Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Are the basal cells of the mammalian epididymis still an enigma?

S. Arrighi
+ Author Affiliations
- Author Affiliations

Department of Health, Animal Science and Food Safety, Laboratory of Anatomy, Università degli Studi di Milano, 2, Via Trentacoste, I-20134, Milano, Italy. Email: silvana.arrighi@unimi.it

Reproduction, Fertility and Development 26(8) 1061-1071 https://doi.org/10.1071/RD13301
Submitted: 29 June 2013  Accepted: 16 September 2013   Published: 21 October 2013

Abstract

Basal cells are present in the columnar pseudostratified epithelium covering the epididymis of all mammalian species, which regulates the microenvironment where the functionally incompetent germ cells produced by the testis are matured and stored. Striking novelties have come from investigations on epididymal basal cells in the past 30–40 years. In addition to an earlier hypothesised scavenger role for basal cells, linked to their proven extratubular origin and the expression of macrophage antigens, basal cells have been shown to be involved in cell–cell cross-talk, as well as functioning as luminal sensors to regulate the activity of principal and clear cells. Involvement of basal cells in the regulation of electrolyte and water transport by principal cells was hypothesised. This control is suggested to be mediated by the local formation of prostaglandins. Members of the aquaporin (AQP) and/or aquaglyceroporin family (AQP3, AQP7 and AQP8) are also specifically expressed in the rat epididymal basal cells. Transport of glycerol and glycerylphosphorylcholine from the epithelium of the epididymis to the lumen in relation to sperm maturation may be mediated by AQP. Most probably basal cells collaborate to the building up of the blood–epididymis barrier through cell adhesion molecules, implying an involvement in immune control exerted towards sperm cells, which are foreigners in the environment in which they were produced.

Additional keywords: epithelium, histophysiology.


References

Abe, K., Takano, H., and Ito, T. (1982). Appearance of peculiar epithelial cells in the epididymal duct of the mouse ligated epididymis. Biol. Reprod. 26, 501–509.
Appearance of peculiar epithelial cells in the epididymal duct of the mouse ligated epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL383gs1yksQ%3D%3D&md5=ceae0aed4a2146a1ad984035b638bc13CAS | 7082723PubMed |

Agnes, V. F., and Akbarsha, M. A. (2001). Pale vacuolated epithelial cells in epididymis of aflatoxin-treated mice. Reproduction 122, 629–641.
Pale vacuolated epithelial cells in epididymis of aflatoxin-treated mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGluro%3D&md5=481a37e9d48c7f32e4e963e7c6bbffb7CAS | 1:CAS:528:DC%2BD3MXotFGluro%3D&md5=481a37e9d48c7f32e4e963e7c6bbffb7CAS | 11570970PubMed |

Aguilera-Merlo, C., Munoz, E., Dominguez, S., Scardapane, L., and Piezzi, R. (2005). Epididymis of viscacha (Lagostomus maximus maximus): morphological changes during the annual reproductive cycle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 282A, 83–92.
Epididymis of viscacha (Lagostomus maximus maximus): morphological changes during the annual reproductive cycle.Crossref | GoogleScholarGoogle Scholar |

Alkafafy, M., Ebada, S., Rashed, R., and Attia, H. (2012). Comparative morphometric and glycohistochemical studies on the epididymal duct in the donkey (Equus asinus) and dromedary camel (Camelus dromedarius). Acta Histochem. 114, 434–447.
Comparative morphometric and glycohistochemical studies on the epididymal duct in the donkey (Equus asinus) and dromedary camel (Camelus dromedarius).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFGnsrc%3D&md5=556bad9b84623b2e52f49f83ca661cfeCAS | 1:CAS:528:DC%2BC38XmtFGnsrc%3D&md5=556bad9b84623b2e52f49f83ca661cfeCAS | 21906788PubMed |

Aralla, M., Mobasheri, A., Rhind, S. M., Fowler, P. A., Marples, D., Sinclair, K. D., Arrighi, S., and Lea, R. G. (2010). The expression of aquaporin 7 in the ovine fetal epididymis is perturbed by in-utero exposure to a cocktail of chemicals contained in sewage sludge fertiliser. In ‘Proceedings of the Annual conference of the Society for Reproduction and Fertility (SRF), Sutton Bonington Campus, University of Nottingham, 11–13 July’, P73, p. 81.

