Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Antibiotics and oxygen availability affect the short-term storage of spermatozoa from the critically endangered booroolong frog, Litoria booroolongensis

Aimee J. Silla A B , Leesa M. Keogh A and Phillip G. Byrne A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.

B Corresponding author. Email: aimee.silla@gmx.com

Reproduction, Fertility and Development 27(8) 1147-1153 https://doi.org/10.1071/RD14062
Submitted: 17 February 2014  Accepted: 7 April 2014   Published: 26 June 2014

Abstract

Sperm-storage technologies aim to extend sperm longevity and increase the time available to achieve artificial fertilisation. The aim of the present study was to quantify the effects of antibiotic supplementation (4 mg mL–1 gentamicin) and altered gaseous storage environment (100%, 20% and 0% O2) on sperm longevity in the critically endangered booroolong frog, Litoria booroolongensis. A split-sample experimental design was adopted, whereby each sperm suspension (n = 10) was evenly divided among six experimental treatments (100% O2 with antibiotic, 20% O2 with antibiotic, 0% O2 with antibiotic, 100% O2 without antibiotic, 20% O2 without antibiotic, 0% O2 without antibiotic). Sperm suspensions were refrigerated at 5°C for the duration of the 21-day storage period. Percentage sperm motility and sperm velocity were quantified every 3 days using a computer-assisted sperm analysis system. Treatments aerated with either 100% or 20% oxygen, without the addition of the antibiotic gentamicin, consistently exhibited the highest percentage sperm motility. On Day 21 of storage, sperm suspensions in these two treatments (100% O2 without antibiotic, 20% O2 without antibiotic) maintained 61.3% and 52.0% sperm motility, respectively, whereas all remaining experimental treatments exhibited <30% sperm motility. Sperm velocity did not differ significantly among storage treatments, at any of the sampling periods, with the exception of day 21. Overall, the results from this study indicate that increased oxygen availability is beneficial to sperm longevity, but that gentamicin inhibits sperm motility in L. booroolongensis.

Additional keywords: amphibian, anuran, assisted reproductive technologies, ex situ conservation, gentamicin, sperm storage.


References

Althouse, G. C., Kuster, C. E., Clark, S. G., and Weisiger, R. M. (2000). Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 53, 1167–1176.
Field investigations of bacterial contaminants and their effects on extended porcine semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3ls1emsw%3D%3D&md5=a166cbd3bffa96fa1bdc4924b3659c99CAS | 10798493PubMed |

Aurich, C., and Spergser, J. (2007). Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa. Theriogenology 67, 912–918.
Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFOnsrY%3D&md5=de0abc96b3da77372105d5c04f908b8fCAS | 17141306PubMed |

Bencic, D. C., Cloud, J. G., and Ingermann, R. L. (2000a). Carbon dioxide reversibly inhibits sperm motility and fertilizing ability in steelhead (Oncorhynchus mykiss). Fish Physiol. Biochem. 23, 275–281.
Carbon dioxide reversibly inhibits sperm motility and fertilizing ability in steelhead (Oncorhynchus mykiss).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFars7s%3D&md5=1ac4c6e0b0116a5dcdec13d9178c2095CAS |

Bencic, D. C., Krisfalusi, M., Cloud, J., and Ingermann, R. L. (2000b). Short-term storage of salmonid sperm in air versus oxygen. N. Am. J. Aquaculture 62, 19–25.
Short-term storage of salmonid sperm in air versus oxygen.Crossref | GoogleScholarGoogle Scholar |

Bencic, D. C., Ingermann, R. L., and Cloud, J. G. (2001). Does CO2 enhance short-term storage success of chinook salmon (Oncorhynchus tshawytscha) milt? Theriogenology 56, 157–166.
Does CO2 enhance short-term storage success of chinook salmon (Oncorhynchus tshawytscha) milt?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvhvFSjsg%3D%3D&md5=04232707507e9230ad169c897712579bCAS | 11467511PubMed |

Billard, R. (1981). Short-term preservation of sperm under oxygen atmosphere in rainbow trout (Salmo gairdneri). Aquaculture 23, 287–293.
Short-term preservation of sperm under oxygen atmosphere in rainbow trout (Salmo gairdneri).Crossref | GoogleScholarGoogle Scholar |

Brown, G. G., and Mims, S. D. (1995). Storage, transportation, and fertility of undiluted and diluted paddlefish milt. Prog. Fish-Cult. 57, 64–69.
Storage, transportation, and fertility of undiluted and diluted paddlefish milt.Crossref | GoogleScholarGoogle Scholar |

Browne, R. K., Clulow, J., and Mahony, M. (2001). Short-term storage of cane toad (Bufo marinus) gametes. Reproduction 121, 167–173.
Short-term storage of cane toad (Bufo marinus) gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsg%3D%3D&md5=c91eba4aaff697071c0185527299a67bCAS | 11226040PubMed |

