Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Oocytes recovered after ovarian tissue slow freezing have impaired H2AX phosphorylation and functional competence

Sam Sudhakaran A , Shubhashree Uppangala A , Sujith Raj Salian A , Sachin D. Honguntikar A , Ramya Nair A , Guruprasad Kalthur A and Satish Kumar Adiga A B
+ Author Affiliations
- Author Affiliations

A Division of Clinical Embryology, Department of Obstetrics and Gynaecology, Kasturba Medical College, Manipal University, Manipal-576 104, India.

B Corresponding author. Email: satish.adiga@manipal.edu

Reproduction, Fertility and Development 27(8) 1242-1248 https://doi.org/10.1071/RD14048
Submitted: 8 February 2014  Accepted: 8 May 2014   Published: 15 July 2014

Abstract

It has been shown that oocytes isolated from ovarian tissue cryopreservation acquire DNA damage during the process of freeze–thawing. Using a mouse model, here we have investigated the functional competence and phosphorylation of H2AX (γ-H2AX) in germinal vesicle (GV) and parthenogenetically activated oocytes derived from conventional ovarian tissue slow freezing and vitrification techniques. The number of GV-stage oocytes with γ-H2AX foci was not significantly different between the slow-freezing and vitrification groups. Although the in vitro maturation (IVM) potential of GV oocytes in the slow-freezing group showed a significant delay (P < 0.0001) in the process of germinal vesicle breakdown, no difference in the maturation rate was observed between the two protocols. Nevertheless, parthenogenetic activation of IVM oocytes using strontium chloride showed a significantly lower activation rate in the slow-freezing group compared with the vitrification (P < 0.05) and control (P < 0.01) groups. Importantly, H2AX phosphorylation was significantly perturbed in the slow-freezing group in comparison to the control (P < 0.05). Therefore, we conclude that impaired sensing of DNA strand breaks and repair processes are associated with the reduced functional competence of the oocytes recovered from the slow-freezing group, which may have a significant impact on the reproductive outcome.

Additional keywords: γ-H2AX, in vitro maturation, vitrification.


References

Adiga, S. K., Toyoshima, M., Shiraishi, K., Shimura, T., Takeda, J., Taga, M., Nagai, H., Kumar, P., and Niwa, O. (2007). p21 provides stage-specific DNA damage control to preimplantation embryos. Oncogene 26, 6141–6149.
| 1:CAS:528:DC%2BD2sXhtVeisLjO&md5=6a4186ff69438c664b701fd548eace6fCAS | 17420724PubMed |

Adiga, S. K., Upadhya, D., Kalthur, G., Bola Sadashiva, S. R., and Kumar, P. (2010). Transgenerational changes in somatic and germ-line genetic integrity of first-generation offspring derived from DNA-damaged sperm. Fertil. Steril. 93, 2486–2490.
Transgenerational changes in somatic and germ-line genetic integrity of first-generation offspring derived from DNA-damaged sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1artbc%3D&md5=37d72c2992b1f64991faa0634a2435aeCAS | 19591998PubMed |

Aye, M., Di Giorgio, C., De Mo, M., Botta, A., Perrin, J., and Courbiere, B. (2010). Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–1912.
Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFSiuro%3D&md5=45f91cc079fc13d2ee5f90a210562490CAS | 20433889PubMed |

Cao, Y. X., Xing, Q., Li, L., Cong, L., Zhang, Z. G., Wei, Z. L., and Zhou, P. (2009). Comparison of survival and embryonic development in human oocytes cryopreserved by slow freezing and vitrification. Fertil. Steril. 92, 1306–1311.
Comparison of survival and embryonic development in human oocytes cryopreserved by slow freezing and vitrification.Crossref | GoogleScholarGoogle Scholar | 18930218PubMed |

Coticchio, G., Bromfield, J. J., Sciajno, R., Gambardella, A., Scaravelli, G., Borini, A., and Albertini, D. F. (2009). Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod. Biomed. Online 19, 29–34.
Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes.Crossref | GoogleScholarGoogle Scholar | 20034421PubMed |

Donnez, J., and Bassil, S. (1998). Indications for cryopreservation of ovarian tissue. Hum. Reprod. Update 4, 248–259.
Indications for cryopreservation of ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cvht1Onsg%3D%3D&md5=4a8817430e2fb1f37be91ad180537a7eCAS | 9741709PubMed |

Gawecka, J. E., Marh, J., Ortega, M., Yamauchi, Y., Ward, M. A., and Ward, W. S. (2013). Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE 8, e56385.
Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFyqtb8%3D&md5=4d36e36431f21a5af02ba71a431d1407CAS | 23431372PubMed |

