Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of vitrification on the expression of pluripotency, apoptotic and stress genes in in vitro-produced porcine blastocysts

Miriam Castillo-Martín A D , Marc Yeste B , Eva Pericuesta C , Roser Morató A , Alfonso Gutiérrez-Adán C and Sergi Bonet A
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, E-17071 Girona, Spain.

B Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra, Spain.

C Department of Animal Reproduction, INIA, Ctra de la Coruña Km 5.9, E-28040 Madrid, Spain.

D Corresponding author. Email: miriam.castillo@udg.edu

Reproduction, Fertility and Development 27(7) 1072-1081 https://doi.org/10.1071/RD13405
Submitted: 27 November 2013  Accepted: 12 March 2014   Published: 3 April 2014

Abstract

The aims of the present study were to: (1) evaluate the effect of vitrification and warming on quality parameters and expression levels of pluripotency, apoptotic and stress genes in in vitro-produced (IVP) porcine blastocysts; and (ii) determine the correlation between these parameters. To this end, total cell number, DNA fragmentation, peroxide levels and the relative transcript abundance of BCL-2 associated X protein (BAX), BCL2-like 1 (BCL2L1), heat shock protein 70 (HSPA1A), POU class 5 homeobox 1 (POU5F1), superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2) were analysed in fresh and vitrified IVP blastocysts. The results suggest that vitrification procedures have no effect on total cell number and gene expression of BAX, BCL2L1, SOD1 and SOD2 or the BAX : BCL2L1 ratio. Nevertheless, a significant increase in DNA fragmentation (2.9 ± 0.4% vs 11.9 ± 2.0%) and peroxide levels (80.4 ± 2.6 vs 97.2 ± 3.1) were seen in vitrified compared with Day 7 fresh blastocysts. In addition, after blastocyst vitrification, relative transcript abundance was downregulated for POU5F1 and upregulated for HSPA1A. Finally, there was a significant correlation of POU5F1 and HSPA1A with DNA fragmentation (POU5F1, r = –0.561; HSPA1A, r = 0.604) and peroxide levels (POU5F1, r = –0.590; HSPA1A, r = 0.621). In conclusion, under the conditions of the present study, vitrification and warming of IVP porcine blastocysts resulted in altered expression of POU5F1 and HSPA1A, but had no effect on BAX, BCL2L1, SOD1 and SOD2 expression.

Additional keywords: Cryotop, DNA fragmentation, peroxide levels, real-time reverse transcription–polymerase chain reaction.


References

Aksu, D. A., Agca, C., Aksu, S., Bagis, H., Akkoc, T., Caputcu, A. T., Arat, S., Taskin, A. C., Kizil, S. H., Karasahin, T., Akyol, N., Satilmis, M., Sagirkaya, H., Ustuner, B., Nur, Z., and Agca, Y. (2012). Gene expression profiles of vitrified in vitro- and in vivo-derived bovine blastocysts. Mol. Reprod. Dev. 79, 613–625.
Gene expression profiles of vitrified in vitro- and in vivo-derived bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyksbzE&md5=1940b88f2946e8b427e1f63712e70cb1CAS | 22778065PubMed |

Anchamparuthy, V. M., Pearson, R. E., and Gwazdauskas, F. C. (2010). Expression pattern of apoptotic genes in vitrified–thawed bovine oocytes. Reprod. Domest. Anim. 45, e83–e90.
Expression pattern of apoptotic genes in vitrified–thawed bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgtb7J&md5=4c7f9d060d27eaf60df95c880fc3e263CAS | 19821945PubMed |

Bermejo-Álvarez, P., Lonergan, P., Rath, D., Gutiérrez-Adan, A., and Rizos, D. (2010). Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa. Reprod. Fertil. Dev. 22, 426–436.
Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa.Crossref | GoogleScholarGoogle Scholar | 20047728PubMed |