Browne, R. K., Clulow, J., and Mahony, M. (2002). The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. CryoLetters 23, 129–136.
| 1:CAS:528:DC%2BD38XktlOnsb4%3D&md5=5adc318cbf342a4b0af8b2f7ef8ff40cCAS | 12050781PubMed |

Chang, Y. J., Chang, Y. J., Lim, H. K., Lee, J. K., and Park, Y. J. (2002). Cold storage of milt from four species of flatfish. J. Fish. Sci. Technol. 5, 64–74.
Cold storage of milt from four species of flatfish.Crossref | GoogleScholarGoogle Scholar |

Christensen, J. R., Pauli, B. D., Richardson, J. S., Bishop, C. A., and Elliott, J. (2004). Effects of pH and dilution on African clawed frog (Xenopus laevis) sperm motility. Can. J. Zool. 82, 555–563.
Effects of pH and dilution on African clawed frog (Xenopus laevis) sperm motility.Crossref | GoogleScholarGoogle Scholar |

Dorsey, K. M., Guthrie, H. D., Welch, G. R., Mohler, J., Theisen, D. D., Siewerdt, F., Vinyard, B. T., and Woods, L. C. (2011). Quality assessment of wild Atlantic sturgeon semen under conditions of short-term storage. N. Am. J. Aquaculture 73, 418–425.
Quality assessment of wild Atlantic sturgeon semen under conditions of short-term storage.Crossref | GoogleScholarGoogle Scholar |

Germano, J. M., Arregui, L., and Kouba, A. J. (2013). Effects of aeration and antibiotics on short-term storage of Fowler’s toad (Bufo fowleri) sperm. Aquaculture 396–399, 20–24.
Effects of aeration and antibiotics on short-term storage of Fowler’s toad (Bufo fowleri) sperm.Crossref | GoogleScholarGoogle Scholar |

Hammerstedt, R. H. (1993). Maintenance of bioenergetic balance in sperm and prevention of lipid peroxidation: a review of the effect on design of storage preservation systems. Reprod. Fertil. Dev. 5, 675–690.
Maintenance of bioenergetic balance in sperm and prevention of lipid peroxidation: a review of the effect on design of storage preservation systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFynsLs%3D&md5=c464ad3b8afd622bd39e29ff1bf5d412CAS | 9627728PubMed |

Hardy, M. P., and Dent, J. N. (1986). Regulation of motility in sperm of the red-spotted newt. J. Exp. Zool. 240, 385–396.
Regulation of motility in sperm of the red-spotted newt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslCkuw%3D%3D&md5=be402f3c1a4b524072820bc4707385d5CAS | 3794627PubMed |

Harvey, B., and Kelley, R. N. (1984). Chilled storage of Sarotherodon mossambicus milt. Aquaculture 36, 85–95.
Chilled storage of Sarotherodon mossambicus milt.Crossref | GoogleScholarGoogle Scholar |

Ingermann, R. L., Holcomb, M., Robinson, M. L., and Cloud, J. G. (2002). Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus). J. Exp. Biol. 205, 2885–2890.
| 1:STN:280:DC%2BD38vit1Wmtg%3D%3D&md5=0569b0f56d11d791253a97e8efb94abfCAS | 12177152PubMed |

Jenkins, J. A. (2011). Infectious disease and quality assurance considerations for the transfer of cryopreserved fish gametes. In ‘Cryopreservation in Aquatic Species’. 2nd edn. (Eds T. R. Tiersch and C. C. Green.) pp. 939–959. (World Aquaculture Society: Baton Rouge, LA.)

Jenkins, J. A., and Tiersch, T. R. (1997). A preliminary bacteriological study of refrigerated channel catfish sperm. J. World Aquacult. Soc. 28, 282–288.
A preliminary bacteriological study of refrigerated channel catfish sperm.Crossref | GoogleScholarGoogle Scholar |

Jenkins-Keeran, K., Schreuders, P., Edwards, K., and Woods, L. C. (2001). The effects of oxygen on the short-term storage of striped bass semen. N. Am. J. Aquaculture 63, 238–241.
The effects of oxygen on the short-term storage of striped bass semen.Crossref | GoogleScholarGoogle Scholar |

Kouba, A. J., Vance, C. K., and Willis, E. L. (2009). Artificial fertilization for amphibian conservation: current knowledge and future considerations. Theriogenology 71, 214–227.
Artificial fertilization for amphibian conservation: current knowledge and future considerations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjnt1yqtg%3D%3D&md5=1ebd919840b4a994ac949f9ecfce8a52CAS | 19026442PubMed |

