Effects of varying doses of β-nerve growth factor on the timing of ovulation, plasma progesterone concentration and corpus luteum size in female alpacas (Vicugna pacos)
C. C. Stuart A D , J. L. Vaughan B , C. M. Kershaw-Young A , J. Wilkinson C , R. Bathgate A and S. P. de Graaf AA Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia.
B Cria Genesis, PO Box 406, Ocean Grove, Vic. 3226, Australia.
C Baarrooka Alpacas, PO Box 20, Strathbogie, Vic. 3666, Australia.
D Corresponding author. Email: cassandra.stuart@sydney.edu.au
Reproduction, Fertility and Development 27(8) 1181-1186 https://doi.org/10.1071/RD14037
Submitted: 4 February 2014 Accepted: 23 April 2014 Published: 26 June 2014
Abstract
Ovulation in camelids is induced by the seminal plasma protein ovulation-inducing factor (OIF), recently identified as β-nerve growth factor (β-NGF). The present study measured the total protein concentration in alpaca seminal plasma using a bicinchoninic acid (BCA) protein quantification assay and found it to be 22.2 ± 2.0 mg mL–1. To measure the effects of varying doses of β-NGF on the incidence and timing of ovulation, corpus luteum (CL) size and plasma progesterone concentration, 24 female alpacas were synchronised and treated with either: (1) 1 mL 0.9% saline (n = 5); (2) 4 µg buserelin (n = 5); (3) 1 mg β-NGF protein (n = 5); (4) 0.1 mg β-NGF (n = 5); or (5) 0.01 mg β-NGF (n = 4). Females were examined by transrectal ultrasonography at 1–2-h intervals between 20 and 45 h after treatment or until ovulation occurred, as well as on Day 8 to observe the size of the CL, at which time blood was collected to measure plasma progesterone concentrations. Ovulation was detected in 0/5, 5/5, 5/5, 3/5 and 0/4 female alpacas treated with saline, buserelin, 1, 0.1 and 0.01 mg β-NGF, respectively. Mean ovulation interval (P = 0.76), CL diameter (P = 0.96) and plasma progesterone concentration (P = 0.96) did not differ between treatments. Mean ovulation interval overall was 26.2 ± 1.0 h. In conclusion, buserelin and 1 mg β-NGF are equally effective at inducing ovulation in female alpacas, but at doses ≤0.1 mg, β-NGF is not a reliable method for the induction of ovulation.
Additional keywords: camelid, ovulation-inducing factor.
References
Adam, C. L., Bourke, D. A., Kyle, C. E., Young, P., and McEvoy, T. G. (1992). Ovulation and embryo recovery in the llama. In ‘Proceedings of the First International Camel Conference, Dubai, 2–6 February 1992’. (Eds W. R. Allen, A. J. Higgins, E. G. Mayhew, D. H. Snow and J. F. Wade.) pp. 125–127. (R&W Publications: Newmarket, UK.)Adams, G. P., and Ratto, M. H. (2013). Ovulation-inducing factor in seminal plasma: a review. Anim. Reprod. Sci. 136, 148–156.
| Ovulation-inducing factor in seminal plasma: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GksbvO&md5=145546cb1bc5180cdb2f1ecbae5aa547CAS | 23141951PubMed |
Adams, G. P., Ratto, M. H., Huanca, W., and Singh, J. (2005). Ovulation-inducing factor in the seminal plasma of alpacas and llamas. Biol. Reprod. 73, 452–457.
| Ovulation-inducing factor in the seminal plasma of alpacas and llamas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovV2qt7s%3D&md5=9a18e3020b253e02a1cf74e9b0dd0ff5CAS | 15888733PubMed |
Bourke, D. A., Adam, C. L., and Kyle, C. E. (1992). Ultrasonography as an aid to controlled breeding in the llama (Lama glama). Vet. Rec. 130, 424–428.
| Ultrasonography as an aid to controlled breeding in the llama (Lama glama).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zgtlSqsw%3D%3D&md5=47fea3f252038a15feb8aa2fbaa51d83CAS | 1609477PubMed |
Bravo, P. W., Ccallo, M., and Garnica, J. (2000). The effect of enzymes on semen viscosity in llamas and alpacas. Small Rumin. Res. 38, 91–95.