Grenier, L., Robaire, B., and Hales, B. F. (2012). The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome. Toxicol. Sci. 127, 555–566.
The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12lu7s%3D&md5=c86bc265d7e021e1d3ca819505be785cCAS | 22454429PubMed |

Gupta, M. K., Uhm, S. J., and Lee, H. T. (2007). Cryopreservation of immature and in vitro-matured porcine oocytes by solid-surface vitrification. Theriogenology 67, 238–248.
Cryopreservation of immature and in vitro-matured porcine oocytes by solid-surface vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlars73J&md5=0cafd89dab8858888d23a8ce0e2972f1CAS | 16963114PubMed |

Huang, J. Y., Chen, H. Y., Park, J. Y., Tan, S. L., and Chian, R. C. (2008). Comparison of spindle and chromosome configuration in in vitro- and in vivo-matured mouse oocytes after vitrification. Fertil. Steril. 90, 1424–1432.
Comparison of spindle and chromosome configuration in in vitro- and in vivo-matured mouse oocytes after vitrification.Crossref | GoogleScholarGoogle Scholar | 17919603PubMed |

Katz-Jaffe, M. G., Larman, M. G., Sheehan, C. B., and Gardner, D. K. (2008). Exposure of mouse oocytes to 1,2-propanediol during slow freezing alters the proteome. Fertil. Steril. 89, 1441–1447.
Exposure of mouse oocytes to 1,2-propanediol during slow freezing alters the proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12qsLnL&md5=1b5c65a8a247558b4b67961122559af9CAS | 17980362PubMed |

Kumar, D., Upadhya, D., Salian, S. R., Rao, S. B., Kalthur, G., Kumar, P., and Adiga, S. K. (2013). The extent of paternal sperm DNA damage influences early post-natal survival of first-generation mouse offspring. Eur. J. Obstet. Gynecol. Reprod. Biol. 166, 164–167.
The extent of paternal sperm DNA damage influences early post-natal survival of first-generation mouse offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqu7rO&md5=63ada2fcd6a780a3f12a334f9563c206CAS | 23069001PubMed |

Liu, L., Trimarchi, J. R., and Keefe, D. L. (2002). Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos. Biol. Reprod. 66, 204–210.
Haploidy but not parthenogenetic activation leads to increased incidence of apoptosis in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yrtw%3D%3D&md5=473357fa7137c08b5c4575e69b159ac7CAS | 11751284PubMed |

Ma, S. F., Liu, X. Y., Miao, D. Q., Han, Z. B., Zhang, X., Miao, Y. L., Yanagimachi, R., and Tan, J. H. (2005). Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions. Theriogenology 64, 1142–1157.
Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVCgt74%3D&md5=25289550aa68295b2e05cca8e7334823CAS | 16125558PubMed |

Ma, J. Y., Ou Yang, Y. C., Wang, Z. W., Wang, Z. B., Jiang, Z. Z., Luo, S. M., Hou, Y., Liu, Z. H., Schatten, H., and Sun, Q. Y. (2013). The effects of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle 12, 1233–1241.
The effects of DNA double-strand breaks on mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsl2nsbw%3D&md5=a1fa831b4ad52eebb429427653d972a6CAS | 23518501PubMed |

Magnusson, V., Feitosa, W. B., Goissis, M. D., Yamada, C., Tavares, L. M., D’Avila Assumpção, M. E., and Visintin, J. A. (2008). Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim. Reprod. Sci. 106, 265–273.
Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1ykurc%3D&md5=b04a3ede6013ef1642402556d5e586e9CAS | 17686591PubMed |

Mah, L. J., El-Osta, A., and Karagiannis, T. C. (2010). Gamma H2AX as a molecular marker of aging and disease. Epigenetics 5, 129–136.
Gamma H2AX as a molecular marker of aging and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1eht7o%3D&md5=b8824d57571faaa1b59af7cb95e3fe50CAS | 20150765PubMed |

Martínez-Burgos, M., Herrero, L., Megías, D., Salvanes, R., Montoya, M. C., Cobo, A. C., and Garcia-Velasco, J. A. (2011). Vitrification versus slow freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration and DNA damage. Fertil. Steril. 95, 374–377.
Vitrification versus slow freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration and DNA damage.Crossref | GoogleScholarGoogle Scholar | 20828688PubMed |

Mathias, F. J., D’Souza, F., Uppangala, S., Salian, S. R., Kalthur, G., and Adiga, S. K. (2014). Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 4, 1–6.
Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity.Crossref | GoogleScholarGoogle Scholar |

McKinnon, P. J., and Caldecott, K. W. (2007). DNA strand-break repair and human genetic disease. Annu. Rev. Genomics Hum. Genet. 8, 37–55.
DNA strand-break repair and human genetic disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wksr3P&md5=59cd8d497b050595c774cb791dc9f4d0CAS | 17887919PubMed |