Kouba, A. J., Lloyd, R. E., Houck, M. L., Silla, A. J., Calatayud, N., Trudeau, V. L., Clulow, J., Molinia, F., Langhorne, C., Vance, C., Arregui, L., Germano, J., Lermen, D., and Della Togna, G. (2013). Emerging trends for biobanking amphibian genetic resources: The hope, reality and challenges for the next decade. Biol. Conserv. 164, 10–21.
Emerging trends for biobanking amphibian genetic resources: The hope, reality and challenges for the next decade.Crossref | GoogleScholarGoogle Scholar |

Love, E. (2011). Hormonal induction of spermiation and short-term sperm storage in two Australian tree frogs. Honours thesis, Monash University, Clayton, Victoria.

Moretti, E., Capitani, S., Figura, N., Pammolli, A., Federico, M. G., Giannerini, V., and Collodel, G. (2009). The presence of bacteria species in semen and sperm quality. J. Assist. Reprod. Genet. 26, 47–56.
The presence of bacteria species in semen and sperm quality.Crossref | GoogleScholarGoogle Scholar | 19089609PubMed |

Niksirat, H., Sarvi, K., Abdoli, A., and Hajirezaee, S. (2011). Short-term storage of semen of rainbow trout: interactions of time, antibiotic, and activator. J. Appl. Aquacult. 23, 358–366.
Short-term storage of semen of rainbow trout: interactions of time, antibiotic, and activator.Crossref | GoogleScholarGoogle Scholar |

Nimrat, S., Siriboonlamom, S., Zhang, S., Xu, Y., and Vuthiphandchai, V. (2006). Chilled storage of white shrimp (Litopenaeus vannamei) spermatophores. Aquaculture 261, 944–951.
Chilled storage of white shrimp (Litopenaeus vannamei) spermatophores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOiu7nO&md5=777d5ddd01b14a14eb22640d1bf34b79CAS |

Pritchard, D. J., Fa, J. E., Oldfield, S., and Harrop, S. R. (2012). Bring the captive closer to the wild: redefining the role of ex situ conservation. Oryx 46, 18–23.
Bring the captive closer to the wild: redefining the role of ex situ conservation.Crossref | GoogleScholarGoogle Scholar |

Saad, A., Billard, R., Theron, M., and Hollebecq, M. (1988). Short-term preservation of carp (Cyprinus carpio) semen. Aquaculture 71, 133–150.
Short-term preservation of carp (Cyprinus carpio) semen.Crossref | GoogleScholarGoogle Scholar |

Scheiner, S. (2001). MANOVA: multiple response variables and multispecies interactions. In ‘Design and Analysis of Ecological Experiments’. (Eds S. M. Scheiner and J. Gurevitch.) pp. 99–115. (Oxford University Press: New York.)

Silla, A. J. (2011). Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Günther’s toadlet, Pseudophryne guentheri. Reprod. Biol. Endocrinol. 9, 68.
Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Günther’s toadlet, Pseudophryne guentheri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVKrt7k%3D&md5=ff3627b6a874f1f26df4e00e408f48e0CAS | 21599916PubMed |

Silla, A. J. (2013). Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): effect of medium osmolality, sperm concentration and gamete storage. Reprod. Fertil. Dev. 25, 1134–1141.
Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): effect of medium osmolality, sperm concentration and gamete storage.Crossref | GoogleScholarGoogle Scholar | 23174151PubMed |

Sinha, A. P., and De, P. (2012). Interphase mass transfer. In ‘Mass Transfer: Principles and Operations’. (Eds A. P. Sinha and P. De.) pp. 104–122. (PHI Learning: New Delhi.)

Skau, P. A., and Folstad, I. (2003). Do bacterial infections cause reduced ejaculate quality? A meta-analysis of antibiotic treatment of male infertility. Behav. Ecol. 14, 40–47.
Do bacterial infections cause reduced ejaculate quality? A meta-analysis of antibiotic treatment of male infertility.Crossref | GoogleScholarGoogle Scholar |

Stoss, J., and Refstie, T. (1983). Short-term storage and cryopreservation of milt from Atlantic salmon and sea trout. Aquaculture 30, 229–236.
Short-term storage and cryopreservation of milt from Atlantic salmon and sea trout.Crossref | GoogleScholarGoogle Scholar |

Viveiros, A. T. M., Isaú, Z. A., Figueiredo, H. C. P., Leite, M. A. S., and Maria, A. N. (2010). Gentamycin controls bacterial growth during refrigerated storage of piracanjuba, Brycon orbignyanus, semen. J. World Aquacult. Soc. 41, 57–65.
Gentamycin controls bacterial growth during refrigerated storage of piracanjuba, Brycon orbignyanus, semen.Crossref | GoogleScholarGoogle Scholar |