| The effect of enzymes on semen viscosity in llamas and alpacas.Crossref | GoogleScholarGoogle Scholar | 10924884PubMed |
Carter, F., Rings, F., Mamo, S., Holker, M., Kuzmany, A., Besenfelder, U., Havlicek, V., Mehta, J. P., Tesfaye, D., Schellander, K., and Lonergan, P. (2010). Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct. Biol. Reprod. 83, 707–719.
| Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGlsrfF&md5=fb4281a3cda5c5476d23cef5e4a5264aCAS | 20631399PubMed |
Chen, B. X., Yuen, Z. X., and Pan, G. W. (1985). Semen-induced ovulation in the Bactrian camel (Camelus bactrianus). J. Reprod. Fertil. 74, 335–339.
| Semen-induced ovulation in the Bactrian camel (Camelus bactrianus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FhtFWhug%3D%3D&md5=ef71dc3610c63d2ceef55af36ad4c852CAS | 3900379PubMed |
Druart, X., Rickard, J. P., Mactier, S., Kohnke, P. L., Kershaw-Young, C. M., Bathgate, R., Gibb, Z., Crossett, B., Tsikis, G., Labas, V., Harichaux, G., Grupen, C. G., and de Graaf, S. P. (2013). Proteomic characterization and cross species comparison of mammalian seminal plasma. J. Proteomics 91, 13–22.
| Proteomic characterization and cross species comparison of mammalian seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslClsLvN&md5=dc537b788c55d0034aa9a6a6f666a067CAS | 23748023PubMed |
Fernandez-Baca, S., Madden, D. H. L., and Novoa, C. (1970). Effect of different mating stimuli on induction of ovulation in alpaca. J. Reprod. Fertil. 22, 261–267.
| Effect of different mating stimuli on induction of ovulation in alpaca.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXlt1yksrg%3D&md5=6ea04449c0b276200bcc8065802aa1b4CAS | 5464117PubMed |
Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011). Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
| Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeltr4%3D&md5=bab46e16cdaf3632053797274c23f3cfCAS | 20881316PubMed |
Garnica, J., Achata, R., and Bravo, P. W. (1993). Physical and biochemical characteristics of alpaca semen. Anim. Reprod. Sci. 32, 85–90.
| Physical and biochemical characteristics of alpaca semen.Crossref | GoogleScholarGoogle Scholar |
Huanca, W., Cardenas, O., Olazabal, C., Ratto, M., and Adams, G. P. (2001). Efecto hormonal y empadre sobre el intervalo a la ovulacion en llamas. Rev. Investing. Vet. Perú. 1, 462–463.
Kauffman, A. S., and Rissman, E. F. (2006). Neuroendocrine control of mating-induced ovulation. In ‘Knobil and Neill’s Physiology of Reproduction’. (Eds J. D. Neill, T. M. Plant, D. W. Pfaff, J. R. G. Challis, D. M. de Kretser, J. S. Richards and P. M. Wassarman.) pp. 2283–2326. (Academic Press: St Louis, MO.)
Kershaw-Young, C. M., and Maxwell, W. M. C. (2012). Seminal plasma components in camelids and comparisons with other species. Reprod. Domest. Anim. 47, 369–375.
| Seminal plasma components in camelids and comparisons with other species.Crossref | GoogleScholarGoogle Scholar | 22827394PubMed |
Kershaw-Young, C. M., Druart, X., Vaughan, J., and Maxwell, W. M. C. (2012). β-Nerve growth factor is a major component of alpaca seminal plasma and induces ovulation in female alpacas. Reprod. Fertil. Dev. 24, 1093–1097.
| β-Nerve growth factor is a major component of alpaca seminal plasma and induces ovulation in female alpacas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrt77J&md5=d26ae3ab69977ef83e99309bce0a05b7CAS | 22951217PubMed |
Manjunatha, B. M., David, C. G., Pratap, N., Al-Bulushi, S., and Hago, B. E. (2012). Effect of progesterone from induced corpus luteum on the characteristics of a dominant follicle in dromedary camels (Camelus dromedarius). Anim. Reprod. Sci. 132, 231–236.
