Changes in myometrial expression of progesterone receptor membrane components 1 and 2 are associated with human parturition at term
Ray Wang A , Penelope M. Sheehan A B C and Shaun P. Brennecke AA Pregnancy Research Centre, Royal Women’s Hospital, 20 Flemington Road, Parkville, Vic. 3052, Australia.
B University of Melbourne Department of Obstetrics and Gynaecology, Royal Women’s Hospital, 20 Flemington Road, Parkville, Vic. 3052, Australia.
C Corresponding author. Email: penny.sheehan@thewomens.org.au
Reproduction, Fertility and Development 28(5) 618-627 https://doi.org/10.1071/RD13430
Submitted: 17 December 2013 Accepted: 29 August 2014 Published: 30 September 2014
Abstract
While the exact mechanism of human parturition remains unknown, functional progesterone withdrawal is believed to play a key regulatory role. Progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) are putative progesterone receptors and the aim of this project was to investigate their expression in human myometrium. Human term myometrium was obtained from the lower uterine segment incision in women undergoing elective (not-in-labour, NIL; n = 11) and emergency Caesarean sections (in-labour, IL; n = 10), following written consent. PGRMC1 and 2 expression was quantified using real-time reverse transcription polymerase chain reaction and western blot. Subcellular localisation was performed by immunohistochemistry and immunofluorescence. There was a significant decrease in PGRMC1 mRNA (P = 0.0317) and protein expression (P = 0.0151) in IL myometrium, compared with NIL myometrium. PGRMC2 mRNA expression (P = 0.0151) was also decreased in IL myometrium, compared with NIL myometrium. Immunostaining studies confirmed the presence of PGRMC1 and 2 in smooth-muscle cells. Expression was perinuclear in NIL myometrium and more generalised and cytoplasmic in IL myometrium. The decrease in PGRMC1 expression and the translocation away from a perinuclear location for both PGRMC1 and 2 could contribute to a functional progesterone withdrawal that may ultimately initiate parturition.
Additional keywords: myometrium, PGRMC-1, PGRMC-2.
References
Bielefeldt, K., Waite, L., Abboud, F. M., and Conklin, J. L. (1996). Non-genomic effects of progesterone on human intestinal smooth-muscle cells. Am. J. Physiol. 271, G370–G376.| 1:CAS:528:DyaK28XlsV2kt7g%3D&md5=47cac307ce2f51dc3edd281a03bdfbc2CAS | 8770053PubMed |
Condon, J. C., Hardy, D. B., Kovaric, K., and Mendelson, C. R. (2006). Up-regulation of the progesterone receptor (PR)-C isoform in labouring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labour through inhibition of PR function. Mol. Endocrinol. 20, 764–775.
| Up-regulation of the progesterone receptor (PR)-C isoform in labouring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labour through inhibition of PR function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Oqu7s%3D&md5=b624747016d0cba70c0c2f65e311d77cCAS | 16339279PubMed |
Csapo, A. (1956). Progesterone block. Am. J. Anat. 98, 273–291.
| Progesterone block.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXot1Cltw%3D%3D&md5=4163f19b77d3e83141edd0c9275631f6CAS | 13326855PubMed |
Dodd, J. M., Flenady, V., Cincotta, R., and Crowther, C. A. (2006). Prenatal administration of progesterone for preventing preterm birth. Cochrane Database Syst. Rev. , CD004947.
| 1:STN:280:DC%2BD28%2FltVCjug%3D%3D&md5=c6fb3ddb57a64b4811400c7e99c62ef6CAS | 16437505PubMed |
Ehring, G. R., Kerschbaum, H. H., Eder, C., Neben, A. L., Fanger, C. M., Khoury, R. M., Negulescu, P. A., and Cahalan, M. D. (1998). A non-genomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signalling and gene expression in T lymphocytes. J. Exp. Med. 188, 1593–1602.
| A non-genomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signalling and gene expression in T lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOmsbY%3D&md5=5c7c72c4672893b2dd759a7f3e07703fCAS | 9802971PubMed |
Falkenstein, E., Heck, M., Gerdes, D., Grube, D., Christ, M., Weigel, M., Buddhikot, M., Meizel, S., and Wehling, M. (1999). Specific progesterone binding to a membrane protein and related non-genomic effects on Ca2+-fluxes in sperm. Endocrinology 140, 5999–6002.