Bernardini, C., Fantinati, P., Zannoni, A., Forni, M., Tamanini, C., and Bacci, M. L. (2004). Expression of HSP70/HSC70 in swine blastocysts: effects of oxidative and thermal stress. Mol. Reprod. Dev. 69, 303–307.
Expression of HSP70/HSC70 in swine blastocysts: effects of oxidative and thermal stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslyqtL8%3D&md5=8d8101f466696c592f4afaa3337f3362CAS | 15349842PubMed |

Berthelot, F., Martinat-Botté, F., Locatelli, A., Perreau, C., and Terqui, M. (2000). Piglets born after vitrification of embryos using the open pulled straw method. Cryobiology 41, 116–124.
Piglets born after vitrification of embryos using the open pulled straw method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlWntLg%3D&md5=e86653b76a53a9525a41a458cd559feaCAS | 11034790PubMed |

Boiani, M., Eckardt, S., Schöler, H. R., and McLaughlin, K. J. (2002). Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219.
Oct4 distribution and level in mouse clones: consequences for pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFSmsLs%3D&md5=ea29d2c254c1bbb653ca60cf6b54c0baCAS | 12023300PubMed |

Boonkusol, D., Gal, A. B., Bodo, S., Gorhony, B., Kitiyanant, Y., and Dinnyes, A. (2006). Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos. Mol. Reprod. Dev. 73, 700–708.
Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVWqs7k%3D&md5=cbc19b03015c227729dc7a165d838a4dCAS | 16541460PubMed |

Brill, A., Torchinsky, A., Carp, H., and Toder, V. (1999). The role of apoptosis in normal and abnormal embryonic development. J. Assist. Reprod. Genet. 16, 512–519.
The role of apoptosis in normal and abnormal embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fkt1ygsA%3D%3D&md5=783bf69787d0c4f37029d5006d1eaf60CAS | 10575578PubMed |

Brison, D. R., and Schultz, R. M. (1997). Apoptosis during mouse blastocysts formation: evidence for a role for survival factors including transforming growth factor alpha. Biol. Reprod. 56, 1088–1096.
Apoptosis during mouse blastocysts formation: evidence for a role for survival factors including transforming growth factor alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2mu7Y%3D&md5=260e63e8d28b3535085e0255c473d9a1CAS | 9160705PubMed |

Byrne, A. T., Southgate, J., Brison, D. R., and Leese, H. J. (1999). Analysis of apoptosis in the preimplantation embryo using TUNEL. J. Reprod. Fertil. 117, 97–105.
Analysis of apoptosis in the preimplantation embryo using TUNEL.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlalt7k%3D&md5=5dcd70c96f535b91b04b4b3651dd8d80CAS | 10645250PubMed |

Casas, I., and Flores, E. (2013). Gene banking: the freezing strategy. In ‘Boar Reproduction: Fundamentals and New Biotechnological Trends’. (Eds S. Bonet, I. Casas, W. V. Holt and M. Yeste.) pp. 551–588. (Springer Press: Berlin.)

Castillo-Martín, M., Bonet, S., Morató, R., and Yeste, M. (2013). Comparative effects of adding β-mercaptoethanol or l-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos. Reprod. Fertil. Dev , .
Comparative effects of adding β-mercaptoethanol or l-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos.Crossref | GoogleScholarGoogle Scholar | 23815877PubMed |

Cuello, C., Berthelot, F., Delaleu, B., Venturi, E., Pastor, L. M., Vazquez, J. M., Roca, J., Martinat-Botté, F., and Martínez, E. A. (2007). The effectiveness of the stereomicroscopic evaluation of embryo quality in vitrified–warmed porcine blastocysts: an ultrastructural and cell death study. Theriogenology 67, 970–982.
The effectiveness of the stereomicroscopic evaluation of embryo quality in vitrified–warmed porcine blastocysts: an ultrastructural and cell death study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7hsFenuw%3D%3D&md5=1110a5a7c8852b3a1dc8245912161351CAS | 17208290PubMed |

