Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Reproductive technologies and genomic selection in dairy cattle

C. Ponsart A H , D. Le Bourhis A , H. Knijn B , S. Fritz C , C. Guyader-Joly D , T. Otter B , S. Lacaze E , F. Charreaux F , L. Schibler C , D. Dupassieux G and E. Mullaart B
+ Author Affiliations
- Author Affiliations

A UNCEIA Research and Development, 13 rue Jouet, 94704 Maisons Alfort, France.

B CRV, Wassenaarweg 20, 6843 NW Arnhem, The Netherlands.

C UNCEIA Research and Development, INRA GA, INRA - Domaine de Vilvert, 78352 Jouy en Josas, Paris, France.

D UNCEIA Research and Development, 484, Chemin Darefin, 38300 Chateauvillain, France.

E MIDATEST, domaine de Sensacq, 64230 Denguin, France.

F EVOLUTION, 69 rue de la Motte Brûlon, BP 30425, 35704 Rennes Cedex 7, France.

G UMOTEST, 259 route des Soudanières, CS 10002, 01250 Cezeyriat, France.

H Corresponding author. Email: claire.ponsart@unceia.fr

Reproduction, Fertility and Development 26(1) 12-21 https://doi.org/10.1071/RD13328
Published: 5 December 2013

Abstract

Genomic tools are now available for most livestock species and are used routinely for genomic selection (GS) in cattle. One of the most important developments resulting from the introduction of genomic testing for dairy cattle is the application of reasonably priced low-density single nucleotide polymorphism technology in the selection of females. In this context, combining genome testing and reproductive biotechnologies in young heifers enables new strategies to generate replacement and elite females in a given period of time. Moreover, multiple markers have been detected in biopsies of preimplantation stage embryos, thus paving the way to develop new strategies based on preimplantation diagnosis and the genetic screening of embryos. Based on recent advances in GS, the present review focuses on new possibilities inherent in reproductive technologies used for commercial purposes and in genetic schemes, possible side effects and beneficial impacts on reproductive efficiency. A particular focus is on the different steps allowing embryo genotyping, including embryo micromanipulation, DNA production and quality assessment.

Additional keywords: embryo genotyping, preimplantation diagnosis.


References

Akasaka, E., Ozawa, A., Mori, H., Mizobe, Y., Yoshida, M., Miyoshi, K., and Sato, M. (2011). Whole-genome amplification-based GenomiPhi for multiple genomic analysis of individual early porcine embryos. Theriogenology 75, 1543–1549.
Whole-genome amplification-based GenomiPhi for multiple genomic analysis of individual early porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Kjsbs%3D&md5=ab98056590792ad04bee200d0874645bCAS | 21354605PubMed |

Boediono, A., Suzuki, T., and Godke, R. A. (2003). Comparison of hybrid and purebred in vitro-derived cattle embryos during in vitro culture. Anim. Reprod. Sci. 78, 1–11.
Comparison of hybrid and purebred in vitro-derived cattle embryos during in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s3jtVChtg%3D%3D&md5=dccb9c1d80727b521d93cc68beffcc21CAS | 12753778PubMed |

Boichard, D., Chung, H., Dassanneville, R., David, X., Eggen, A., Fritz, S., Gietzen, K. J., Hayes, B. J., Lawley, C. T., Sonstegard, T. S., Van Tassell, C. P., VanRaden, P. M., Viaud-Martinez, K. A., and Wiggans, G. R. (2012). Design of a bovine low-density SNP array optimized for imputation. PLoS One 7, e34130.
Design of a bovine low-density SNP array optimized for imputation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt12gsL8%3D&md5=713bdb16e74684b7f5e3d4ffbb41a814CAS | 22470530PubMed |

Bondioli, K. R. (1992). Embryo sexing: a review of current techniques and their potential for commercial application in livestock production. J. Anim. Sci. 70, 19–29.

