

Skakkebæk, N. E., Jørgensen, N., Main, K. M., Meyts, E. R. D., Leffers, H., Andersson, A. M., Juul, A., Carlsen, E., Mortensen, G. K., and Jensen, T. K. (2006). Is human fecundity declining? Int. J. Androl. 29, 2–11.
Is human fecundity declining?Crossref | GoogleScholarGoogle Scholar | 16466518PubMed |

Sonderegger, S., Husslein, H., Leisser, C., and Knöfler, M. (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28, S97–S102.
Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes.Crossref | GoogleScholarGoogle Scholar | 17198728PubMed |

Sonderegger, S., Haslinger, P., Sabri, A., Leisser, C., Otten, J. V., Fiala, C., and Knofler, M. (2010a). Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology 151, 211–220.
Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Cqug%3D%3D&md5=63ed619a3e9020f6b88b3fe232f66944CAS | 19887570PubMed |

Sonderegger, S., Pollheimer, J., and Knöfler, M. (2010b). Wnt signalling in implantation, decidualisation and placental differentiation – review. Placenta 31, 839–847.
Wnt signalling in implantation, decidualisation and placental differentiation – review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wlsr3L&md5=11dc87a36b4307f2837e2afc1b05dd4dCAS | 20716463PubMed |

Stamos, J. L., and Weis, W. I. (2013). The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5, a007898.
The β-catenin destruction complex.Crossref | GoogleScholarGoogle Scholar | 23169527PubMed |

Stark, K., Vainio, S., Vassileva, G., and McMahon, A. P. (1994). Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683.
Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislantL0%3D&md5=64076d9e100c7752b4e11b59956593cbCAS | 7990960PubMed |

Stewart, C. A., Wang, Y., Bonilla-Claudio, M., Martin, J. F., Gonzalez, G., Taketo, M. M., and Behringer, R. R. (2013). CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol. Endocrinol. 27, 1442–1454.
CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVenurzO&md5=4e08589afbaccbe78da1d0ca95f0663cCAS | 23904126PubMed |

Strakovsky, R. S., and Pan, Y.-X. (2012). A decrease in DKK1, a WNT inhibitor, contributes to placental lipid accumulation in an obesity-prone rat model. Biol. Reprod. 86, 81.
A decrease in DKK1, a WNT inhibitor, contributes to placental lipid accumulation in an obesity-prone rat model.Crossref | GoogleScholarGoogle Scholar | 22133691PubMed |

Sugimura, R., and Li, L. (2010). Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res. C Embryo Today 90, 243–256.
Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rs73I&md5=23dfdadd66bf84d8c98336786aa574cfCAS | 21181886PubMed |

Tanaka, K., Kitagawa, Y., and Kadowaki, T. (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12 816–12 823.
Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSjs7o%3D&md5=89ac5bdf66614b3bd0036aed13f21988CAS |

Tanwar, P. S., Lee, H.-J., Zhang, L., Zukerberg, L. R., Taketo, M. M., Rueda, B. R., and Teixeira, J. M. (2009). Constitutive activation of beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol. Reprod. 81, 545–552.
Constitutive activation of beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zO&md5=92a959ae84ec16f46a6f736884cf52b4CAS | 19403928PubMed |

Tanwar, P. S., Zhang, L., Roberts, D. J., and Teixeira, J. M. (2011). Stromal deletion of the APC tumor suppressor in mice triggers development of endometrial cancer. Cancer Res. 71, 1584–1596.
Stromal deletion of the APC tumor suppressor in mice triggers development of endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFCnsr4%3D&md5=1f1b8eabfff335e462ad3f4627fe5f98CAS | 21363919PubMed |

Tsang, H., Cheung, T.-Y., Kodithuwakku, S. P., Chai, J., Yeung, W. S., Wong, C. K., and Lee, K.-F. (2012). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway. Reprod. Toxicol. 33, 60–66.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFGltbs%3D&md5=56eea7706f9713df2f76fa9a51efb972CAS | 22134133PubMed |