Dhali, A., Anchamparuthy, V. M., Butler, S. P., Pearson, R. E., Mullarky, I. K., and Gwazdauskas, F. C. (2009). Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos. Theriogenology 71, 1408–1416.
Effect of droplet vitrification on development competence, actin cytoskeletal integrity and gene expression in in vitro cultured mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2mur0%3D&md5=3f1e1eb611d2ec82bf8ec26294cc01f9CAS | 19268346PubMed |

Di Pietro, C., Vento, M., Guglielmino, M. R., Borzi, P., Santonocito, M., Ragusa, M., Barbagallo, D., Duro, L. R., Majorana, A., De Palma, A., Garofalo, M. R., Minutolo, E., Scollo, P., and Purrello, M. (2010). Molecular profiling of human oocytes after vitrification strongly suggests that they are biologically comparable with freshly isolated gametes. Fertil. Steril. 94, 2804–2807.
Molecular profiling of human oocytes after vitrification strongly suggests that they are biologically comparable with freshly isolated gametes.Crossref | GoogleScholarGoogle Scholar | 20542504PubMed |

Dobrinsky, J. R. (1996). Cellular approach to cryopreservation of embryos. Theriogenology 45, 17–26.
Cellular approach to cryopreservation of embryos.Crossref | GoogleScholarGoogle Scholar |

Dobrinsky, J. R. (2002). Advancements in cryopreservation of domestic animal embryos. Theriogenology 57, 285–302.
Advancements in cryopreservation of domestic animal embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFyltg%3D%3D&md5=c26763f60d00484ef5873db92a74ef6aCAS | 11775976PubMed |

Du, Y., Zhang, Y., Li, J., Kragh, P. M., Kuwayama, M., Ieda, S., Zhang, X., Schmidt, M., Bogh, I. B., Purup, S., Pedersen, A. M., Villemoes, K., Yang, H., Bolund, L., and Vajta, G. (2007). Simplified cryopreservation of porcine cloned blastocysts. Cryobiology 54, 181–187.
Simplified cryopreservation of porcine cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFehtrc%3D&md5=5b16536267dd1ffef095f475cd548271CAS | 17359960PubMed |

Duncan, R. F., and Hershey, J. W. B. (1989). Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J. Cell Biol. 109, 1467–1481.
Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFahtro%3D&md5=db64198756206846e15d93a4509abab1CAS | 2793930PubMed |

Ebrahimi, B., Valojerdi, M. R., Eftekhari-Yazdi, P., and Baharvand, H. (2010). In vitro maturation, apoptotic gene expression and incidence of numerical chromosomal abnormalities following cryotop vitrification of sheep cumulus–oocyte complexes. J. Assist. Reprod. Genet. 27, 239–246.
In vitro maturation, apoptotic gene expression and incidence of numerical chromosomal abnormalities following cryotop vitrification of sheep cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 20217472PubMed |

Esaki, R., Ueda, H., Kurome, M., Hirakawa, K., Tomii, R., Yoshioka, H., Ushijima, H., Kuwayama, M., and Nagashima, H. (2004). Cryopreservation of porcine embryos derived from in-vitro matured oocyte. Biol. Reprod. 71, 432–437.
Cryopreservation of porcine embryos derived from in-vitro matured oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtLs%3D&md5=6443ef950819d6225443992a51d19749CAS | 15044264PubMed |

Fabian, D., Gjorret, J. O., Berthelot, F., Martinat-Botté, F., and Maddox-Hyttel, P. (2005). Ultrastructure and cell death of in vivo derived and vitrified porcine blastocysts. Mol. Reprod. Dev. 70, 155–165.
Ultrastructure and cell death of in vivo derived and vitrified porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlSktw%3D%3D&md5=49b89f854447336ead8a3721ae9d76f7CAS | 15570616PubMed |