Bredbacka, P., Peippo, J., and Jaakma, U. (1996). A simplified protocol for PCR-sexing of bovine embryos: a field trial. Theriogenology 45, 218.
A simplified protocol for PCR-sexing of bovine embryos: a field trial.Crossref | GoogleScholarGoogle Scholar |

Cenariu, M., Pall, E., Cernea, C., and Groza, I. (2012). Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability. J. Biomed. Biotechnol. 2012, Article ID 541384.
Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability.Crossref | GoogleScholarGoogle Scholar |

Clay, J. S. (2012). Aiding selection decisions for dairy females using genomics and sexed semen. In ‘Proceedings of the 38th ICAR Session’, 28 May–1 June 2012, Cork. http://www.icar.org/Cork_2012/Manuscripts/Published/Clay.pdf [verified 23 October 2013].

Cochran, S. D., Cole, J. B., Null, D. J., and Hansen, P. J. (2013). Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle. Biol. Reprod. 89, 69.
Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle.Crossref | GoogleScholarGoogle Scholar | 23904513PubMed |

Dean, F. B., Hosono, S., Fang, L., Wu, X., and Faruqi, A. F. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266.
Comprehensive human genome amplification using multiple displacement amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFKlsrw%3D&md5=b4c2d7f4167b95cb3f80959cd504ab8eCAS | 11959976PubMed |

El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M. A., Schellander, K., and Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 84–96.
Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmtrzK&md5=e6037a684ea28f705ccc065d051920b9CAS | 17018689PubMed |

Fisher, P. J., Hyndman, D. L., Bixley, M. J., Oback, F. C., Popovic, L., McGowan, L. T., Berg, M. C., and Wells, D. N. (2012). Brief communication: potential for genomic selection of bovine embryos. Proc. N.Z. Soc. Anim. Prod. 72, 156–158.

Fritz, S., Capitan, A., Djari, A., Rodriguez, S. C., Barbat, A., Baur, A., Grohs, C., Weiss, B., Boussaha, M., Esquerré, D., Klopp, C., Rocha, D., and Boichard, D. (2013). Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2. PLoS One 8, e65550.
Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSku7zM&md5=37a47363c49f5407eeb5265dfdfb8da3CAS | 23762392PubMed |

Gamarra, G., Le Bourhis, D., Gall, L., Laffont, L., Ruffini, S., and Humblot, P. (2009). Attempts to culture biopsied cells from in vitro bovine blastocysts for genotyping. Reprod. Fertil. Dev. 22, 238–239.
Attempts to culture biopsied cells from in vitro bovine blastocysts for genotyping.Crossref | GoogleScholarGoogle Scholar |

Ghanem, N., Salilew-Wondim, D., Gad, A., Tesfaye, D., Phatsara, C., Tholen, E., Looft, C., Schellander, K., and Hoelker, M. (2011). Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction 142, 551–564.
Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyitb%2FL&md5=89cb020d9a5c3d95a09bac8c47f3c592CAS | 21799070PubMed |

Gonzalez, C., Lebourhis, D., Guyader-Joly, C., Moulin, B., Heyman, Y., and Humblot, P. (2008). Pregnancy rates after single direct transfer of biopsied frozen-thawed bovine embryos according to quality. In ‘Proceedings of the 24th Meeting AETE’, 12–13 September 2008, Pau, France. p. 158 (Abstract). http://www.aete.eu/pdf_publication/24.pdf [verified 23 October 2013].

Guignot, F., Perreau, G., Cavarroc, C., Touzé, J. L., Pougnard, J. L., Dupont, F., Beckers, J. F., Remy, B., Babillot, J. M., Bed’Hom, B., Lamorinière, J. M., Mermillod, P., and Baril, G. (2011). Sex and PRPN genotype determination in preimplantation caprine embryos. Reprod. Domest. Anim. 46, 656–663.
Sex and PRPN genotype determination in preimplantation caprine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjotFOjug%3D%3D&md5=976051c7982c3ecf26c9af9aa9d5b9f1CAS | 21121967PubMed |

Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G., and Chee, M. S. (2005). A genomic wide scalabe SNP genotyping assay using microarray technology. Nat. Genet. 37, 549–554.
A genomic wide scalabe SNP genotyping assay using microarray technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsF2ks74%3D&md5=17543ededfdd33afc6266dcd804ca397CAS | 15838508PubMed |

Humblot, P. (2011). Reproductive technologies and epigenetics: their implications for genomic selection in cattle. Acta Sci. Vet. 39, 253–262.