| Effect of progesterone from induced corpus luteum on the characteristics of a dominant follicle in dromedary camels (Camelus dromedarius).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVygsb0%3D&md5=22665ca7c7cf72927b28e8eadf9a366cCAS | 22727034PubMed |
Morton, K. M., Bathgate, R., Evans, G., and Maxwell, W. M. C. (2007). Cryopreservation of epididymal alpaca (Vicugna pacos) sperm: a comparison of citrate-based, Tris-based and lactose-based diluents and pellets and straws. Reprod. Fertil. Dev. 19, 792–796.
| Cryopreservation of epididymal alpaca (Vicugna pacos) sperm: a comparison of citrate-based, Tris-based and lactose-based diluents and pellets and straws.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWhtrzO&md5=56586f81e2b03be84dbd0247f17d3617CAS | 17897581PubMed |
Morton, K. M., Gibb, Z., Bertoldo, M., and Maxwell, W. M. C. (2009). Effect of diluent, dilution rate and storage temperature on longevity and functional integrity of liquid stored alpaca (Vicugna pacos) semen. J. Camel. Sci. 2, 15–25.
Morton, K. M., Evans, G., and Maxwell, W. M. C. (2010). Effect of glycerol concentration, Equex STM supplementation and liquid storage prior to freezing on the motility and acrosome integrity of frozen–thawed epididymal alpaca (Vicugna pacos) sperm. Theriogenology 74, 311–316.
| Effect of glycerol concentration, Equex STM supplementation and liquid storage prior to freezing on the motility and acrosome integrity of frozen–thawed epididymal alpaca (Vicugna pacos) sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVahsr4%3D&md5=281b0775b628c902f889772ccbd7810aCAS | 20416935PubMed |
Niasari-Naslaji, A., Mosaferi, S., Bahmani, N., Gerami, A., Gharahdaghi, A. A., Abarghani, A., and Ghanbari, A. (2007). Semen cryopreservation in Bactrian camel (Camelus bactrianus) using SHOTOR diluent: effects of cooling rates and glycerol concentrations. Theriogenology 68, 618–625.
| Semen cryopreservation in Bactrian camel (Camelus bactrianus) using SHOTOR diluent: effects of cooling rates and glycerol concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlWqu7g%3D&md5=afe5734e9de4d60d9a286645c8bd00deCAS | 17588650PubMed |
Ratto, M. H., Huanca, W., Singh, J., and Adams, G. P. (2005). Local versus systemic effect of ovulation-inducing factor in the seminal plasma of alpacas. Reprod. Biol. Endocrinol. 3, 29.
| Local versus systemic effect of ovulation-inducing factor in the seminal plasma of alpacas.Crossref | GoogleScholarGoogle Scholar | 16018817PubMed |
Ratto, M., Huanca, W., Singh, J., and Adams, G. P. (2006a). Comparison of the effect of natural mating, LH, and GnRH on interval to ovulation and luteal function in llamas. Anim. Reprod. Sci. 91, 299–306.
| Comparison of the effect of natural mating, LH, and GnRH on interval to ovulation and luteal function in llamas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gns7jP&md5=47b0de54ad4b465e21819041e149045aCAS | 15896931PubMed |
Ratto, M. H., Huanca, W., Singh, J., and Adams, G. P. (2006b). Comparison of the effect of ovulation-inducing factor (OIF) in the seminal plasma of llamas, alpacas, and bulls. Theriogenology 66, 1102–1106.
| Comparison of the effect of ovulation-inducing factor (OIF) in the seminal plasma of llamas, alpacas, and bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotleqsLg%3D&md5=3143e8db73c73e757f48baca22165c67CAS | 16630652PubMed |
Ratto, M. H., Huanca, W., and Adams, G. P. (2010). Ovulation-inducing factor: a protein component of llama seminal plasma. Reprod. Biol. Endocrinol. 8, 44.
| Ovulation-inducing factor: a protein component of llama seminal plasma.Crossref | GoogleScholarGoogle Scholar | 20462434PubMed |
Ratto, M. H., Delbaere, L. T. J., Leduc, Y. A., Pierson, R. A., and Adams, G. P. (2011a). Biochemical isolation and purification of ovulation-inducing factor (OIF) in seminal plasma of llamas. Reprod. Biol. Endocrinol. 9, 24.
