Oocyte expression, secretion and somatic cell interaction of mouse bone morphogenetic protein 15 during the peri-ovulatory period
Brigitta Mester A , Lesley J. Ritter B , Janet L. Pitman A , Adrian H. Bibby A , Robert B. Gilchrist B , Kenneth P. McNatty A , Jennifer L. Juengel C and C. Joy McIntosh A DA School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
B School of Paediatrics and Reproductive Health, Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia.
C AgResearch, Reproductive Biology, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand.
D Corresponding author. Email: jrjak.mcintosh@xtra.co.nz
Reproduction, Fertility and Development 27(5) 801-811 https://doi.org/10.1071/RD13336
Submitted: 2 October 2013 Accepted: 23 January 2014 Published: 19 February 2014
Abstract
Bone morphogenetic protein 15 (BMP15) is a key intraovarian growth factor regulating mammalian fertility, yet expression and localisation of different BMP15 protein forms within ovarian follicles around the time of the preovulatory LH surge remains unclear. Using immunoblotting and immunocytochemistry, the present study identified that post-translationally processed BMP15 proregion and mature proteins are increasingly expressed and localised with cumulus and granulosa cells from mice treated with pregnant mare’s serum gonadotropin (PMSG) + human chorionic gonadotrophin (hCG). However, this increased expression was absent in cumulus–oocyte complexes matured in vitro. Pull-down assays further revealed that the recombinant BMP15 proregion is capable of specific interaction with isolated granulosa cells. To verify an oocyte, and not somatic cell, origin of Bmp15 mRNA and coregulated growth differentiation factor 9 (Gdf9), in situ hybridisation and quantitative polymerase chain reaction results confirmed the exclusive oocyte localisation of Bmp15 and Gdf9, regardless of treatment or assay method. Relative oocyte expression levels of Bmp15 and Gdf9 decreased significantly after PMSG + hCG treatment; nevertheless, throughout all treatments, the Bmp15 : Gdf9 mRNA expression ratio remained unchanged. Together, these data provide evidence that the preovulatory LH surge leads to upregulation of several forms of BMP15 protein secreted by the oocyte for putative sequestration and/or interaction with ovarian follicular somatic cells.
Additional keywords: cumulus, follicle, granulosa, growth differentiation factor 9, in vitro maturation.
References
Aaltonen, J., Laitinen, M. P., Vuojolainen, K., Jaatinen, R., Horelli-Kuitunen, N., Seppa, L., Louhio, H., Tuuri, T., Sjoberg, J., Butzow, R., Hovatta, O., Dale, L., and Ritvos, O. (1999). Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J. Clin. Endocrinol. Metab. 84, 2744–2750.| 1:CAS:528:DyaK1MXltFCltro%3D&md5=7dae3d4faa88b24cbec351584e61d3a6CAS | 10443672PubMed |
Bodensteiner, K. J., Clay, C. M., Moeller, C. L., and Sawyer, H. R. (1999). Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol. Reprod. 60, 381–386.
| Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlygsQ%3D%3D&md5=406a044efc5e3565cb7bdf7512340eeaCAS | 9916005PubMed |
Celestino, J. J. H., Lima-Verde, I. B., Bruno, J. B., Matos, M. H. T., Chaves, R. N., Saraiva, M. V. A., Silva, C. M. G., Faustino, L. R., Rossetto, R., Lopes, C. A. P., Donato, M. A. M., Peixoto, C. A., Campello, C. C., Silva, J. R. V., and Figueiredo, J. R. (2011). Steady-state level of bone morphogenetic protein-15 in goat ovaries and its influence on in vitro development and survival of preantral follicles. Mol. Cell. Endocrinol. 338, 1–9.
| Steady-state level of bone morphogenetic protein-15 in goat ovaries and its influence on in vitro development and survival of preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVygu7o%3D&md5=6eb16146d2ae8aae53c64ec675b243d1CAS |
Chu, T., Dufort, I., and Sirard, M. A. (2012). Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 77, 1928–1938.
| Effect of ovarian stimulation on oocyte gene expression in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFensrc%3D&md5=9a0db2e43c067fd25a91e33e5828cf4dCAS | 22444561PubMed |
Crawford, J. L., and McNatty, K. P. (2012). The ratio of growth differentiation factor 9 : bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates. Mol. Cell. Endocrinol. 348, 339–343.
| The ratio of growth differentiation factor 9 : bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates.Crossref | GoogleScholarGoogle Scholar | 21970812PubMed |
Di Pasquale, E., Beck-Peccoz, P., and Persani, L. (2004). Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am. J. Hum. Genet. 75, 106–111.
| Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFCls7o%3D&md5=931216c59531b7a89ce2c405f1416f48CAS | 15136966PubMed |
Dong, J., Albertini, D., Nishimori, K., Kumar, T., Lu, N., and Matzuk, M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
| Growth differentiation factor-9 is required during early ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GrsL0%3D&md5=519a29c46cf981b2f45f26ec8c151a2eCAS | 8849725PubMed |
Dube, J. L., Wang, P., Elvin, J., Lyons, K. M., Celeste, A. J., and Matzuk, M. M. (1998). The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 12, 1809–1817.
| 1:CAS:528:DyaK1cXnvVemtrc%3D&md5=776f97f181add23e363f6d5fcb5833f2CAS | 9849956PubMed |
Duffy, D. M. (2003). Growth differentiation factor-9 is expressed by the primate follicle throughout the periovulatory interval. Biol. Reprod. 69, 725–732.
| Growth differentiation factor-9 is expressed by the primate follicle throughout the periovulatory interval.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVeqsr0%3D&md5=b16d150c1afad58b475f0ff5b8e8a74cCAS | 12700191PubMed |
Eckery, D. C., Whale, L. J., Lawrence, S. B., Wylde, K. A., McNatty, K. P., and Juengel, J. L. (2002). Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial, the brushtail possum (Trichosurus vulpecula). Mol. Cell. Endocrinol. 192, 115–126.
| Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial, the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslGrtLY%3D&md5=b36cd08c10161ce939b6f921a0e28387CAS | 12088873PubMed |
Galloway, S. M., McNatty, K. P., Cambridge, L. M., Laitinen, M. P. E., Juengel, J. L., Jokiranta, T. S., McLaren, R. J., Luiro, K., Dodds, K. G., Montgomery, G. W., Beattie, A. E., Davis, G. H., and Ritvos, O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279–283.
| Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKltbs%3D&md5=59aed07ba33761a626fdfe6060cf50bfCAS | 10888873PubMed |
Gilchrist, R. B., and Thompson, J. G. (2007). Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67, 6–15.
| Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro.Crossref | GoogleScholarGoogle Scholar | 17092551PubMed |
Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
| Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=135f5950fb7808b3facf089971dfc6a0CAS | 18175787PubMed |
Guéripel, X., Brun, V., and Gougeon, A. (2006). Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biol. Reprod. 75, 836–843.
| Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion.Crossref | GoogleScholarGoogle Scholar | 16943361PubMed |
Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., and Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900–909.
| Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Sitb0%3D&md5=d41c153bb38708a1dfb842e5a018ee1bCAS | 14627550PubMed |
Hashimoto, O., Moore, R. K., and Shimasaki, S. (2005). Posttranslational processing of mouse and human BMP-15: potential implication in the determination of ovulation quota. Proc. Natl Acad. Sci. USA 102, 5426–5431.
| Posttranslational processing of mouse and human BMP-15: potential implication in the determination of ovulation quota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslaqsb4%3D&md5=437411a9e9db33df501f2f1765ab3240CAS | 15809424PubMed |
Hosoe, M., Kaneyama, K., Ushizawa, K., Hayashi, K.-g., and Takahashi, T. (2011). Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod. Biol. Endocrinol. 9, 33.
| Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFCjtLo%3D&md5=97460d76cf7f917d9e9e412a1cdfeb43CAS | 21401961PubMed |
Hussein, T. S., Froiland, D. A., Amato, F., Thompson, J. G., and Gilchrist, R. B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268.
| Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWru7rK&md5=b47797030a8bc0aab1317ee55ff1cb09CAS | 16263764PubMed |
Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
| Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=71838bf836e236436aa5479298c8d51dCAS | 16854407PubMed |
Hussein, T. S., Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2011). Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM. Reprod. Fertil. Dev. 23, 576–584.
| Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFKnsLw%3D&md5=b4a3660e8cb731836112edef1d5e1a49CAS | 21557924PubMed |
Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development. Hum. Reprod. Update 11, 144–161.
| The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development.Crossref | GoogleScholarGoogle Scholar |
Juengel, J. L., Hudson, N. L., Berg, M., Hamel, K., Smith, P., Lawrence, S. B., Whiting, L., and McNatty, K. P. (2009). Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle. Reproduction 138, 107–114.
| Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsbg%3D&md5=f084ebbeadfc564a7c8329f1817c55c0CAS | 19439562PubMed |
Laitinen, M., Vuojolainen, K., Jaatinen, R., Ketola, I., Aaltonen, J., Lehtonen, E., Heikinheimo, M., and Ritvos, O. (1998). A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech. Dev. 78, 135–140.