Humblot, P., Le Bourhis, D., Fritz, S., Colleau, J. J., Gonzalez, C., Guyader Joly, C., Malafosse, A., Heyman, Y., Amigues, Y., Tissier, M., and Ponsart, C. (2010). Reproductive technologies and genomic selection in cattle. Vet. Med. Int. 2010, Article ID 192787.
Reproductive technologies and genomic selection in cattle.Crossref | GoogleScholarGoogle Scholar |

Khatib, H., Maltecca, C., Monson, R. L., Schutzkus, V., Wang, X., and Rutledge, J. J. (2008). The fibroblast growth factor 2 gene is associated with embryonic mortality in cattle. J. Anim. Sci. 86, 2063–2067.
The fibroblast growth factor 2 gene is associated with embryonic mortality in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFansLbI&md5=6ab1be1cdb15b3a6464c7ef44f8128ecCAS | 18469054PubMed |

Khatib, H., Maltecca, C., Monson, R. L., Schutzkus, V., and Rutledge, J. J. (2009). Monoallelic maternal expression of STAT5A affects embryonic survival in cattle. BMC Genet. 10, 13.
Monoallelic maternal expression of STAT5A affects embryonic survival in cattle.Crossref | GoogleScholarGoogle Scholar | 19284551PubMed |

Lacaze, S., Humblot, P., and Ponsart, C. (2008). Sexage et transfert direct d’embryons bovins biopsies et congelés en ferme dans un programme commercial. In ‘Proceedings Renc. Rech Ruminanat’, 3–4 December 2008, Paris. pp. 287–290. Available at http://www.journees3r.fr/IMG/pdf/2008_12_reproduction_03_Lacaze.pdf [verified 23 October 2013].

Lacaze, S., Ponsart, C., and Humblot, P. (2009). Influence of embryo stage on pregnancy rates following transfer of bovine biopsied embryos under on-farm conditions. In ‘Proceedings of the 25th AETE’, 11–12 September 2009, Poznan, Poland. p. 208. Available at http://www.aete.eu/pdf_publication/28.pdf [verified 23 October 2013].

Lauri, A., Lazzari, G., Galli, C., Lagutina, I., Genzini, E., Braga, F., Mariani, P., and Williams, J. (2013). Assessment of MDA efficiency for genotyping using cloned embryo biopsies. Genomics 101, 24–29.
Assessment of MDA efficiency for genotyping using cloned embryo biopsies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWnu73E&md5=b99ad7ff9d4fec1078eef1d5b44834c0CAS | 22982297PubMed |

Lazzari, G., Colleoni, S., Duchi, R., Galli, A., Houghton, F. D., and Galli, C. (2011). Embryonic genotype and inbreeding affect preimplantation development in cattle. Reproduction 141, 625–632.
Embryonic genotype and inbreeding affect preimplantation development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCisro%3D&md5=5d2743aca4c5b92f6976a9c4e4e13ae2CAS | 21310813PubMed |

Le Bourhis, D., Chesne, P., Nibart, M., Marchal, J., Humblot, P., Renard, J. P., and Heyman, Y. (1998). Nuclear transfer from sexed parent embryos in cattle: efficiency and birth of offspring. J. Reprod. Fertil. 113, 343–348.
Nuclear transfer from sexed parent embryos in cattle: efficiency and birth of offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOms78%3D&md5=b4e7969f7e3d674ec670fa06da937539CAS | 9861176PubMed |

Le Bourhis, D., Amigues, Y., Charreaux, F., Lacaze, S., Tissier, M., Guyader-Joly, C., Mervant, G., Moulin, B., Vignon, X., Gonzalez, C., and Humblot, P. (2009). Embryo genotyping from in vitro biopsied bovine embryos after whole genome amplification. Reprod. Fertil. Dev. 21, 192.
Embryo genotyping from in vitro biopsied bovine embryos after whole genome amplification.Crossref | GoogleScholarGoogle Scholar |