McManus, K. J., and Hendzel, M. J. (2005). ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol. Biol. Cell 16, 5013–5025.
ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygtLrJ&md5=1ec2a3d34d84ff77e8a1b81fe5f4edceCAS | 16030261PubMed |

Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003). Detection of DNA damage in bovine metaphase II oocytes resulting from cryopreservation. Mol. Reprod. Dev. 64, 245–250.
Detection of DNA damage in bovine metaphase II oocytes resulting from cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1yltA%3D%3D&md5=c1b4c98cefde153396eaa3f6a1d549a4CAS | 12506358PubMed |

Milenkovic, M., Diaz-Garcia, C., Wallin, A., and Brännström, M. (2012). Viability and function of the cryopreserved whole rat ovary: comparison between slow freezing and vitrification. Fertil. Steril. 97, 1176–1182.
Viability and function of the cryopreserved whole rat ovary: comparison between slow freezing and vitrification.Crossref | GoogleScholarGoogle Scholar | 22341373PubMed |

Moawad, A. R., Fisher, P., Zhu, J., Choi, I., Polgar, Z., Dinnyes, A., and Campbell, K. H. (2012). In vitro fertilisation of ovine oocytes vitrified by solid-surface vitrification at germinal-vesicle stage. Cryobiology 65, 139–144.
In vitro fertilisation of ovine oocytes vitrified by solid-surface vitrification at germinal-vesicle stage.Crossref | GoogleScholarGoogle Scholar | 22579520PubMed |

Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895.
A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFCmtLk%3D&md5=5645920a91ced09dd8204a81e6e91526CAS | 10959836PubMed |

Renard, J. P. (1998). Chromatin remodelling and nuclear reprogramming at the onset of embryonic development in mammals. Reprod. Fertil. Dev. 10, 573–580.
Chromatin remodelling and nuclear reprogramming at the onset of embryonic development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FnslOisg%3D%3D&md5=de0cfcaed3f1e2d8fb46cdcad267540bCAS | 10612463PubMed |

Smitz, J., Dolmans, M. M., Donnez, J., Fortune, J. E., Hovatta, O., Jewgenow, K., Picton, H. M., Plancha, C., Shea, L. D., Stouffer, R. L., Telfer, E. E., Woodruff, T. K., and Zelinski, M. B. (2010). Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum. Reprod. Update 16, 395–414.
Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvhtlymtQ%3D%3D&md5=a02a14a5f03d800cce949a70ff9d7dfeCAS | 20124287PubMed |

Snow, M., Cox, S. L., Jenkin, G., and Shaw, J. (2003). Fertility of mice following receipt of ovaries slow cooled in dimethyl sulfoxide or ethylene glycol is largely independent of cryopreservation equilibration time and temperature. Reprod. Fertil. Dev. 15, 407–414.
Fertility of mice following receipt of ovaries slow cooled in dimethyl sulfoxide or ethylene glycol is largely independent of cryopreservation equilibration time and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFCgtrk%3D&md5=0ade7e6e410322c54ecaf43b8cae8947CAS | 15018777PubMed |

Sun, S. C., and Kim, N. H. (2012). Spindle assembly checkpoint and its regulators in meiosis. Hum. Reprod. Update 18, 60–72.
Spindle assembly checkpoint and its regulators in meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1agsbnE&md5=6e1c302864ca7866e2bab5955cd1c949CAS | 22086113PubMed |

Trapphoff, T., El Hajj, N., Zechner, U., Haaf, T., and Eichenlaub-Ritter, U. (2010). DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum. Reprod. 25, 3025–3042.
DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgsbbF&md5=ec38fe4efd9e9993e254debeda359417CAS | 20940142PubMed |

Wang, X., Catt, S., Pangestu, M., and Temple-Smith, P. (2009). Live offspring from vitrified blastocysts derived from fresh and cryopreserved ovarian tissue grafts of adult mice. Reproduction 138, 527–535.
Live offspring from vitrified blastocysts derived from fresh and cryopreserved ovarian tissue grafts of adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtrvF&md5=69fc33105667850876d162a3c462173aCAS | 19556437PubMed |

Zhou, B. B., and Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439.
The DNA damage response: putting checkpoints in perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Srsb0%3D&md5=7ae5bfd33039ca0a21d73e2958519e5aCAS | 11100718PubMed |

Ziegler-Birling, C., Helmrich, A., Tora, L., and Torres-Padilla, M. E. (2009). Distribution of p53-binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int. J. Dev. Biol. 53, 1003–1011.
Distribution of p53-binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12htb%2FF&md5=0ce88188937b3f1f1294fd129a23a549CAS | 19598117PubMed |