Archambeault, D. R., Tomaszewski, J., Joseph, A., Hinton, B. T., and Yao, H. H. (2009). Epithelial–mesenchymal crosstalk in Wolffian duct and fetal testis cord development. Genesis 47, 40–48.
Epithelial–mesenchymal crosstalk in Wolffian duct and fetal testis cord development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis12ku7k%3D&md5=b1fd853dff6b4e801ea3b7d131d05278CAS | 18979542PubMed |

Arrighi, S. (2013). Primary cilia in the basal cells of equine epididymis: a serendipitous finding. Tissue Cell 45, 140–144.
Primary cilia in the basal cells of equine epididymis: a serendipitous finding.Crossref | GoogleScholarGoogle Scholar | 23182032PubMed |

Arrighi, S., and Aralla, M. (2013). Immunolocalization of aquaporin water channels in the domestic cat male genital tract. Reprod. Domest. Anim. , .
Immunolocalization of aquaporin water channels in the domestic cat male genital tract.Crossref | GoogleScholarGoogle Scholar | 23826797PubMed |

Arrighi, S., and Domeneghini, C. (1993). Ultrastructural study on the fetal and postnatal development of epididymal epithelium in cats, up to the third month of age. Biomed. Res. 4, 75–86.

Arrighi, S., Romanello, M. G., and Aureli, G. (1983). Aspects of the involution of the epididymal epithelium of the donkey. Atti della Societa Italiana delle Scienze Veterinarie 37, 143–145.

Arrighi, S., Romanello, M. G., and Domeneghini, C. (1986). Ultrastructural study on the epithelium lining ductus epididymis in adult cats (Felis catus). Arch. Biol. 97, 7–24.

Arrighi, S., Romanello, M. G., and Domeneghini, C. (1991). Morphological examination of epididymal epithelium in the mule (E. hinnus) in comparison with parental species (E. asinus and E. caballus). Histol. Histopathol. 6, 325–337.
| 1:STN:280:DyaK383jvF2qug%3D%3D&md5=6f5eda5dbb271d97959246f69abe7103CAS |
| 1:STN:280:DyaK383jvF2qug%3D%3D&md5=6f5eda5dbb271d97959246f69abe7103CAS | 1810531PubMed | 1810531PubMed |

Arrighi, S., Romanello, M. G., and Domeneghini, C. (1993). Ultrastructure of epididymal epithelium in Equus caballus. Ann. Anat. 175, 1–9.
Ultrastructure of epididymal epithelium in Equus caballus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3itVyguw%3D%3D&md5=fb9d6ab6d3ba0d5ac4263e16c962c17fCAS | 1:STN:280:DyaK3s3itVyguw%3D%3D&md5=fb9d6ab6d3ba0d5ac4263e16c962c17fCAS | 8465967PubMed |

Arrighi, S., Aralla, M., Genovese, P., Picabea, N., and Bielli, A. (2010a). Undernutrition during foetal to prepubertal life affects aquaporin 9 but not aquaporins 1 and 2 expression in the male genital tract of adult rats. Theriogenology 74, 1661–1669.
Undernutrition during foetal to prepubertal life affects aquaporin 9 but not aquaporins 1 and 2 expression in the male genital tract of adult rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKhsLbJ&md5=428f17aab51a5c3519f28d7f6db59acaCAS | 1:CAS:528:DC%2BC3cXhtlKhsLbJ&md5=428f17aab51a5c3519f28d7f6db59acaCAS |

Arrighi, S., Bosi, G., Groppetti, D., and Cremonesi, F. (2010b). Morpho- and histometric evaluations on the testis and epididymis in buffalo bulls during the different reproductive seasons. Open Anat. J. 2, 29–33.
Morpho- and histometric evaluations on the testis and epididymis in buffalo bulls during the different reproductive seasons.Crossref | GoogleScholarGoogle Scholar |

Arrighi, S., Ventriglia, G., Aralla, M., Zizza, S., Di Summa, A., and Desantis, S. (2010c). Absorptive activities of the efferent ducts evaluated by the immunolocalization of aquaporin water channels and lectin histochemistry in adult cats. Histol. Histopathol. 25, 433–444.
| 1:STN:280:DC%2BC3c7jvFanug%3D%3D&md5=c31a32c75df5446e7c57c42165b9ff70CAS |
| 1:STN:280:DC%2BC3c7jvFanug%3D%3D&md5=c31a32c75df5446e7c57c42165b9ff70CAS | 20183796PubMed |

Aruldhas, M. M., Subramanian, S., Sekhar, P., Vengatesh, G., Govindarajulu, P., and Akbarsha, M. A. (2006). In vivo spermatotoxic effect of chromium as reflected in the epididymal epithelial principal cells, basal cells, and intraepithelial macrophages of a nonhuman primate (Macaca radiata Geoffroy). Fertil. Steril. 86, 1097–1105.
In vivo spermatotoxic effect of chromium as reflected in the epididymal epithelial principal cells, basal cells, and intraepithelial macrophages of a nonhuman primate (Macaca radiata Geoffroy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eht73E&md5=177d1a883fb0fd09b6ef7351ee0abc04CAS | 16949592PubMed | 16949592PubMed |