Le Bourhis, D., Mullaart, E., Humblot, P., Coppieters, W., and Ponsart, C. (2011). Bovine embryo genotyping using a 50 k SNP chip. Reprod. Fertil. Dev. 23, 197.
Bovine embryo genotyping using a 50 k SNP chip.Crossref | GoogleScholarGoogle Scholar |

Le Bourhis, D., Mullaart, E., Schrooten, C., Fritz, S., Coppieters, W., and Ponsart, C. (2012). Breeding values concordance between embryos and corresponding calves. Reprod. Fertil. Dev. 24, 180.
Breeding values concordance between embryos and corresponding calves.Crossref | GoogleScholarGoogle Scholar |

Ling, J., Zhuang, G., Tazon-Vega, B., Zhang, C., Cao, B., Rozenwaks, Z., and Xu, K. (2009). Evaluation of genome coverage and fidelity of multiple displacement amplification from single cells by SNP array. Mol. Hum. Reprod. 15, 739–747.
Evaluation of genome coverage and fidelity of multiple displacement amplification from single cells by SNP array.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ortr%2FI&md5=d9b64d5d4f684047f17cd1385580b27fCAS | 19671595PubMed |

Lopes, R. F., Forell, F., Oliveira, A. T., and Rodrigues, J. L. (2001). Splitting and biopsy for bovine embryo sexing under field conditions. Theriogenology 56, 1383–1392.
Splitting and biopsy for bovine embryo sexing under field conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslyqsg%3D%3D&md5=aaf7f9a2f344862a5ceb1ba5725956dfCAS | 11768805PubMed |

Lovmar, L., and Syvanen, A. C. (2006). Multiple displacement amplification to create along-lasting source of DNA for genetic studies. Hum. Mutat. 27, 603–614.
Multiple displacement amplification to create along-lasting source of DNA for genetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlyrtL8%3D&md5=c84559f4102fc68c790f731d08b751c6CAS | 16786504PubMed |

Lund, M. S., de Roos, A., de Vries, A. G., Druet, T., Ducrocq, V., Fritz, S., Guillaume, F., Guldbrandtsen, B., Liu, Z., Reents, R., Schrooten, C., Seefried, F., and Su, G. (2011). A common reference population from four European Holstein populations increases reliability of genomic predictions. Genet. Sel. Evol. 43, 43.
A common reference population from four European Holstein populations increases reliability of genomic predictions.Crossref | GoogleScholarGoogle Scholar | 22152008PubMed |

McAllister, A. J. (2002). Is crossbreeding the answer to questions of dairy breed utilization? J. Dairy Sci. 85, 2352–2357.
Is crossbreeding the answer to questions of dairy breed utilization?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2nsLg%3D&md5=b3c2e0c3fae349049684dbdb759f571bCAS | 12362468PubMed |

Mc Hugh, N., Meuwissen, T. H., Cromie, A. R., and Sonesson, A. K. (2011). Use of female information in dairy cattle genomic breeding programs. J. Dairy Sci. 94, 4109–4118.
Use of female information in dairy cattle genomic breeding programs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVylurY%3D&md5=9296d83b95378b47d2e618f9ab333576CAS | 21787946PubMed |

Merton, J. S., Ask, B., Onkundi, D. C., Mullaart, E., Colenbrander, B., and Nielen, M. (2009). Genetic parameters for oocyte number and embryo production within a bovine ovum pick-up in vitro production embryo-production program. Theriogenology 72, 885–893.
Genetic parameters for oocyte number and embryo production within a bovine ovum pick-up in vitro production embryo-production program.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MnjsVarsg%3D%3D&md5=d69d4fda614ad5e04c64faba230bfb46CAS | 19716168PubMed |

Moros-Mora, R., Laguna-Barraza, R., Beltran-Brena, P., Gutierrez-Adan, A., Rizos, D., and Ramirez, M. A. (2011). A system to establish a biopsy-derived trophectoderm cell line for bovine embryo genotyping. In ‘Proceedings of the 27th Annual Meeting of AETE’, 9–10 September 2011, Chester, UK. p. 208. Available at http://www.aete.eu/pdf_publication/30.pdf [verified 23 October 2013].

