Supplementation with omega-3 fatty acids during gestation and lactation to a vitamin B12-deficient or -supplemented diet improves pregnancy outcome and metabolic variables in Wistar rats
Amrita Khaire A , Richa Rathod A , Nisha Kemse A , Anvita Kale A and Sadhana Joshi A BA Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune – 411043, India.
B Corresponding author. Email: srjoshi62@gmail.com
Reproduction, Fertility and Development 27(2) 341-350 https://doi.org/10.1071/RD13306
Abstract
Maternal vitamin B12 deficiency leads to an adverse pregnancy outcome and increases the risk for developing diabetes and metabolic syndrome in mothers in later life. Our earlier studies have demonstrated that vitamin B12 and n-3 polyunsaturated fatty acids (PUFA) are interlinked in the one carbon cycle. The present study for the first time examines the effect of maternal n-3 PUFA supplementation to vitamin B12 deficient or supplemented diets on pregnancy outcome, fatty-acid status and metabolic variables in Wistar rats. Pregnant dams were assigned to one of the following groups: control, vitamin B12 deficient, vitamin B12 supplemented, vitamin B12 deficient + n-3 PUFA or vitamin B12 supplemented + n-3 PUFA. The amount of vitamin B12 in the supplemented group was 0.50 μg kg–1 diet and n-3 PUFA was alpha linolenic acid (ALA) 1.68, eicosapentaenoic acid 5.64, docosahexaenoic acid (DHA) 3.15 (g per 100 g fatty acids per kg diet). Our findings indicate that maternal vitamin B12 supplementation did not affect the weight gain of dams during pregnancy but reduced litter size and weight and was ameliorated by n-3 PUFA supplementation. Vitamin B12 deficiency or supplementation resulted in a low percentage distribution of plasma arachidonic acid and DHA. n-3 PUFA supplementation to these diets improved the fatty-acid status. Vitamin B12 deficiency resulted in higher homocysteine and insulin levels, which were normalised by supplementation with either vitamin B12 or n-3 PUFA. Our study suggests that maternal vitamin B12 status is critical in determining pregnancy outcome and metabolic variables in dams and that supplementation with n-3 PUFA is beneficial.
Additional keywords: docosahexaenoic acid, glucose, insulin, lipid profile, metabolic syndrome, nutrition, omega-3 fatty acids, vitamin B12.
References
Amusquivar, E., Laws, J., Clarke, L., and Herrera, E. (2010). Fatty-acid composition of the maternal diet during the first or the second half of gestation influences the fatty-acid composition of sows’ milk and plasma, and plasma of their piglets. Lipids 45, 409–418.| Fatty-acid composition of the maternal diet during the first or the second half of gestation influences the fatty-acid composition of sows’ milk and plasma, and plasma of their piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1Wnsrg%3D&md5=beef68fa0b62feee6cb393b517fca6ccCAS | 20422462PubMed |
Armitage, J. A., Khan, I. Y., Taylor, P. D., Nathanielsz, P. W., and Poston, L. (2004). Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J. Physiol. 561, 355–377.
| Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFait7zP&md5=2781481ce500ef80bb64748018df1a5cCAS | 15459241PubMed |
Ashworth, C. J., and Antipatis, C. (2001). Micronutrient programming of development throughout gestation. Reproduction 122, 527–535.
| Micronutrient programming of development throughout gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGltbw%3D&md5=501ec41d05a5f6426d3d04f96229147aCAS | 11570959PubMed |
Bissoli, L., Di Francesco, V., Ballarin, A., Mandragona, R., Trespidi, R., Brocco, G., Caruso, B., Bosello, O., and Zamboni, M. (2002). Effect of vegetarian diet on homocysteine levels. Ann. Nutr. Metab. 46, 73–79.
| Effect of vegetarian diet on homocysteine levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Gks70%3D&md5=710f83c25738f410b41b6044ea0c962bCAS | 12011576PubMed |
Browning, L. M. (2003). n-3 Polyunsaturated fatty acids, inflammation and obesity-related disease. Proc. Nutr. Soc. 62, 447–453.
| n-3 Polyunsaturated fatty acids, inflammation and obesity-related disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Glsr0%3D&md5=d25ac7a090977616583d8e67933b4db1CAS | 14506893PubMed |
Carlson, S. E., Colombo, J., Gajewski, B. J., Gustafson, K. M., Mundy, D., Yeast, J., Georgieff, M. K., Markley, L. A., Kerling, E. H., and Shaddy, D. J. (2013). DHA supplementation and pregnancy outcomes. Am. J. Clin. Nutr. 97, 808–815.