Fahy, G. M., MacFarlane, D. R., Angell, C. A., and Meryman, H. T. (1984). Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426.
Vitrification as an approach to cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVKltLw%3D&md5=26639ef138f76e1b57837ab411743e66CAS | 6467964PubMed |

Fahy, G. M., Wowk, B., Wu, J., and Paynter, S. (2004). Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48, 22–35.
Improved vitrification solutions based on the predictability of vitrification solution toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yiur4%3D&md5=f76bcf61af581c72e8343436440b3139CAS | 14969679PubMed |

Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., and Green, D. R. (1999). Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xl. J. Biol. Chem. 274, 2225–2233.
Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXovVGmuw%3D%3D&md5=0f8d825f6026bb5b49fe39f7553eb9daCAS | 9890985PubMed |

Fujii, T., Sakurai, N., Osaki, T., Iwagami, G., Hirayama, H., Minamihashi, A., Hashizume, T., and Sawai, K. (2013). Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development. J. Reprod. Dev. 59, 151–158.
Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVOntLg%3D&md5=ea48819c5c6ff6979535a3d1e7989934CAS | 23257836PubMed |

Fujita, M. (1999). Cold shock response in mammalian cells. J. Mol. Microbiol. Biotechnol. 1, 243–255.
| 1:CAS:528:DyaK1MXnvF2htrg%3D&md5=ba4578238b10a8ba4ca3851b4ba09de4CAS |

Gao, Y., Jammes, H., Rasmussen, M. A., Oestrup, O., Beaujean, N., Hall, V. J., and Hyttel, P. (2011). Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 6, 1149–1161.
Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGks74%3D&md5=a64e9d6040e17bc5c5827a929fa332e2CAS | 21975513PubMed |

Gardner, D. K., Sheehan, C. B., Rienzi, L., Katz-Jaffe, M., and Larman, M. G. (2007). Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 67, 64–72.
Analysis of oocyte physiology to improve cryopreservation procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12rsbrJ&md5=d9234f4c45bf7b0941c93cb5d79af109CAS | 17049589PubMed |

Habibi, A., Farrokhi, N., da Silva, F. M., Bettencourt, B. R., Bruges-Armas, J., Amidi, F., and Hosseini, A. (2010). The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J. Assist. Reprod. Genet. 27, 599–604.
The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR.Crossref | GoogleScholarGoogle Scholar | 20714800PubMed |

Hall, V. J., Christensen, J., Gao, Y., Schmidt, M. H., and Hyttel, P. (2009). Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev. Dyn. 238, 2014–2024.
Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKrsbbO&md5=779d043d7148c975cd1457f08276f6ebCAS | 19618464PubMed |

Ji, Q., Zhu, K., Liu, Z., Song, Z., Huang, Y., Zhao, H., Chen, Y., He, Z., Mo, D., and Cong, P. (2013). Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis. Theriogenology 79, 815–823.
Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVynt7o%3D&md5=d9c09123051cac88f95c15edb85e1ae2CAS | 23347745PubMed |

Kawarsky, S. J., and King, W. A. (2001). Expression and localisation of heat shock protein 70 in cultured bovine oocyte and embryos. Zygote 9, 39–50.
Expression and localisation of heat shock protein 70 in cultured bovine oocyte and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVygsrs%3D&md5=e2035be9c3051fa8e988745b319438c0CAS | 11273032PubMed |

Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.
Successful piglet production after transfer of blastocysts produced by a modified in vitro system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClur8%3D&md5=caaba78a42199c77bc40b8dc76413319CAS | 11906923PubMed |

Kuijk, E. W., du Puy, L., van Tol, H. T., Haagsman, H. P., Colenbrander, B., and Roelen, B. A. (2007). Validation of reference gens for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Dev. Biol. 7, 58.
Validation of reference gens for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 17540017PubMed |

Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308.
Highly efficient vitrification method for cryopreservation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16176668PubMed |

