Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle

D. Murta A , M. Batista A , E. Silva A , A. Trindade A B , L. Mateus A , A. Duarte A B and L. Lopes-da-Costa A C D
+ Author Affiliations
- Author Affiliations

A Reproduction and Obstetrics, CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal.

B Gulbenkian Institute of Science, Oeiras, Portugal.

C Present address: Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal.

D Corresponding author. Email: lcosta@fmv.utl.pt

Reproduction, Fertility and Development 27(7) 1038-1048 https://doi.org/10.1071/RD13399
Submitted: 21 November 2013  Accepted: 26 February 2014   Published: 3 April 2014

Abstract

Ovarian dynamics throughout the female oestrous cycle (EC) are characterised by cyclical follicle and corpus luteum (CL) development. These events are tightly regulated, involving extensive cell-to-cell communication. Notch is an evolutionarily well conserved cell-signalling pathway implicated in cell-fate decisions in several tissues. Here, we evaluated the extra-vascular expression patterns of Notch component and effector genes during follicle and CL development throughout the EC. Five mature CD1 female mice were killed at each EC stage. Blood samples were collected for progesterone measurement, ovaries were processed for immunohistochemistry and expression patterns of Notch components (Notch1, 2 and 3, Jagged1 and Delta-like1 and 4) and effectors (Hes1, Hes2 and Hes5) were characterised. Nuclear detection of Notch effectors indicates that Notch signalling is active in the ovary. Notch components and effectors are differentially expressed during follicle and CL development throughout the EC. The spatial and temporal specific expression patterns are associated with follicle growth, selection and ovulation or atresia and CL development and regression.

Additional keywords: cell signaling, folliculogenesis, gene expression, luteal development, mouse.


References

Akiyama, J., Okamoto, R., Iwasaki, M., Zheng, X., Yui, S., Tsuchiya, K., Nakamura, T., and Watanabe, M. (2010). Delta-like 1 expression promotes goblet-cell differentiation in Notch-inactivated human colonic epithelial cells. Biochem. Biophys. Res. Commun. 393, 662–667.
Delta-like 1 expression promotes goblet-cell differentiation in Notch-inactivated human colonic epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ontrc%3D&md5=776db03630c08827b79fbe7b25c7a153CAS | 20170633PubMed |

Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M. (1995). Notch signalling. Science 268, 225–232.
Notch signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCitLg%3D&md5=98d4b4c2be75055120f4ba6d8690d786CAS | 7716513PubMed |

Assa-Kunik, E., Torres, I. L., Schejter, E. D., Johnston, D. S., and Shilo, B.-Z. (2007). Drosophila follicle cells are patterned by multiple levels of Notch signalling and antagonism between the Notch and JAK/STAT pathways. Development 134, 1161–1169.
Drosophila follicle cells are patterned by multiple levels of Notch signalling and antagonism between the Notch and JAK/STAT pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVSntr8%3D&md5=18c926a0eced33e415461763758b8a21CAS | 17332535PubMed |

Baker, S. J., and Spears, N. (1999). The role of intra-ovarian interactions in the regulation of follicle dominance. Hum. Reprod. Update 5, 153–165.
The role of intra-ovarian interactions in the regulation of follicle dominance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3mslSmsg%3D%3D&md5=3e0e48c8e55ed0006eea8af4f4257b7eCAS | 10336019PubMed |

Bielesz, B., Sirin, Y., Si, H., Niranjan, T., Gruenwald, A., Ahn, S., Kato, H., Pullman, P., Gessler, M., Haase, V. H., and Susztak, K. (2010). Epithelial Notch signalling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054.
Epithelial Notch signalling regulates interstitial fibrosis development in the kidneys of mice and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgtbjI&md5=4d993d63646ee0b379480fa2fd09b854CAS | 20978353PubMed |

Borggrefe, T., and Oswald, F. (2009). The Notch signalling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646.
The Notch signalling pathway: transcriptional regulation at Notch target genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGqu7s%3D&md5=5890f7966d719fc56c63f7f00874696cCAS | 19165418PubMed |

Cheng, H.-T., Kim, M., Valerius, M. T., Surendran, K., Schuster-Gossler, K., Gossler, A., McMahon, A. P., and Kopan, R. (2007). Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134, 801–811.
Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyrur8%3D&md5=560a35e27a8d0862f60d9adbb68e61a3CAS | 17229764PubMed |

Feng, X., Krebs, L. T., and Gridley, T. (2010). Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion. Development 137, 4191–4199.
Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGmtbs%3D&md5=46652c6077ac9a43dbd68b8808cc93b0CAS | 21068062PubMed |

Fischer, A., and Gessler, M. (2007). Delta-Notch – and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35, 4583–4596.
Delta-Notch – and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Cisbs%3D&md5=d4030a9192ab659134f940c24979b6e2CAS | 17586813PubMed |