| DHA supplementation and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Sqtro%3D&md5=959f0cad777de9cd057309062c939ed2CAS | 23426033PubMed |
Carmel, R. (2008). Efficacy and safety of fortification and supplementation with vitamin B12: biochemical and physiological effects. Food Nutr. Bull. 29, S177–S187.
| 18709891PubMed |
Carpentier, Y. A., Portois, L., and Malaisse, W. J. (2006). n–3 Fatty acids and the metabolic syndrome. Am. J. Clin. Nutr. 83, 1499S–1504S.
| 1:CAS:528:DC%2BD28XlvVOltro%3D&md5=ee8b60b87e8f8b187cdfed17aa5435d4CAS | 16841860PubMed |
Clarke, S. D. (2000). Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 83, S59–S66.
| Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Ogur0%3D&md5=d71fe80942dc06b2696fe74cb294b9c4CAS | 10889793PubMed |
Coletta, J., Bell, S., and Roman, A. (2010). Omega-3 fatty acids and pregnancy. Rev. Obstet. Gynecol. 3, 163–171.
| 21364848PubMed |
Dhobale, M. V., Wadhwani, N., Mehendale, S. S., Pisal, H. R., and Joshi, S. R. (2011). Reduced levels of placental long-chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot. Essent. Fatty Acids 85, 149–153.
| Reduced levels of placental long-chain polyunsaturated fatty acids in preterm deliveries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaktrjF&md5=476cf75ad8bc588ff97dcbe831cc8daaCAS | 21816593PubMed |
Donahue, S. M. A., Rifas-Shiman, S. L., Gold, D. R., Jouni, Z. E., Gillman, M. W., and Oken, E. (2011). Prenatal fatty-acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am. J. Clin. Nutr. 93, 780–788.
| Prenatal fatty-acid status and child adiposity at age 3 y: results from a US pregnancy cohort.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFahu7g%3D&md5=6cdd805e9513ce6a7fa99f39dd15c7abCAS |
Dror, D. K., and Allen, L. H. (2012). Interventions with vitamins B6, B12 and C in pregnancy. Paediatr. Perinat. Epidemiol. 26, 55–74.
| Interventions with vitamins B6, B12 and C in pregnancy.Crossref | GoogleScholarGoogle Scholar | 22742602PubMed |
Fekete, K., Berti, C., Trovato, M., Lohner, S., Dullemeijer, C., Souverein, O., Cetin, I., and Decsi, T. (2012). Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutr. J. 11, 75.
| Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSiurbF&md5=946fd11f79ad349e64503accecdde69aCAS | 22992251PubMed |
Finnell, R. H., Shaw, G. M., Lammer, E. J., and Rosenquist, T. H. (2008). Gene–nutrient interactions: importance of folic acid and vitamin B12 during early embryogenesis. Food Nutr. Bull. 29, S86–S98.
| 18709884PubMed |
Gallou-Kabani, C., and Junien, C. (2005). Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54, 1899–1906.
| Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVels7g%3D&md5=c0d32fd4e5df3504591816ced03224d3CAS | 15983188PubMed |
Göbl, C. S., Bozkurt, L., Prikoszovich, T., Winzer, C., Pacini, G., and Kautzky, A. (2011). Early possible risk factors for overt diabetes after gestational Diabetes mellitus. Obstet. Gynecol. 118, 71–78.
| Early possible risk factors for overt diabetes after gestational Diabetes mellitus.Crossref | GoogleScholarGoogle Scholar | 21691165PubMed |
Greenberg, J. A., Bell, S. J., and Van Ausdal, W. (2008). Omega-3 fatty-acid supplementation during pregnancy. Rev. Obstet. Gynecol 1, 162–169.
| 19173020PubMed |
Hein, G. J., Bernasconi, A. M., Montanaro, M. A., Pellon-Maison, M., Finarelli, G., Chicco, A., Lombardo, Y. B., and Brenner, R. R. (2010). Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsaturated fatty acids. Am. J. Physiol. Endocrinol. Metab. 298, E429–E439.
| Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFGgs7k%3D&md5=1da4d0c79f34122a08b6acf43fd1612eCAS | 19952344PubMed |
Helland, I. B., Saugstad, O. D., Smith, L., Saarem, K., Solvoll, K., Ganes, T., and Drevon, C. A. (2001). Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics 108, E82.
| Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnksFGrug%3D%3D&md5=14f91d8be3f9bfb9dc47cc2cffeffa54CAS | 11694666PubMed |
Hirabara, S. M., Folador, A., Fiamoncini, J., Lambertucci, R. H., Rodrigues, C. F., Rocha, M. S., Aikawa, J., Yamazaki, R. K., Martins, A. R., Rodrigues, A. C., Carpinelli, A. R., Pithon-Curi, T. C., Fernandes, L. C., Gorjão, R., and Curi, R. (2013). Fish-oil supplementation for two generations increases insulin sensitivity in rats. J. Nutr. Biochem. 24, 1136–1145.
| Fish-oil supplementation for two generations increases insulin sensitivity in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCrsbnN&md5=0d4f4c096054d24d4f4a8fa236fb0b85CAS | 23246156PubMed |
Huang, T., Wahlqvist, M. L., and Li, D. (2012). Effect of n-3 polyunsaturated fatty acids on gene expression of the critical enzymes involved in homocysteine metabolism. Nutr. J. 11, 6.
| Effect of n-3 polyunsaturated fatty acids on gene expression of the critical enzymes involved in homocysteine metabolism.Crossref | GoogleScholarGoogle Scholar | 22260268PubMed |
Hung, C. J., Huang, P. C., Lu, S. C., Li, Y. H., Huang, H. B., Lin, B. F., Chang, S. J., and Chou, H. F. (2002). Plasma homocysteine levels in Taiwanese vegetarians are higher than those of omnivores. J. Nutr. 132, 152–158.
| 1:CAS:528:DC%2BD38XhtFGgurg%3D&md5=020444b8fc372b02c4be45369055e5f5CAS | 11823571PubMed |
Innis, S. M. (2008). Dietary omega-3 fatty acids and the developing brain. Brain Res. 1237, 35–43.
| Dietary omega-3 fatty acids and the developing brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SisLjM&md5=a7ae5110252ba4aee09b4f30f70ea210CAS | 18789910PubMed |
Jensen, C. B., Petersen, S. B., Granström, C., Maslova, E., Mølgaard, C., and Olsen, S. F. (2012). Sources and determinants of vitamin D intake in Danish pregnant women. Nutrients 4, 259–272.
| Sources and determinants of vitamin D intake in Danish pregnant women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Slt74%3D&md5=5d075177b98f5bfd177201b8b0acb2e7CAS | 22606369PubMed |
Jones, M. L., Mark, P. J., Keelan, J. A., Barden, A., Mas, E., Mori, T. A., and Waddell, B. J. (2013). Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. J. Lipid Res. 54, 2247–2254.
| Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOrsL3F&md5=40231491d398590c953877459c2ce349CAS | 23723388PubMed |
Kabir, M., Skurnik, G., Naour, N., Pechtner, V., Meugnier, E., and Rome, S. (2007). Treatment for 2 mo with n-3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with Type 2 diabetes: a randomised controlled study. Am. J. Clin. Nutr. 86, 1670–1679.
| 1:CAS:528:DC%2BD2sXhsVGhsL7J&md5=e608d091d1947ff7849b1139dd27715dCAS | 18065585PubMed |
Kapil, U. (2009). Multiple micronutrient supplements will not reduce incidence of low birth weight. Indian J. Community Med. 34, 85–86.
| Multiple micronutrient supplements will not reduce incidence of low birth weight.Crossref | GoogleScholarGoogle Scholar | 19966949PubMed |
Kawai, K., Spiegelman, D., Shankar, A. H., and Fawzi, W. W. (2011). Maternal multiple micronutrient supplementation and pregnancy outcomes in developing countries: meta-analysis and meta-regression. Bull. World Health Organ. 89, 402–411B.
| Maternal multiple micronutrient supplementation and pregnancy outcomes in developing countries: meta-analysis and meta-regression.Crossref | GoogleScholarGoogle Scholar | 21673856PubMed |
Kilari, A. S., Mehendale, S. S., Dangat, K. D., Yadav, H. R., Kulakarni, A. V., Dhobale, M. V., Taralekar, V. S., and Joshi, S. R. (2009). Long-chain polyunsaturated fatty acids in mothers and term babies. J. Perinat. Med. 37, 513–518.