Tulac, S., Nayak, N., Kao, L., Van Waes, M., Huang, J., Lobo, S., Germeyer, A., Lessey, B., Taylor, R., and Suchanek, E. (2003). Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J. Clin. Endocrinol. Metab. 88, 3860–3866.
Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFOktbk%3D&md5=befb6a8f6ec6ae211339855183b6a2eeCAS | 12915680PubMed |

Tulac, S., Overgaard, M. T., Hamilton, A. E., Jumbe, N. L., Suchanek, E., and Giudice, L. C. (2006). Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells. J. Clin. Endocrinol. Metab. 91, 1453–1461.
Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFOktrc%3D&md5=824d95933cc305494571dd0461c146baCAS | 16449346PubMed |

Vainio, S., Heikkilä, M., Kispert, A., Chin, N., and McMahon, A. P. (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397, 405–409.
Female development in mammals is regulated by Wnt-4 signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFOjs70%3D&md5=d0f402d73cf676c52ba1bb58097a79d4CAS | 9989404PubMed |

van Amerongen, R., Mikels, A., and Nusse, R. (2008). Alternative wnt signaling is initiated by distinct receptors. Sci. Signal. 1, re9.
Alternative wnt signaling is initiated by distinct receptors.Crossref | GoogleScholarGoogle Scholar | 18765832PubMed |

van der Horst, P. H., Wang, Y., van der Zee, M., Burger, C. W., and Blok, L. J. (2012). Interaction between sex hormones and WNT/β-catenin signal transduction in endometrial physiology and disease. Mol. Cell. Endocrinol. 358, 176–184.
Interaction between sex hormones and WNT/β-catenin signal transduction in endometrial physiology and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Squ7Y%3D&md5=c605a4a417c77cc40e6d3e42a51db0aaCAS | 21722706PubMed |

van der Zee, M., Jia, Y., Wang, Y., Heijmans‐Antonissen, C., Ewing, P. C., Franken, P., DeMayo, F. J., Lydon, J. P., Burger, C. W., Fodde, R., and Blok, L. J. (2013). Alterations in Wnt–β‐catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression. J. Pathol. 230, 48–58.
Alterations in Wnt–β‐catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVektbo%3D&md5=9d60784d0fe4440cd412bfb78b5fa682CAS | 23288720PubMed |

Wang, H., and Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199.
Roadmap to embryo implantation: clues from mouse models.Crossref | GoogleScholarGoogle Scholar | 16485018PubMed |

Wang, H., Matsumoto, H., Guo, Y., Paria, B. C., Roberts, R. L., and Dey, S. K. (2003). Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation. Proc. Natl Acad. Sci. USA 100, 14 914–14 919.
Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFaqtrY%3D&md5=88060cee3a1c319cabbbdd98b771dc0dCAS |

Wang, Y., Wang, F., Sun, T., Trostinskaia, A., Wygle, D., Puscheck, E., and Rappolee, D. A. (2004). Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev. Dyn. 231, 72–87.
Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Ggs7k%3D&md5=410bc627aa6252f3a9f63a41cfe2c8ceCAS | 15305288PubMed |

Wang, H., Liu, T., and Malbon, C. C. (2006). Structure–function analysis of Frizzleds. Cell. Signal. 18, 934–941.
Structure–function analysis of Frizzleds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVaktbs%3D&md5=15a9b7fbb5b79b37a84ebb327371534eCAS | 16480852PubMed |

Wang, Y., Hanifi-Moghaddam, P., Hanekamp, E. E., Kloosterboer, H. J., Franken, P., Veldscholte, J., van Doorn, H. C., Ewing, P. C., Kim, J. J., and Grootegoed, J. A. (2009). Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin. Cancer Res. 15, 5784–5793.
Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFars73O&md5=5844bb696d3771df2382ed884818c33dCAS | 19737954PubMed |

Wang, Y., van der Zee, M., Fodde, R., and Blok, L. J. (2010). Wnt/B-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 1, 674–684.
| 21317462PubMed |