Fraser, H. M., Hastings, J. M., Allan, D., Morris, K. D., Rudge, J. S., and Wiegand, S. J. (2012). Inhibition of Delta-like ligand 4 induces luteal hypervascularisation followed by functional and structural luteolysis in the primate ovary. Endocrinology 153, 1972–1983.
Inhibition of Delta-like ligand 4 induces luteal hypervascularisation followed by functional and structural luteolysis in the primate ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVSmsbs%3D&md5=89de534cd94c1f3f27669854a2f0238dCAS | 22334711PubMed |

García-Pascual, C. M., Zimermann, R. C., Ferrero, H., Shawber, C. J., Kitajewski, J., Simón, C., Pellicer, A., and Gómez, R. (2013). Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells. Fertil. Steril. 100, 1768–1776.
Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells.Crossref | GoogleScholarGoogle Scholar | 24074756PubMed |

Hahn, K. L., Johnson, J., Beres, B. J., Howard, S., and Wilson-Rawls, J. (2005). Lunatic fringe null female mice are infertile due to defects in meiotic maturation. Development 132, 817–828.
Lunatic fringe null female mice are infertile due to defects in meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit12gtbs%3D&md5=6c476fb997243a65a8a117ee9d2735dcCAS | 15659488PubMed |

Hernandez, F., Peluffo, M. C., Stouffer, R. L., Irusta, G., and Tesone, M. (2011). Role of the DLL4–NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol. Reprod. 84, 859–865.
Role of the DLL4–NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlGju7g%3D&md5=2c984dbc7482755f2e441cdd80e58308CAS | 21209419PubMed |

Johnson, J., Espinoza, T., McGaughey, R. W., Rawls, A., and Wilson-Rawls, J. (2001). Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109, 355–361.
Notch pathway genes are expressed in mammalian ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1KgtLY%3D&md5=98536b861092d73e24f0fa8c4c38882fCAS | 11731249PubMed |

Jovanovic, V. P., Sauer, C. M., Shawber, C. J., Gomez, R., Wang, X., Sauer, M. V., Kitajewski, J., and Zimmermann, R. C. (2013). Intra-ovarian regulation of gonadotrophin-dependent folliculogenesis depends on Notch receptor signalling pathways not involving Delta-like ligand 4 (Dll4). Reprod. Biol. Endocrinol. 11, 43.
Intra-ovarian regulation of gonadotrophin-dependent folliculogenesis depends on Notch receptor signalling pathways not involving Delta-like ligand 4 (Dll4).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlyjsbc%3D&md5=c3481767f3a9fe53bbd6be45531bc37cCAS | 23675950PubMed |

Kimble, J., and Crittenden, S. L. (2007). Controls of germline stem cells, entry into meiosis and the sperm–oocyte decision in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 23, 405–433.
Controls of germline stem cells, entry into meiosis and the sperm–oocyte decision in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlartr3E&md5=f3f0e6750755c4f78cd5944fcf548b14CAS | 17506698PubMed |

Krebs, L. T., Xue, Y., Norton, C. R., Sundberg, J. P., Beatus, P., Lendahl, U., Joutel, A., and Gridley, T. (2003). Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis 37, 139–143.
Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1altw%3D%3D&md5=5e56e2cf83a1b9ad532e6a754ad2bba8CAS | 14595837PubMed |

López-Schier, H., and St Johnston, D. (2001). Delta signalling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 15, 1393–1405.
Delta signalling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis.Crossref | GoogleScholarGoogle Scholar | 11390359PubMed |

Manosalva, I., González, A., and Kageyama, R. (2013). Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation. Dev. Biol. 375, 140–151.
Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVGmtrY%3D&md5=0482cef929e5aec5e5300ba7f6f3745fCAS | 23274689PubMed |

Oktay, K., Schenken, R. S., and Nelson, J. F. (1995). Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol. Reprod. 53, 295–301.
Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVSmur8%3D&md5=7a656c890217b1c49957009da9099f79CAS | 7492681PubMed |

Orisaka, M., Tajima, K., Tsang, B. K., and Kotsuji, F. (2009). Oocyte–granulosa–theca cell interactions during preantral follicular development. J. Ovarian Res. 2, 9.
Oocyte–granulosa–theca cell interactions during preantral follicular development.Crossref | GoogleScholarGoogle Scholar | 19589134PubMed |

Park, J. T., Shih, I.-M., and Wang, T.-L. (2008). Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer. Cancer Res. 68, 8852–8860.
Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSkur%2FN&md5=0c5e3b07746cc621c1555598820e36d3CAS | 18974129PubMed |

Rahman, M., Zhanga, Z., Modyb, A. A., Sua, D.-M., and Das, H. K. (2012). Intraperitoneal injection of JNK-specific inhibitor SP600125 inhibits the expression of presenilin-1 and Notch signalling in mouse brain without induction of apoptosis. Brain Res. 1448, 117–128.
Intraperitoneal injection of JNK-specific inhibitor SP600125 inhibits the expression of presenilin-1 and Notch signalling in mouse brain without induction of apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1egs7c%3D&md5=285a4b0a63d943d64474c671d961d678CAS | 22353755PubMed |