| Long-chain polyunsaturated fatty acids in mothers and term babies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWitb%2FO&md5=62b0e88a432d4fb66733592e5455e760CAS | 19492914PubMed |
Krajcovicova-Kudlackova, M., Babinska, K., Blazicek, P., Valachovicova, M., Spustova, V., Mislanova, C., and Paukova, V. (2011). Selected biomarkers of age-related diseases in older subjects with different nutrition. Bratisl. Lek Listy 112, 610–613.
| 1:CAS:528:DC%2BC38Xos1Sqtg%3D%3D&md5=fb6f3043b19b016f65b1f526a9fcc264CAS | 22180985PubMed |
Krishnaveni, G. V., Hill, J. C., Veena, S. R., Bhat, D. S., Wills, A. K., Karat, C. L. S., Yajnik, C. S., and Fall, C. H. D. (2009). Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia 52, 2350–2358.
| Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cis7jJ&md5=37977a265dd186d69fb992827606781cCAS | 19707742PubMed |
Kuipers, R. S., de Graaf, D. J., Luxwolda, M. F., Muskiet, M. H., Dijck-Brouwer, D. A., and Muskiet, F. A. (2011). Saturated fat, carbohydrates and cardiovascular disease. Neth. J. Med. 69, 372–378.
| 1:CAS:528:DC%2BC3MXhtlCnsrfM&md5=137544063461866254ff0316b0335157CAS | 21978979PubMed |
Kulkarni, A. V., Mehendale, S. S., Yadav, H. R., Kilari, A. S., Taralekar, V. S., and Joshi, S. R. (2010). Circulating angiogenic factors and their association with birth outcomes in preeclampsia. Hypertens. Res. 33, 561–567.
| Circulating angiogenic factors and their association with birth outcomes in preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVSkt7g%3D&md5=6c7867e1eb575bfb12fca7150b59c6f6CAS | 20224572PubMed |
Kulkarni, A., Dangat, K., Kale, A., Sable, P., Gautam, P., and Joshi, S. (2011). Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS ONE 6, e17706.
| Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslKlsrw%3D&md5=b0f1be19cbd5832e39c7807acf10557bCAS | 21423696PubMed |
Lassi, Z. S., Salam, R. A., Haider, B. A., and Bhutta, Z. A. (2013). Folic-acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst. Rev. , CD006896.
| Folic-acid supplementation during pregnancy for maternal health and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 23543547PubMed |
Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., et al. (2010). Executive summary: heart disease and stroke statistics 2010 update: a report from the American Heart Association. Circulation 121, 948–954.
| Executive summary: heart disease and stroke statistics 2010 update: a report from the American Heart Association.Crossref | GoogleScholarGoogle Scholar | 20177011PubMed |
Lorente-Cebrián, S., Costa, A., Navas-Carretero, S., Zabala, M., Martínez, J., and Moreno-Aliaga, M. (2013). Role of omega-3 fatty acids in obesity, metabolic syndrome and cardiovascular diseases: a review of the evidence. J. Physiol. Biochem. 69, 633–651.
| Role of omega-3 fatty acids in obesity, metabolic syndrome and cardiovascular diseases: a review of the evidence.Crossref | GoogleScholarGoogle Scholar | 23794360PubMed |
Makrides, M., and Gibson, R. (2000). Long-chain polyunsaturated fatty acid requirements during pregnancy and lactation. Am. J. Clin. Nutr. 71, 307S–311S.
| 1:CAS:528:DC%2BD3cXlsFKjtg%3D%3D&md5=883e1cb889d995180e3b27a91ef07e18CAS | 10617987PubMed |
Makrides, M., Gibson, R., McPhee, A., Yelland, L., Quinlivan, J., Ryan, P., DOMInO Investigative Team (2010). Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomised controlled trial. JAMA 304, 1675–1683.
| Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomised controlled trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlantb7K&md5=1129ee833ba4b5b34abf0fc9b82f1ff9CAS | 20959577PubMed |
Mardikar, H. M., Deo, D., Raj, D., and Mohan, V. (2007). Dyslipidemia, metabolic syndrome and vascular disease among Asian Indians. Vasc. Dis. Prev. 4, 250–259.