Kuzmany, A., Havlicek, V., Wrenzycki, C., Wilkening, S., Brem, G., and Besenfelder, U. (2011). Expression of mRNA, before and after freezing, in bovine blastocysts cultured under different conditions. Theriogenology 75, 482–494.
Expression of mRNA, before and after freezing, in bovine blastocysts cultured under different conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Knuw%3D%3D&md5=c367ff177bba9e7ca21a79342a4bad1dCAS | 21144573PubMed |

Lane, M., Maybach, J. M., and Gardner, D. K. (2002). Addition of ascorbate during cryopreservation stimulates subsequent embryo development. Hum. Reprod. 17, 2686–2693.
Addition of ascorbate during cryopreservation stimulates subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1GgtLo%3D&md5=4a3c2c1bd46039c03aeb8d24c737a2dbCAS | 12351549PubMed |

Larman, M. G., Katz-Jaffe, M. G., McCallie, B., Filipovits, J. A., and Gardner, D. K. (2011). Analysis of global gene expression following mouse blastocyst cryopreservation. Hum. Reprod. 26, 2672–2680.
Analysis of global gene expression following mouse blastocyst cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Siur3K&md5=2ab2e0992788db6a3a48ff1b4443dd6fCAS | 21784737PubMed |

Leoni, G. G., Berlinguer, F., Succu, S., Bebbere, D., Mossa, F., Madeddu, M., Ledda, S., Bogliolo, L., and Naitana, S. (2008). A new selection criterion to assess good quality ovine blastocysts after vitrification and to predict their transfer into recipients. Mol. Reprod. Dev. 75, 373–382.
A new selection criterion to assess good quality ovine blastocysts after vitrification and to predict their transfer into recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVCqug%3D%3D&md5=765b5930a3cd6f81a34ecb7a95c16bd2CAS | 17440971PubMed |

Lloyd, R. E., Romar, R., Matás, C., Gutiérrez-Adán, A., Holt, W. V., and Coy, P. (2009). Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reproduction 137, 679–687.
Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2ntbw%3D&md5=c2fa7080eda66dcf1bc535a9949e2044CAS | 19153191PubMed |

Magnani, L., and Cabot, R. A. (2008). In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development. Mol. Reprod. Dev. 75, 1726–1735.
In vitro and in vivo derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog, and Sox2 mRNA expression during cleavage development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsrzN&md5=e1e3eccd56535b79c7959a7907ab6565CAS | 18425776PubMed |

Mazur, P. (1970). Cryobiology: the freezing of biological systems. Science 168, 939–949.
Cryobiology: the freezing of biological systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7mslKlsA%3D%3D&md5=e9ccb2fd36c5976d6a6ab5ad76c7a7ebCAS | 5462399PubMed |

McElroy, S. L., Kim, J. H., Kim, S., Jeong, Y. W., Lee, E. G., Park, S. M., Hossein, M. S., Koo, O. J., Hashem, M. D., Jang, G., Kang, S. K., Lee, B. C., and Hwang, W. S. (2008). Effects of culture conditions and nuclear transfer protocols on blastocyst formation and mRNA expression in pre-implantation porcine embryos. Theriogenology 69, 416–425.
Effects of culture conditions and nuclear transfer protocols on blastocyst formation and mRNA expression in pre-implantation porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSmsro%3D&md5=12551d90a33199f09f5b43286e556d15CAS | 18055008PubMed |

Murphy, C. L., and Polak, J. M. (2002). Differentiating embryonic stem cells: GAPDH, but neither HPRT nor beta-tubulin is suitable as an internal standard for measuring RNA levels. Tissue Eng. 8, 551–559.
Differentiating embryonic stem cells: GAPDH, but neither HPRT nor beta-tubulin is suitable as an internal standard for measuring RNA levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVehtL0%3D&md5=6638e85f72df588cf72d5cc46d4ff97bCAS | 12201995PubMed |