| A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1eisLk%3D&md5=41e589b9dec8aba3379f44f022b0e7ddCAS | 9858711PubMed |
Li, R., Norman, R. J., Armstrong, D. T., and Gilchrist, R. B. (2000). Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 63, 839–845.
| Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu7g%3D&md5=cbcefa7fcf8fa05319dd8006bb10c249CAS | 10952929PubMed |
Li, H. K., Kuo, T. Y., Yang, H. S., Chen, L. R., Li, S. S., and Huang, H. W. (2008). Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos. Anim. Reprod. Sci. 103, 312–322.
| Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtb7O&md5=4098b66840f1140e5525158c5f56d49aCAS | 17222994PubMed |
Liao, W. X., Moore, R. K., Otsuka, F., and Shimasaki, S. (2003). Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep. J. Biol. Chem. 278, 3713–3719.
| Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9. Implication of the aberrant ovarian phenotype of BMP-15 mutant sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Kquw%3D%3D&md5=0e4a108288210d50c32d230bb9cc3a69CAS | 12446716PubMed |
Lin, J. Y., Pitman-Crawford, J. L., Bibby, A. H., Hudson, N. L., McIntosh, C. J., Juengel, J. L., and McNatty, K. P. (2012). Effects of species differences on oocyte regulation of granulosa cell function. Reproduction 144, 557–567.
| Effects of species differences on oocyte regulation of granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslClt7rM&md5=36e33b24221e35f3c2d1ce7bb9276ac3CAS | 22967842PubMed |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=224f15b9dfd00d92fda868e1cb065922CAS | 11846609PubMed |
McGrath, S. A., Esquela, A. F., and Lee, S. J. (1995). Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9, 131–136.
| 1:CAS:528:DyaK2MXjsFGhs74%3D&md5=9d4c26b5b5e8d95183658ccf810f7703CAS | 7760846PubMed |
McIntosh, C. J., Lun, S., Lawrence, S., Western, A. H., McNatty, K. P., and Juengel, J. L. (2008). The proregion of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9. Biol. Reprod. 79, 889–896.
| The proregion of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLvM&md5=eecf69dfa51d30426f1cd107a871f298CAS | 18633140PubMed |
McIntosh, C. J., Lawrence, S., Smith, P., Juengel, J. L., and McNatty, K. P. (2012). Active immunization against the proregions of GDF9 or BMP15 alters ovulation rate and litter size in mice. Reproduction 143, 195–201.
| Active immunization against the proregions of GDF9 or BMP15 alters ovulation rate and litter size in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt7g%3D&md5=a1c42d047ca517f812e572baee1053b0CAS | 22106408PubMed |
McMahon, H. E., Sharma, S., and Shimasaki, S. (2008). Phosphorylation of bone morphogenetic protein-15 and growth and differentiation factor-9 plays a critical role in determining agonistic or antagonistic functions. Endocrinology 149, 812–817.
| Phosphorylation of bone morphogenetic protein-15 and growth and differentiation factor-9 plays a critical role in determining agonistic or antagonistic functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqtbo%3D&md5=af667279c050df44e955e40bd9189c7fCAS | 18006624PubMed |
McNatty, K. P., Juengel, J. L., Reader, K. L., Lun, S., Myllymaa, S., Lawrence, S. B., Western, A., Meerasahib, M. F., Mottershead, D. G., Groome, N. P., Ritvos, O., and Laitinen, M. P. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction 129, 473–480.
| Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertbw%3D&md5=0032f9598dde27b200e5285366a12d68CAS | 15798022PubMed |
McNatty, K. P., Lawrence, S., Groome, N. P., Meerasahib, M. F., Hudson, N. L., Whiting, L., Heath, D. A., and Juengel, J. L. (2006). Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod. Fertil. Dev. 18, 403–412.
| Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtV2hurY%3D&md5=511892d2da4eeed2e43e39388177d7bcCAS | 16737633PubMed |
Monti, M., and Redi, C. (2009). Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development. Mol. Reprod. Dev. 76, 994–1003.
| Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGju77F&md5=07677f80b2cc2aff29eab95c478585c1CAS | 19480014PubMed |
Mottershead, D. G., Ritter, L. J., and Gilchrist, R. B. (2012). Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15. Mol. Hum. Reprod. 18, 121–128.
| Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKjur8%3D&md5=342e7c8b89d9da81986e8a37f2af053eCAS | 21911477PubMed |
Otsuka, F., Moore, R. K., and Shimasaki, S. (2001). Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J. Biol. Chem. 276, 32 889–32 895.
| Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCmtLw%3D&md5=a0b804df7b65c111b2b48c65024f5edcCAS |
Paradis, F., Novak, S., Murdoch, G. K., Dyck, M. K., Dixon, W. T., and Foxcroft, G. R. (2009). Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 138, 115–129.
| Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsbk%3D&md5=99d9f54c74070121cc7760d650ca42ebCAS | 19359354PubMed |
Parrish, E. M., Siletz, A., Xu, M., Woodruff, T. K., and Shea, L. D. (2011). Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system. Reproduction 142, 309–318.
| Gene expression in mouse ovarian follicle development in vivo versus an ex vivo alginate culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gs73P&md5=e319be6cb945b0036459ee94e7c9d6bcCAS | 21610168PubMed |
Pedersen, T., and Peters, H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557.
| Proposal for a classification of oocytes and follicles in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7jsFSgtw%3D%3D&md5=1ad22e9bb09f8bcc54f98a261a07dcc7CAS | 5715685PubMed |
Peng, J., Li, Q., Wigglesworth, K., Rangarajan, A., Kattamuri, C., Peterson, R. T., Eppig, J. J., Thompson, T. B., and Matzuk, M. M. (2013). Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl Acad. Sci. USA 110, E776–E785.
| Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFSlur8%3D&md5=7ea1177391b2f4d6c677d41a2ea54fffCAS | 23382188PubMed |
Sánchez, F., Adriaenssens, T., Romero, S., and Smitz, J. (2010). Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus–oocyte complex in mice. Biol. Reprod. 83, 514–524.
| Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus–oocyte complex in mice.Crossref | GoogleScholarGoogle Scholar | 20592308PubMed |
Silva, J. R., van den Hurk, R., van Tol, H. T., Roelen, B. A., and Figueiredo, J. R. (2005). Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 70, 11–19.
| Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOitrzO&md5=902021357bfb639d5510fed117b28abcCAS | 15515056PubMed |
Simpson, C. M., Stanton, P. G., Walton, K. L., Chan, K. L., Ritter, L. J., Gilchrist, R. B., and Harrison, C. A. (2012). Activation of latent human GDF9 by a single residue change (Gly 391 Arg) in the mature domain. Endocrinology 142, 309–318.
| Activation of latent human GDF9 by a single residue change (Gly 391 Arg) in the mature domain.Crossref | GoogleScholarGoogle Scholar |
Tisdall, D. J., Hudson, N., Smith, P., and McNatty, K. P. (1994). Localization of ovine follistatin and alpha and beta A inhibin mRNA in the sheep ovary during the oestrous cycle. J. Mol. Endocrinol. 12, 181–193.
| Localization of ovine follistatin and alpha and beta A inhibin mRNA in the sheep ovary during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFSgtLw%3D&md5=44085657770d85434e9b89dbd7612af4CAS | 8060483PubMed |
Wang, J., and Roy, S. K. (2004). Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone. Biol. Reprod. 70, 577–585.
| Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chsrc%3D&md5=571711fdc898f4b1a45dc07d6825bd42CAS | 14585807PubMed |
Watson, L. N., Mottershead, D. G., Dunning, K. R., Robker, R. L., Gilchrist, R. B., and Russell, D. L. (2012). Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology 153, 4544–4555.
| Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlagtb%2FE&md5=6be457862d67c18fcc76ca4c5f730a9cCAS | 22759380PubMed |
Wigglesworth, K., Lee, K.-B., O’Brien, M. J., Peng, J., Matzuk, M. M., and Eppig, J. J. (2013). Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc. Natl Acad. Sci. USA 110, E3723–E3729.
| Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WlurfE&md5=d689d23d749efd4a74e07472188cfb43CAS | 23980176PubMed |
Yan, C., Wang, P., DeMayo, J., DeMayo, F. J., Elvin, J. A., Carino, C., Prasad, S. V., Skinner, S. S., Dunbar, B. S., and Dube, J. L. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
| 1:CAS:528:DC%2BD3MXjvFKjs7o%3D&md5=1d93769b84d1e52fba812dc951a8b3edCAS | 11376106PubMed |
Yeo, C. X., Gilchrist, R. B., Thompson, J. G., and Lane, M. (2008). Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum. Reprod. 23, 67–73.
| Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgsbzF&md5=e213e108923aef1bd6af4c432ccdc1f9CAS | 17933754PubMed |
Yoshino, O., McMahon, H. E., Sharma, S., and Shimasaki, S. (2006). A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc. Natl Acad. Sci. USA 103, 10 678–10 683.
| A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFWmsL0%3D&md5=8e3ce7f6d4720c4d32f47d9b11729925CAS |