Mehendale, S., Kilari, A., Dangat, K., Taralekar, V., Mahadik, S., and Joshi, S. (2008). Fatty acids, antioxidants and oxidative stress in pre-eclampsia. Int. J. Gynaecol. Obstet. 100, 234–238.
| Fatty acids, antioxidants and oxidative stress in pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlemur4%3D&md5=7b580d0d15a2be5bb130a4e824d1f40dCAS | 17977540PubMed |
Meher, A. P., Joshi, A. A., and Joshi, S. R. (2013). Preconceptional omega-3 fatty-acid supplementation on a micronutrient-deficient diet improves the reproductive cycle in Wistar rats. Reprod. Fertil. Dev. 25, 1085–1094.
| Preconceptional omega-3 fatty-acid supplementation on a micronutrient-deficient diet improves the reproductive cycle in Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gms7rJ&md5=512949da5c71bb693c6edaf58a49725fCAS | 23137932PubMed |
Morse, N. L. (2012). Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on fetal and infant brain development and function following maternal supplementation during pregnancy and lactation. Nutrients 4, 799–840.
| Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on fetal and infant brain development and function following maternal supplementation during pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWlsrfO&md5=468d16836d41bba9696b207954fe9e3eCAS | 22852064PubMed |
Nascimento, F. A. M., Barbosa-da-Silva, S., Fernandes-Santos, C., Mandarim-de-Lacerda, C. A., and Aguila, M. B. (2010). Adipose tissue, liver and pancreas structural alterations in C57BL/6 mice fed high-fat-high-sucrose diet supplemented with fish oil (n-3 fatty-acid rich oil). Exp. Toxicol. Pathol. 62, 17–25.
| Adipose tissue, liver and pancreas structural alterations in C57BL/6 mice fed high-fat-high-sucrose diet supplemented with fish oil (n-3 fatty-acid rich oil).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFSlur4%3D&md5=4a906d810dab77931f23dd67f0133f40CAS |
Neschen, S., Morino, K., Dong, J., Wang-Fischer, Y., Cline, G., and Romanelli, A. (2007). n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 56, 1034–1041.
| n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFChur8%3D&md5=794870237e498c7bd194d20f2a73bd1dCAS | 17251275PubMed |
Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S. M., and Olefsky, J. M. (2010). GPR120 is an omega-3 fatty-acid receptor mediating potent anti-inflammatory and insulin-sensitising effects. Cell 142, 687–698.
| GPR120 is an omega-3 fatty-acid receptor mediating potent anti-inflammatory and insulin-sensitising effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFals7%2FP&md5=1bfbfbdd1fd5528d6dd63c10fbd262a8CAS | 20813258PubMed |
Puglisi, M. J., Hasty, A. H., and Saraswathi, V. (2011). The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J. Nutr. Biochem. 22, 101–108.
| The role of adipose tissue in mediating the beneficial effects of dietary fish oil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVartA%3D%3D&md5=38e862cd17430b3da84eab96025d0916CAS | 21145721PubMed |
Rampal, S., Mahadeva, S., Guallar, E., Bulgiba, A., Mohamed, R., Rahmat, R., Arif, M., and Rampal, L. (2012). Ethnic differences in the prevalence of metabolic syndrome: results from a multi-ethnic population-based survey in Malaysia. PLoS ONE 7, e46365.
| Ethnic differences in the prevalence of metabolic syndrome: results from a multi-ethnic population-based survey in Malaysia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFShs7fF&md5=08033a0b8e337fdfacbcde73acd016e6CAS | 23029497PubMed |
Reeves, P. G., Nielsen, F. H., and Fahey, G. C., (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.
| 1:CAS:528:DyaK2cXltlegsw%3D%3D&md5=c16e1f984b11a244e77c7ded678489fbCAS | 8229312PubMed |
Refsum, H. (2001). Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome. Br. J. Nutr. 85, S109–S113.
| Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCisb4%3D&md5=7e1d8da4c3865a5cc05751947d52e479CAS | 11509098PubMed |
Renwick, A. G. (2006). Toxicology of micronutrients: adverse effects and uncertainty. J. Nutr. 136, 493S–501S.
| 1:CAS:528:DC%2BD28XhtFGiur4%3D&md5=29fcb64e2887c7eacc321b2c7361c87cCAS | 16424134PubMed |
Roed, C., Skovby, F., and Lund, A. (2009). Severe vitamin B12 deficiency in infants breastfed by vegans. Ugeskr. Laeger 171, 3099–3101.
| 19852900PubMed |
Roy, S., Kale, A., Dangat, K., Sable, P., Kulkarni, A., and Joshi, S. (2012). Maternal micronutrients (folic acid and vitamin B 12) and omega-3 fatty acids: implications for neurodevelopmental risk in the rat offspring. Brain Dev. 34, 64–71.