Negoescu, A., Lorimier, P., Labat-Moleur, F., Drouet, C., Robert, C., Guillermet, C., Brambilla, C., and Brambilla, E. (1996). In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J. Histochem. Cytochem. 44, 959–968.
In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVOisL8%3D&md5=4129dd678d40941c6e2402f4701e67a2CAS | 8773561PubMed |

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=91074dfcc9eb29726727e405e562a4daCAS | 9814708PubMed |

Otterbein, L. E., and Choi, A. M. (2000). Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1029–L1037.
| 1:CAS:528:DC%2BD3cXptFSksbk%3D&md5=631d2a553c0fd601c2bb0001cb00bf54CAS | 11076792PubMed |

Palasz, A. T., and Mapletoft, R. J. (1996). Cryopreservation of mammalian embryos and oocytes: recent advances. Biotechnol. Adv. 14, 127–149.
Cryopreservation of mammalian embryos and oocytes: recent advances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFajsLc%3D&md5=bc38221ef0e30dc0f94d7ddd8b95a61fCAS | 14537604PubMed |

Park, S. Y., Kim, E. Y., Cui, X. S., Tae, J. C., Lee, W. D., Kim, N. H., Park, S. P., and Lim, J. H. (2006). Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts. Zygote 14, 125–131.
Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVyltb8%3D&md5=171a66b25cc87e39f741ae673b619e1fCAS | 16719948PubMed |

Paula-Lopes, F. F., and Hansen, P. J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 66, 1169–1177.
| 1:CAS:528:DC%2BD38XitlClu7g%3D&md5=fc4d8ae498c659272d6a10a627eb65ccCAS | 11906938PubMed |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=1884323dd0d93da095f4a6cffec6438fCAS | 8145215PubMed |

Rath, D., Long, C. R., Dobrinsky, J. R., Welch, G. R., Schreier, L. L., and Johnson, L. A. (1999). In vitro production of sexed embryos for gender preselectiion: high-speed sorting of X-chromosome bearing sperm to produce pigs after embryo transfer. J. Anim. Sci. 77, 3346–3352.
| 1:CAS:528:DC%2BD3cXktFegtQ%3D%3D&md5=16477de4af4564c5a3d6107098339436CAS | 10641883PubMed |

Rezazadeh Valojerdi, M., Eftekhari-Yazdi, P., Karimian, L., Hassani, F., and Movaghar, B. (2009). Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J. Assist. Reprod. Genet. 26, 347–354.
Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos.Crossref | GoogleScholarGoogle Scholar | 19513822PubMed |

Rojas, C., Palomo, M. J., Albarracín, J. L., and Mogas, T. (2004). Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 49, 211–220.
Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFahs7bI&md5=47e73c974191b93fa64ff2ae024d1418CAS | 15615607PubMed |

Saragusty, J., and Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141, 1–19.
Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehsrc%3D&md5=2ce5bb0c5e4b22be6b21d1c64155db14CAS | 20974741PubMed |

Shaw, J. M., and Jones, G. M. (2003). Terminology associated with vitrification and other cryopreservations procedures for oocytes and embryos. Hum. Reprod. Update 9, 583–605.
Terminology associated with vitrification and other cryopreservations procedures for oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSiu78%3D&md5=79d5bc9afc9c88b677e61278eed65293CAS | 14714593PubMed |

Shaw, L., Sneddon, S. F., Brison, D. R., and Kimber, S. J. (2012). Comparison of gene expression in fresh and frozen–thawed human preimplantation embryos. Reproduction 144, 569–582.
Comparison of gene expression in fresh and frozen–thawed human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslClt7rN&md5=102dc089ab60320de663388f79e2eb50CAS | 22996807PubMed |