Saravanamuthu, S. S., Gao, C. Y., and Zelenka, P. S. (2009). Notch signalling is required for lateral induction of Jagged1 during FGF-induced lens fibre differentiation. Dev. Biol. 332, 166–176.
Notch signalling is required for lateral induction of Jagged1 during FGF-induced lens fibre differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2ntLw%3D&md5=6f7443320fe450235d56e6935931f372CAS | 19481073PubMed |

Silva, E., Leitão, S., Henriques, S., Kowalewski, M. P., Hoffmann, B., Ferreira-Dias, G., Lopes da Costa, L., and Mateus, L. (2010). Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia-pyometra complex. J. Reprod. Immunol. 84, 66–74.
Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia-pyometra complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1aqtQ%3D%3D&md5=8318fc36211edb7ab21d5bc6cf036e83CAS | 19945173PubMed |

Song, X., Call, G. B., Kirilly, D., and Xie, T. (2007). Notch signalling controls germline stem cell niche formation in the Drosophila ovary. Development 134, 1071–1080.
Notch signalling controls germline stem cell niche formation in the Drosophila ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVSnsbw%3D&md5=9b1afd0cc85f9f2baba36688f6d1ac4eCAS | 17287246PubMed |

Sörensen, I., Adams, R. H., and Gossler, A. (2009). DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688.
DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries.Crossref | GoogleScholarGoogle Scholar | 19144989PubMed |

Stocco, C., Telleria, C., and Gibori, G. (2007). The molecular control of corpus luteum formation, function and regression. Endocr. Rev. 28, 117–149.
The molecular control of corpus luteum formation, function and regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFCgsrc%3D&md5=77b1a3e439c8b2c29693745388317013CAS | 17077191PubMed |

Takanaga, H., Tsuchida-Straeten, N., Nishide, K., Watanabe, A., Aburatani, H., and Kondo, T. (2009). Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 27, 165–174.
Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVeqtrk%3D&md5=319ba021283e250caab4b62694a7cd46CAS | 18927476PubMed |

Trombly, D. J., Woodruff, T. K., and Mayo, K. E. (2009). Suppression of Notch signalling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 150, 1014–1024.
Suppression of Notch signalling in the neonatal mouse ovary decreases primordial follicle formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sgt74%3D&md5=e399995bb7a40e1746ab4251298457f2CAS | 18818300PubMed |

Vorontchikhina, M. A., Zimmermann, R. C., Shawber, C. J., Tang, H., and Kitajewski, J. (2005). Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation. Gene Expr. Patterns 5, 701–709.
Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFSltr4%3D&md5=c9a4626525db23d2f0a13eb9b6c57cd5CAS | 15939383PubMed |

Wang, M., Wu, L., Wang, L., and Xin, X. (2010). Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell-growth inhibition and apoptosis in ovarian cancer cells A2780. Biochem. Biophys. Res. Commun. 393, 144–149.
Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell-growth inhibition and apoptosis in ovarian cancer cells A2780.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1akuro%3D&md5=37f8096bbc6d0e92a0cda8aa8b5dfe89CAS | 20117093PubMed |

Ward, E. J., Shcherbata, H. R., Reynolds, S. H., Fischer, K. A., Hatfield, S. D., and Ruohola-Baker, H. (2006). Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr. Biol. 16, 2352–2358.
Stem cells signal to the niche through the Notch pathway in the Drosophila ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OhtLrN&md5=572f04379b767662a5bf858c1b5126caCAS | 17070683PubMed |

Wood, G. A., Fata, J. E., Watson, K. L. M., and Khokha, R. (2007). Circulating hormones and oestrous stage predict cellular and stromal remodelling in murine uterus. Reproduction 133, 1035–1044.
Circulating hormones and oestrous stage predict cellular and stromal remodelling in murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGmsro%3D&md5=e07b0246846eef463333f32315dee23dCAS | 17616732PubMed |

Xu, J., and Gridley, T. (2013). Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol. 11, 13.
Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFajtb4%3D&md5=c5d63b0a19f4097dfc6a7cf474392231CAS | 23406467PubMed |

Zhang, C.-P., Yang, J.-L., Zhang, J., Li, L., Huang, L., Ji, S.-Y., Hu, Z.-Y., Gao, F., and Liu, Y.-X. (2011). Notch signalling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology 152, 2437–2447.
Notch signalling is involved in ovarian follicle development by regulating granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Sntb4%3D&md5=ab68a188cdbbf7b45b9dd49446e57c29CAS | 21427220PubMed |

Zheng, J., Fricke, P. M., Reynolds, L. P., and Redmer, D. A. (1994). Evaluation of growth, cell proliferation and cell death in bovine corpora lutea throughout the oestrous cycle. Biol. Reprod. 51, 623–632.
Evaluation of growth, cell proliferation and cell death in bovine corpora lutea throughout the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7hvFanug%3D%3D&md5=d0beb45baa48e2ae660838e3fab3d60fCAS | 7819442PubMed |