| Maternal micronutrients (folic acid and vitamin B 12) and omega-3 fatty acids: implications for neurodevelopmental risk in the rat offspring.Crossref | GoogleScholarGoogle Scholar | 21300490PubMed |
Sable, P. S., Dangat, K. D., Joshi, A. A., and Joshi, S. R. (2012). Maternal omega-3 fatty-acid supplementation during pregnancy to a micronutrient-imbalanced diet protects postnatal reduction of brain neurotrophins in the rat offspring. Neuroscience 217, 46–55.
| Maternal omega-3 fatty-acid supplementation during pregnancy to a micronutrient-imbalanced diet protects postnatal reduction of brain neurotrophins in the rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGmt7Y%3D&md5=37f97fc7a43537ce52a89f09eea7311eCAS | 22579981PubMed |
Sable, P. S., Kale, A. A., and Joshi, S. R. (2013). Prenatal omega-3 fatty-acid supplementation to a micronutrient-imbalanced diet protects brain neurotrophins both in the cortex and hippocampus in the adult rat offspring. Metabolism 62, 1607–1622.
| Prenatal omega-3 fatty-acid supplementation to a micronutrient-imbalanced diet protects brain neurotrophins both in the cortex and hippocampus in the adult rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyis7%2FJ&md5=21db241b020aef36be6c9b7f5b6914c7CAS | 23845215PubMed |
Sandström, B. (2001). Micronutrient interactions: effects on absorption and bioavailability. Br. J. Nutr. 85, S181–S185.
| Micronutrient interactions: effects on absorption and bioavailability.Crossref | GoogleScholarGoogle Scholar | 11509108PubMed |
Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty-acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 233, 674–688.
| The importance of the omega-6/omega-3 fatty-acid ratio in cardiovascular disease and other chronic diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslWjtbk%3D&md5=3aa1fab796b4e6e6cdb7bb7f43e52b77CAS | 18408140PubMed |
van Wijk, N., Watkins, C., Hageman, R., Sijben, J., Kamphuis, P., Wurtman, R., and Broersen, L. (2012). Combined dietary folate, vitamin B-12 and vitamin B-6 intake influences plasma docosahexaenoic acid concentration in rats. Nutr. Metab. (Lond). 30, 49.
| Combined dietary folate, vitamin B-12 and vitamin B-6 intake influences plasma docosahexaenoic acid concentration in rats.Crossref | GoogleScholarGoogle Scholar |
Wadhwani, N. S., Manglekar, R. R., Dangat, K. D., Kulkarni, A. V., and Joshi, S. R. (2012). Effect of maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids on liver fatty-acid desaturases and transport proteins in Wistar rats. Prostaglandins Leukot. Essent. Fatty Acids 86, 21–27.
| Effect of maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids on liver fatty-acid desaturases and transport proteins in Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsr%2FN&md5=7a1500adc3e57f12f28eab7b2ffc8570CAS | 22133376PubMed |
Yajnik, C. S., Deshpande, S. S., Lubree, H. G., Naik, S. S., Bhat, D. S., Uradey, B. S., Deshpande, J. A., Rege, S. S., Refsum, H., and Yudkin, J. S. (2006). Vitamin B12 deficiency and hyperhomocysteinemia in rural and urban Indians. J. Assoc. Physicians India 54, 775–782.
| 1:STN:280:DC%2BD2s%2FhvVGktw%3D%3D&md5=06805af254cab10a107c79d0d27b8791CAS | 17214273PubMed |
Yajnik, C. S., Deshpande, S. S., Jackson, A. A., Refsum, H., Rao, S., Fisher, D. J., Bhat, D. S., Naik, S. S., Coyaji, K. J., Joglekar, C. V., Joshi, N., Lubree, H. G., Deshpande, V. U., Rege, S. S., and Fall, C. H. D. (2008). Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51, 29–38.
| Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOqs73P&md5=205d832963c6de46884bdae3ce0dd2e3CAS | 17851649PubMed |
Zerfu, T. A., and Ayele, H. T. (2013). Micronutrients and pregnancy; effect of supplementation on pregnancy and pregnancy outcomes: a systematic review. Nutr. J. 12, 20.
| Micronutrients and pregnancy; effect of supplementation on pregnancy and pregnancy outcomes: a systematic review.Crossref | GoogleScholarGoogle Scholar | 23368953PubMed |