Norman, H. D., Miller, R. H., Wright, J. R., Hutchison, J. L., and Olson, K. M. (2012). Factors associated with frequency of abortions recorded through dairy herd improvement test plans. J. Dairy Sci. 95, 4074–4084.
Factors associated with frequency of abortions recorded through dairy herd improvement test plans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGksbk%3D&md5=8939ed64a03000a7f6bd76cdf28d15d0CAS | 22720964PubMed |

Paez, J. G., Lin, M., Beroukhim, R., Lee, J. C., Zhao, X., Richter, D. J., Gabriel, S., Herman, P., Sasaki, H., Altshuler, D., Li, C., Meyerson, M., and Sellers, W. R. (2004). Genome coverage and sequence fidelity of φ29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. 32, e71.
Genome coverage and sequence fidelity of φ29 polymerase-based multiple strand displacement whole genome amplification.Crossref | GoogleScholarGoogle Scholar | 15150323PubMed |

Paula-Lopes, F. F., Lima, R. S., Strapa, R. A., and Barros, C. M. (2013). Influence of cattle genotype (Bos indicus vs Bos taurus) on oocyte and preimplantation embryo resistance to elevated temperature. J. Anim. Sci. 91, 1143–1153.
Influence of cattle genotype (Bos indicus vs Bos taurus) on oocyte and preimplantation embryo resistance to elevated temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFKntLo%3D&md5=b4da6ad2a0b9efa56505aa6c6956ed64CAS | 23296831PubMed |

Pedersen, L. D., Kargo, M., Berg, P., Voergaard, J., Buch, L. H., and Sorensen, A. C. (2012). Genomic selection stratefies in dairy cattle breeding programmes: sexed semen cannot replace multiple oculation and embryo transfer as superior reproductive technology. J. Anim. Breed. Genet. 129, 152–163.
Genomic selection stratefies in dairy cattle breeding programmes: sexed semen cannot replace multiple oculation and embryo transfer as superior reproductive technology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383ptFWgtg%3D%3D&md5=d62b8788faecc0ef3c2c4d0ddc2bb97eCAS | 22394237PubMed |

Peippo, J., Viitala, S., Virta, J., Raty, M., Tammiranta, N., Lamminen, T., Aro, J., Myllymaki, H., and Vilkki, J. (2007). Birth of correctly genotyped calves after multiplex marker detection from bovine embryo microblade biopsies. Mol. Reprod. Dev. 74, 1373–1378.
Birth of correctly genotyped calves after multiplex marker detection from bovine embryo microblade biopsies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFeksbfF&md5=714b3410fa05ef8f71b01385432e21ffCAS | 17440940PubMed |

Peñagaricano, F., and Khatib, H. (2011). Association of milk protein genes with fertilization rate and early embryonic development in Holstein dairy cattle. J. Dairy Res. 79, 47–52.
Association of milk protein genes with fertilization rate and early embryonic development in Holstein dairy cattle.Crossref | GoogleScholarGoogle Scholar | 22008563PubMed |

Pimentel, E. C. G., Bauersachs, S., Tietze, M., Simianer, H., Tetens, J., Thaller, G., Reinhardt, F., Wolf, E., and König, S. (2011). Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim. Genet. 42, 251–262.
Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnivFSitQ%3D%3D&md5=b7d4c858405001830a9f050a928b772aCAS |

Polisseni, J., Sa, W. J., Guerra Mde, O., Machado, M. A., Serapiao, R. V., Carvalho, B. C., Camargo, L. S., and Peters, V. M. (2010). Post-biopsy bovine embryo viability and whole genome amplification in preimplantation genetic diagnosis. Fertil. Steril. 93, 783–788.
Post-biopsy bovine embryo viability and whole genome amplification in preimplantation genetic diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFenu7s%3D&md5=325ce410cbc233401067b059308cad8aCAS | 19111299PubMed |

Pryce, J. E., Hayes, B. J., and Goddard, M. E. (2012). Genotyping dairy females can improve the reliability of genomic selection for young bulls and heifers and provide farmers with new management tools. In ‘Proceedings of the 38th ICAR Session’, 28 May–1 June 2012, Cork. http://www.icar.org/Cork_2012/Manuscripts/Published/Pryce%202.pdf [verified 23 October 2013].