Shi, L. Y., Jin, H. F., Kim, J. G., Mohana Kumar, B. M., Balasubramanian, S., Choe, S. Y., and Rho, G. J. (2007). Ultra-structural changes and developmental potential of porcine oocytes following vitrification. Anim. Reprod. Sci. 100, 128–140.
Ultra-structural changes and developmental potential of porcine oocytes following vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2isL4%3D&md5=a0bf3aadf1c24a490bf222fc9841f930CAS | 16895747PubMed |

Shin, M. R., Choi, H. W., Kim, M. K., Lee, S. H., Lee, H. S., and Lim, C. K. (2011). In vitro development and gene expression of frozen-thawed 8-cell stage mouse embryos following slow freezing or vitrification. Clin. Exp. Reprod. Med. 38, 203–209.
In vitro development and gene expression of frozen-thawed 8-cell stage mouse embryos following slow freezing or vitrification.Crossref | GoogleScholarGoogle Scholar | 22384443PubMed |

Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Karja, K., Farkhudin, M., Dinnyés, A., Nagai, T., and Kikuchi, K. (2007). Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvF2qtbc%3D&md5=cef3f3b34d2ac3e4f2dacf5f7ae5c72dCAS | 17681290PubMed |

Sonna, L. A., Fujita, J., Gaffin, S. L., and Lilly, C. M. (2002). Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 92, 1725–1742.
| 1:CAS:528:DC%2BD38XjtVKjtLg%3D&md5=93a9507f4dd4fca9eb175bfb22ec1daeCAS | 11896043PubMed |

Stachowiak, E. M., Papis, K., Kruszewski, M., Iwanenko, T., Bartlomiejczyk, T., and Modlinski, J. A. (2009). Comparison of the level(s) of DNA damage using Comet assay in bovine oocytes subjected to selected vitrification methods. Reprod. Domest. Anim. 44, 653–658.
Comparison of the level(s) of DNA damage using Comet assay in bovine oocytes subjected to selected vitrification methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaiurnL&md5=c6663c4bf41eaf2100ce658b95e69a1bCAS | 19032440PubMed |

Stinshoff, H., Wilkening, S., Hanstedt, A., Brüning, K., and Wrenzycki, C. (2011). Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level. Theriogenology 76, 1433–1441.
Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isbjN&md5=36c45ae184dc582f26028a99c1e97bcaCAS | 21835456PubMed |

Takahashi, M. (2012). Oxidative stress and redox regulation on in vitro development of mammalian embryos. J. Reprod. Dev. 58, 1–9.
Oxidative stress and redox regulation on in vitro development of mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVOnsbY%3D&md5=7facbacf0ebe711763d07d7363981d19CAS | 22450278PubMed |

Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 8, 70.
Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 20565987PubMed |

Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., and Callesen, H. (1998). Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–58.
Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGrs7g%3D&md5=85a2436d880e2ca437bc1693a6c0f1f9CAS | 9712317PubMed |

Whittingham, D. G., Leibo, S. P., and Mazur, P. (1972). Survival of mouse embryos, frozen to –196°C and –289°C. Science 178, 411–414.
Survival of mouse embryos, frozen to –196°C and –289°C.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2Fhs12ntg%3D%3D&md5=8a7f709d2e90b4b67e445a802782fa4dCAS | 5077328PubMed |

Zakeri, Z., and Lockhin, R. A. (1994). Physiological cell death during development and its relationship to ageing. Ann. N. Y. Acad. Sci. 719, 212–229.
Physiological cell death during development and its relationship to ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFWrtbw%3D&md5=ee6d67f74239217d5149791e336f878bCAS | 8010594PubMed |

Zhao, X. M., Du, W. H., Hao, H. S., Wang, D., Qin, T., Liu, Y., and Zhu, H. B. (2012). Effect of vitrification on promoter methylation and the expression of pluripotency and differentiation genes in mouse blastocysts. Mol. Reprod. Dev. 79, 445–450.
Effect of vitrification on promoter methylation and the expression of pluripotency and differentiation genes in mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslKrs7w%3D&md5=58d4375f9a02fce1ea2472f0990041ecCAS | 22618890PubMed |