| Specific progesterone binding to a membrane protein and related non-genomic effects on Ca2+-fluxes in sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12hu70%3D&md5=4cf5e1fd8f5de4c032bc0402bbd1cd01CAS | 10579369PubMed |
Fernandes, M. S., Pierron, V., Michalovich, D., Astle, S., Thornton, S., Peltoketo, H., Lam, E. W., Gellersen, B., Huhtaniemi, I., Allen, J., and Brosens, J. J. (2005). Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J. Endocrinol. 187, 89–101.
| Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2itLvO&md5=d41324de2fdd2f3de5958c12acb8c956CAS | 16214944PubMed |
Gerdes, D., Wehling, M., Leube, B., and Falkenstein, E. (1998). Cloning and tissue expression of two putative steroid membrane receptors. Biol. Chem. 379, 907–911.
| 1:CAS:528:DyaK1cXkvVGlsbs%3D&md5=684eaabd31fbebcbed7f5888bcc0b684CAS | 9705155PubMed |
Gordienko, D. V., Greenwood, I. A., and Bolton, T. B. (2001). Direct visualisation of sarcoplasmic reticulum regions discharging Ca2+ sparks in vascular myocytes. Cell Calcium 29, 13–28.
| Direct visualisation of sarcoplasmic reticulum regions discharging Ca2+ sparks in vascular myocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejsg%3D%3D&md5=16991cab7c931df42c9020cf2830378aCAS | 11133352PubMed |
Kao, C. Y. (1997). Ionic channel functions in some visceral smooth myocytes. In ‘Cellular Aspects of Smooth Muscle Function’. (Eds C. Y. Kao and M. E. Garsten.) pp. 98–130. (Cambridge University Press: Cambridge, UK.)
Karteris, E., Zervou, S., Pang, Y., Dong, J., Hillhouse, E. W., Randeva, H. S., and Thomas, P. (2006). Progesterone signalling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol. Endocrinol. 20, 1519–1534.
| Progesterone signalling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1GjsLg%3D&md5=8244db663859005df82c1c7b028a190cCAS | 16484338PubMed |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=224f15b9dfd00d92fda868e1cb065922CAS | 11846609PubMed |
Lösel, R., and Wehling, M. (2003). Non-genomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 4, 46–56.
| Non-genomic actions of steroid hormones.Crossref | GoogleScholarGoogle Scholar | 12511868PubMed |
Mesiano, S., Chan, E. C., Fitter, J. T., Kwek, K., Yeo, G., and Smith, R. (2002). Progesterone withdrawal and oestrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J. Clin. Endocrinol. Metab. 87, 2924–2930.
| Progesterone withdrawal and oestrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFaqsb8%3D&md5=7ccbb90dae3e86d71029c7c12f425a35CAS | 12050275PubMed |
Meyer, C., Schmid, R., Scriba, P. C., and Wehling, M. (1996). Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem. 239, 726–731.
| Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFartbo%3D&md5=c7fa7ea98086576a99229e3e65a22652CAS | 8774719PubMed |
Mitchell, B. F., and Taggart, M. J. (2009). Are animal models relevant to key aspects of human parturition? Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R525–R545.
| Are animal models relevant to key aspects of human parturition?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrtbrE&md5=19527ce7d982b75ef9b5ce572a67a0f5CAS | 19515978PubMed |
Mosher, A. A., Rainey, K. J., Bolstad, S. S., Lye, S. J., Mitchell, B. F., Olson, D. M., Wood, S. L., and Slater, D. M. (2013). Development and validation of primary human myometrial cell culture models to study pregnancy and labour. BMC Pregnancy Childbirth 13, S7.
| 23445904PubMed |
Peluso, J. J. (2006). Multiplicity of progesterone’s actions and receptors in the mammalian ovary. Biol. Reprod. 75, 2–8.
| Multiplicity of progesterone’s actions and receptors in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlyisL8%3D&md5=fa49d0b86f744413cdea15f121a2e856CAS | 16452458PubMed |
Peluso, J. J., Pappalardo, A., Losel, R., and Wehling, M. (2006). Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone’s anti-apoptotic action. Endocrinology 147, 3133–3140.
| Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone’s anti-apoptotic action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1WgsLg%3D&md5=42c23e98966a3c3a686ae1f51aa3a243CAS | 16513825PubMed |
Peluso, J. J., Romak, J., and Liu, X. (2008). Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s anti-apoptotic action in spontaneously immortalised granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology 149, 534–543.
| Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s anti-apoptotic action in spontaneously immortalised granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqtr4%3D&md5=22f0ecd549aaf82596d22a374aecee28CAS | 17991724PubMed |
Revelli, A., Massobrio, M., and Tesarik, J. (1998). Non-genomic actions of steroid hormones in reproductive tissues. Endocr. Rev. 19, 3–17.
| 1:CAS:528:DyaK1cXhtlagt7c%3D&md5=df789782498938741167b66b8f0f9147CAS | 9494778PubMed |
Shmygol, A., and Wray, S. (2004). Functional architecture of the SR calcium store in uterine smooth muscle. Cell Calcium 35, 501–508.
| Functional architecture of the SR calcium store in uterine smooth muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVWksrk%3D&md5=7a96d02e6f9dc65535f5af9092bd0e54CAS | 15110140PubMed |
Shynlova, O., Tsui, P., Jaffer, S., and Lye, S. J. (2009). Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 144, S2–S10.
| Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVWmsrs%3D&md5=d5e092ed6481a72257e68fe38af5eb31CAS | 19299064PubMed |
Sitruk-Ware, R. (2006). Mifepristone and misoprostol sequential regimen side effects, complications and safety. Contraception 74, 48–55.
| Mifepristone and misoprostol sequential regimen side effects, complications and safety.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1eitLk%3D&md5=db9e1e76b2c7da5f956c91053f62656cCAS | 16781261PubMed |
Tulchinsky, D., Hobel, C. J., Yeager, E., and Marshall, J. R. (1972). Plasma oestrone, oestradiol, oestriol, progesterone and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am. J. Obstet. Gynecol. 112, 1095–1100.
| 1:CAS:528:DyaE38XksVKhtr0%3D&md5=f6a43eedf3e541fd3b63d62312ee3127CAS | 5025870PubMed |
Weiss, G. (2000). Endocrinology of parturition. J. Clin. Endocrinol. Metab. 85, 4421–4425.
| 1:CAS:528:DC%2BD3MXis1CgtQ%3D%3D&md5=df1b3a8cade5743fb5840dc0566d7194CAS | 11134087PubMed |
Wray, S., and Burdyga, T. (2010). Sarcoplasmic reticulum function in smooth muscle. Physiol. Rev. 90, 113–178.
| Sarcoplasmic reticulum function in smooth muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFGgsL0%3D&md5=62f6f861ba2fa170ec4bf5286101e7d9CAS | 20086075PubMed |
Wu, W., Shi, S. Q., Huang, H. J., Balducci, J., and Garfield, R. E. (2011). Changes in PGRMC1, a potential progesterone receptor, in human myometrium during pregnancy and labour at term and preterm. Mol. Hum. Reprod. 17, 233–242.
| Changes in PGRMC1, a potential progesterone receptor, in human myometrium during pregnancy and labour at term and preterm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFahu7g%3D&md5=82e2361fb5a19994f037957f460df735CAS | 21131300PubMed |
Yannone, M. E., McCurdy, J. R., and Goldfien, A. (1968). Plasma progesterone levels in normal pregnancy, labour and the puerperium. II. Clinical data. Am. J. Obstet. Gynecol. 101, 1058–1061.
| 1:STN:280:DyaF1czltVSmsg%3D%3D&md5=ec2ee10814db70ee7af64e526a079647CAS | 5663346PubMed |
Zhang, L., Kanda, Y., Roberts, D. J., Ecker, J. L., Losel, R., Wehling, M., Peluso, J. J., and Pru, J. K. (2008). Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA-binding protein in uterine and placental tissues of the mouse and human. Mol. Cell. Endocrinol. 287, 81–89.
| Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA-binding protein in uterine and placental tissues of the mouse and human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSrsbc%3D&md5=b6d709a17f0107c8ad3f0c5da13055caCAS | 18440126PubMed |