Ren, Z., Zeng, H., Xu, Y., Zhuang, G., Deng, J., Zhang, C., and Zhou, C. (2009). Preimplantation genetic diagnosis for Duchenne muscular dystrophy by multiple displacement amplification. Fertil. Steril. 91, 359–364.
Preimplantation genetic diagnosis for Duchenne muscular dystrophy by multiple displacement amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsF2nsL0%3D&md5=60f51380b63cc85d87964a8c530ff932CAS | 18359022PubMed |

Santos-Biase, W. K., Biase, F. H., Buratini, J., Balieiro, J., Watanabe, Y. F., Accorsi, M. F., Ferreira, C. R., Stranieri, P., Caetano, A. R., and Meirelles, F. V. (2012). Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Anim. Reprod. Sci. 134, 141–149.
Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamurbF&md5=8d9b766d7651d51a48bc7a2321325ee3CAS | 22959639PubMed |

Sargolzaei, M., Vigneault, C., Blondin, P., Schenkel, F., and Chesnais, J. (2012). Results from the Boviteq embryo genotyping research project. Dairy Cattle Breeding and Genetics Committee Meeting, 18 September 2012. Available at: http://lirpa.aps.uoguelph.ca/elares/sites/default/files/msargol_Embryo_Genotyping_Project.pdf [verified 2 November 2013].

Schaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123, 218–223.
Strategy for applying genome-wide selection in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vlvFCitA%3D%3D&md5=ee1bd988df03a837f47759e228757539CAS | 16882088PubMed |

Sonstegard, T. S., Cole, J. B., VanRaden, P. M., Van Tassell, C. P., Null, D. J., Schroeder, S. G., Bickhart, D., and McClure, M. C. (2013). Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle. PLoS One 8, e54872.
Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2gtLo%3D&md5=079316ea8fccaffcce06c0c830899cbbCAS | 23349982PubMed |

Sørensen, M. K., Voergaard, J., Pedersen, L. D., Berg, P., and Sørensen, A. C. (2011). Genetic gain in dairy cattle populations is increased using sexed semen in commercial herds. J. Anim. Breed. Genet. 128, 267–275.
Genetic gain in dairy cattle populations is increased using sexed semen in commercial herds.Crossref | GoogleScholarGoogle Scholar | 21749473PubMed |

Thibier, M., and Nibart, M. (1995). The sexing of bovine embryos in the field. Theriogenology 43, 71–80.
The sexing of bovine embryos in the field.Crossref | GoogleScholarGoogle Scholar |

Tominaga, K., Iwaki, F., and Hochi, S. (2007). Conventional freezing of in vitro-produced and biopsied bovine blastocysts in the presence of a low concentration of glycerol and sucrose. J. Reprod. Dev. 53, 443–447.
Conventional freezing of in vitro-produced and biopsied bovine blastocysts in the presence of a low concentration of glycerol and sucrose.Crossref | GoogleScholarGoogle Scholar | 17135713PubMed |

Treff, N. R., Jing, S., Tao, X., Northrop, L. E., and Scott, R. T. (2011). Single cell genome amplification technique impacts the accuracy of SNP based genotyping and copy number analyses Mol. Hum. Reprod. 17, 335–343.
Single cell genome amplification technique impacts the accuracy of SNP based genotyping and copy number analysesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOltr4%3D&md5=cde1c736689f65d3fdcdd0ea47ae114aCAS | 21177337PubMed |

VanRaden, P. M., Olson, K. M., Null, D. J., and Hutchison, J. L. (2011). Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94, 6153–6161.
Harmful recessive effects on fertility detected by absence of homozygous haplotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFClsbjM&md5=2bec79b16571d83a03aeb5f1db2d3c82CAS | 22118103PubMed |