Wang, Q., Lu, J., Zhang, S., Wang, S., Wang, W., Wang, B., Wang, F., Chen, Q., Duan, E., and Leitges, M. (2013). Wnt6 is essential for stromal cell proliferation during decidualization in mice. Biol. Reprod. 88, 5.
Wnt6 is essential for stromal cell proliferation during decidualization in mice.Crossref | GoogleScholarGoogle Scholar | 23175771PubMed |

Warrier, S., Balu, S. K., Kumar, A. P., Millward, M., and Dharmarajan, A. (2013). Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), increases chemotherapeutic response of glioma stem-like cells. Oncol. Res. 21, 93–102.
Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), increases chemotherapeutic response of glioma stem-like cells.Crossref | GoogleScholarGoogle Scholar | 24406045PubMed |

Wetendorf, M., and DeMayo, F. J. (2012). The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol. Cell. Endocrinol. 357, 108–118.
The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Grtbo%3D&md5=a4dc580613bb0a2c18551f48e3bdf3bdCAS | 22115959PubMed |

White, L., Suganthini, G., Friis, R., Dharmarajan, A., and Charles, A. (2009). Expression of secreted frizzled-related protein 4 in the primate placenta. Reprod. Biomed. Online 18, 104–110.
Expression of secreted frizzled-related protein 4 in the primate placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFeqt7w%3D&md5=40ee4ba6acb5153ba2f7842d2ea9b22fCAS | 19146776PubMed |

Willert, K., and Jones, K. A. (2006). Wnt signaling: is the party in the nucleus? Genes Dev. 20, 1394–1404.
Wnt signaling: is the party in the nucleus?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsF2ktL8%3D&md5=ca762b0fdd560902baac811215873625CAS | 16751178PubMed |

Willert, J., Epping, M., Pollack, J. R., Brown, P. O., and Nusse, R. (2002). A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2, 8.
A transcriptional response to Wnt protein in human embryonic carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 12095419PubMed |

Witze, E. S., Litman, E. S., Argast, G. M., Moon, R. T., and Ahn, N. G. (2008). Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 320, 365–369.
| 1:CAS:528:DC%2BD1cXks1GhsL0%3D&md5=7f1b5345d518ff621b29e3e758887da6CAS | 18420933PubMed |

Wong, N. C., Novakovic, B., Weinrich, B., Dewi, C., Andronikos, R., Sibson, M., Macrae, F., Morley, R., Pertile, M. D., Craig, J. M., and Saffery, R. (2008). Methylation of the adenomatous polyposis coli (APC) gene in human placenta and hypermethylation in choriocarcinoma cells. Cancer Lett. 268, 56–62.
Methylation of the adenomatous polyposis coli (APC) gene in human placenta and hypermethylation in choriocarcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Grs74%3D&md5=1dccb3102629888eac924c7a72f82675CAS | 18485586PubMed |

Wu, Y., Kajdacsy-Balla, A., Strawn, E., Basir, Z., Halverson, G., Jailwala, P., Wang, Y., Wang, X., Ghosh, S., and Guo, S.-W. (2006). Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology 147, 232–246.
Transcriptional characterizations of differences between eutopic and ectopic endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFek&md5=d1817de09ead30e165808e9a98380174CAS | 16195411PubMed |

Xie, Y., Wang, Y., Sun, T., Wang, F., Trostinskaia, A., Puscheck, E., and Rappolee, D. A. (2005). Six post‐implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells. Mol. Reprod. Dev. 71, 1–11.
Six post‐implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVOru7Y%3D&md5=40cd707782fb049f231556753f44452bCAS | 15736129PubMed |

Xie, H., Tranguch, S., Jia, X., Zhang, H., Das, S. K., Dey, S. K., Kuo, C. J., and Wang, H. (2008). Inactivation of nuclear Wnt–β-catenin signaling limits blastocyst competency for implantation. Development 135, 717–727.
Inactivation of nuclear Wnt–β-catenin signaling limits blastocyst competency for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFyhtr0%3D&md5=c159e63dbb6e4ec4bf4fdede151bc6e4CAS | 18199579PubMed |