| Biochemical isolation and purification of ovulation-inducing factor (OIF) in seminal plasma of llamas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVegt7o%3D&md5=f791aa72741a2e9e6aba7d62ef76c6a0CAS | 21310078PubMed |
Ratto, M. H., Leduc, Y. A., Valderrama, X. P., van Straaten, K. E., Delbaere, L. T. J., Pierson, R. A., and Adams, G. P. (2012). The nerve of ovulation-inducing factor in semen. Proc. Natl Acad. Sci. USA 109, 15 042–15 047.
| The nerve of ovulation-inducing factor in semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCnu7vN&md5=1ce44f4389abe3eb9497897969ab8178CAS |
Rodriguez, J., Huanca, W., Ramos, M., Vasquez, M., and Espinoza, J. (2013). Biophysical and biochemical characteristics of alpaca semen after collection by electroejaculation. Reprod. Fertil. Dev. 25, 272.
| Biophysical and biochemical characteristics of alpaca semen after collection by electroejaculation.Crossref | GoogleScholarGoogle Scholar |
San-Martin, M., Copaira, M., Zuniga, J., Rodreguez, R., Bustinza, G., and Acosta, L. (1968). Aspects of reproduction in the alpaca. J. Reprod. Fertil. 16, 395–399.
| Aspects of reproduction in the alpaca.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1cvgtVWhug%3D%3D&md5=6550a409ab2f8dcd44b5d693f4d0c9b5CAS | 5673739PubMed |
Skidmore, J. A., Billah, M., and Allen, W. R. (2002). Investigation of factors affecting pregnancy rate after embryo transfer in the dromedary camel. Reprod. Fertil. Dev. 14, 109–116.
| Investigation of factors affecting pregnancy rate after embryo transfer in the dromedary camel.Crossref | GoogleScholarGoogle Scholar | 12051516PubMed |
Stuart, C., Kershaw-Young, C., de Graaf, S. P., and Bathgate, R. (2013). The effect of four semen diluents on the post-thaw survival of papain-reduced alpaca (Vicugna pacos) spermatozoa. In ‘17th Annual Conference of the European Society of Domestic Animal Reproduction (ESDAR), Bologna, Italy, 12–14 September 2013’. (Eds C. Tamanini, M. L. Bacci, G. Galeati and M. Spinaci.) p. 87. (Blackwell Verlag: Berlin.)
Sumar, J. (1988). Removal of the ovaries or ablation of the corpus luteum and its effect on the maintenance of gestation in the alpaca and llama. Acta Vet. Scand. Suppl. 83, 133–141.
| 1:STN:280:DyaL1M%2FnsVCmsg%3D%3D&md5=3852e1eaed15b14e0ca5254ea5a56719CAS | 3202070PubMed |
Tanco, V. M., Ratto, M. H., Lazzarotto, M., and Adams, G. P. (2011). Dose–response of female llamas to ovulation-inducing factor from seminal plasma. Biol. Reprod. 85, 452–456.
| Dose–response of female llamas to ovulation-inducing factor from seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtL3K&md5=ddfc65199b92e3a7bf6eeb825b0f19a9CAS | 21593475PubMed |
Tanco, V. M., Van Steelandt, M. D., Ratto, M. H., and Adams, G. P. (2012). Effect of purified llama ovulation-inducing factor (OIF) on ovarian function in cattle. Theriogenology 78, 1030–1039.
| Effect of purified llama ovulation-inducing factor (OIF) on ovarian function in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSgtL3K&md5=31fb62d8d2256eb93cd2c5072502e8b6CAS | 22763069PubMed |
Vaughan, J., Mihm, M., and Wittek, T. (2013). Factors influencing embryo transfer success in alpacas: a retrospective study. Anim. Reprod. Sci. 136, 194–204.
| Factors influencing embryo transfer success in alpacas: a retrospective study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GksbnN&md5=96cead29a8d85da3f4bec63392c61c6eCAS | 23141430PubMed |