Yi, N., Liao, Q. P., Li, T., and Xiong, Y. (2009). Novel expression profiles and invasiveness-related biology function of DKK1 in endometrial carcinoma. Oncol. Rep. 21, 1421–1427.
| 1:CAS:528:DC%2BD1MXmsVaqtr4%3D&md5=b792d9c70a22239e927371d0f7ce2b26CAS | 19424619PubMed |

Yin, Y., and Ma, L. (2005). Development of the mammalian female reproductive tract. J. Biochem. 137, 677–683.
Development of the mammalian female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvF2lt70%3D&md5=928f0d658520f12cb04670f2a048eff9CAS | 16002989PubMed |

Yip, K. S., Suvorov, A., Connerney, J., Lodato, N. J., and Waxman, D. J. (2013). Changes in mouse uterine transcriptome in estrus and proestrus. Biol. Reprod. 89, 13.
Changes in mouse uterine transcriptome in estrus and proestrus.Crossref | GoogleScholarGoogle Scholar | 23740946PubMed |

Yun, M. S., Kim, S. E., Jeon, S. H., Lee, J. S., and Choi, K.-Y. (2005). Both ERK and Wnt/β-catenin pathways are involved in Wnt3a-induced proliferation. J. Cell Sci. 118, 313–322.
Both ERK and Wnt/β-catenin pathways are involved in Wnt3a-induced proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslymur8%3D&md5=eaa500cc3d3bec7e487dfa122048327cCAS | 15615777PubMed |

Zanatta, A., Rocha, A. M., Carvalho, F. M., Pereira, R. M., Taylor, H. S., Motta, E. L., Baracat, E. C., and Serafini, P. C. (2010). The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review. J. Assist. Reprod. Genet. 27, 701–710.
The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review.Crossref | GoogleScholarGoogle Scholar | 20821045PubMed |

Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X. (2005). A dual-kinase mechanism for Wnt coreceptor phosphorylation and activation. Nature 438, 873–877.
A dual-kinase mechanism for Wnt coreceptor phosphorylation and activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ynsrnP&md5=e2016ca76e1648df4c47a2c821e57f8aCAS | 16341017PubMed |

Zhang, B., and Ma, J.-X. (2010). Wnt pathway antagonists and angiogenesis. Protein Cell 1, 898–906.
Wnt pathway antagonists and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2it7nL&md5=0a19e90ee4c3c5fcd0999b5ea393b28fCAS | 21204016PubMed |

Zhang, L., Patterson, A. L., Zhang, L., Teixeira, J. M., and Pru, J. K. (2012). Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod. Biol. Endocrinol. 10, 75.
Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization.Crossref | GoogleScholarGoogle Scholar | 22958837PubMed |

Zhang, Z., Li, H., Zhang, L., Jia, L., and Wang, P. (2013a). Differential expression of beta-catenin and dickkopf-1 in the third trimester placentas from normal and preeclamptic pregnancies: a comparative study. Reprod. Biol. Endocrinol. 11, 17.
Differential expression of beta-catenin and dickkopf-1 in the third trimester placentas from normal and preeclamptic pregnancies: a comparative study.Crossref | GoogleScholarGoogle Scholar | 23452984PubMed |

Zhang, Z., Zhang, L., Zhang, L., Jia, L., Wang, P., and Gao, Y. (2013b). Association of Wnt2 and sFRP4 expression in the third trimester placenta in women with severe preeclampsia. Reprod. Sci. 20, 981–989.
Association of Wnt2 and sFRP4 expression in the third trimester placenta in women with severe preeclampsia.Crossref | GoogleScholarGoogle Scholar | 23322712PubMed |

Zhou, Y., Fisher, S. J., Janatpour, M., Genbacev, O., Dejana, E., Wheelock, M., and Damsky, C. H. (1997). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J. Clin. Invest. 99, 2139–2151.
Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFCisbg%3D&md5=4726f18cd90e4ac416c9e83a9bb3c83dCAS | 9151786PubMed |