Atanassova, N., McKinnell, C., Fisher, J., and Sharpe, R. M. (2005). Neonatal treatment of rats with diethylstilboestrol (DES) induces stromal-epithelial abnormalities of the vas deferens and cauda epididymis in adulthood following delayed basal cell development. Reproduction 129, 589–601.
Neonatal treatment of rats with diethylstilboestrol (DES) induces stromal-epithelial abnormalities of the vas deferens and cauda epididymis in adulthood following delayed basal cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFGku7s%3D&md5=40342a561381bef5ad1d05c55d3b053cCAS | 1:CAS:528:DC%2BD2MXksFGku7s%3D&md5=40342a561381bef5ad1d05c55d3b053cCAS | 15855622PubMed | 15855622PubMed |

Badran, H. H., and Hermo, L. S. (2002). Expression and regulation of aquaporins 1, 8, and 9 in the testis, efferent ducts, and epididymis of adult rats and during postnatal development. J. Androl. 23, 358–373.
| 1:CAS:528:DC%2BD38XjvVKmtL8%3D&md5=037dc33c7a8488d15bfb0bbd5edef7d7CAS |
| 1:CAS:528:DC%2BD38XjvVKmtL8%3D&md5=037dc33c7a8488d15bfb0bbd5edef7d7CAS | 12002438PubMed | 12002438PubMed |

Bedford, J. M., and Rifkin, J. M. (1979). An evolutionary view of the male reproductive tract and sperm maturation in a monotreme mammal–the echidna, Tachyglossus aculeatus. Am. J. Anat. 156, 207–229.
An evolutionary view of the male reproductive tract and sperm maturation in a monotreme mammal–the echidna, Tachyglossus aculeatus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2Fmt1eiug%3D%3D&md5=87024025cd395986cc4406a7d3b27e69CAS | 1:STN:280:DyaL3c%2Fmt1eiug%3D%3D&md5=87024025cd395986cc4406a7d3b27e69CAS | 506951PubMed | 506951PubMed |

Belleannée, C., Da Silva, N., Shum, W. W., Brown, D., and Breton, S. (2010). Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells. Am. J. Physiol. Cell Physiol. 298, C817–C830.
Role of purinergic signaling pathways in V-ATPase recruitment to apical membrane of acidifying epididymal clear cells.Crossref | GoogleScholarGoogle Scholar | 20071692PubMed | 20071692PubMed |

Breton, S., Smith, P. J., Lui, B., and Brown, D. (1996). Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat. Med. 2, 470–472.
Acidification of the male reproductive tract by a proton pumping (H+)-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKmt74%3D&md5=07052e2ad08aa5c48c9d9a2d86248562CAS | 1:CAS:528:DyaK28XitVKmt74%3D&md5=07052e2ad08aa5c48c9d9a2d86248562CAS | 8597961PubMed | 8597961PubMed |

Calvo, A., Bustos-Obregon, E., and Pastor, L. M. (1997). Morphological and histochemical changes in the epididymis of hamsters (Mesocricetus auratus) subjected to short photoperiod. J. Anat. 191, 77–88.
Morphological and histochemical changes in the epididymis of hamsters (Mesocricetus auratus) subjected to short photoperiod.Crossref | GoogleScholarGoogle Scholar | 9279661PubMed | 9279661PubMed |

Chandler, J. A., Sinowatz, F., and Pierrepoint, C. G. (1981). The ultrastructure of dog epididymis. Urol. Res. 9, 33–44.
The ultrastructure of dog epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3ns1Gjtg%3D%3D&md5=dc5c925f1e370069e89554b1f6d04d26CAS | 1:STN:280:DyaL3M3ns1Gjtg%3D%3D&md5=dc5c925f1e370069e89554b1f6d04d26CAS | 6267761PubMed | 6267761PubMed |

Cheung, K. H., Leung, G. P., Leung, M. C., Shum, W. W., Zhou, W. L., and Wong, P. Y. (2005). Cell–cell interaction underlies formation of fluid in the male reproductive tract of the rat. J. Gen. Physiol. 125, 443–454.
Cell–cell interaction underlies formation of fluid in the male reproductive tract of the rat.Crossref | GoogleScholarGoogle Scholar | 15851503PubMed | 15851503PubMed |

Chimming, B. C., and Vicentini, C. A. (2001). Ultrastructural features in the epididymis of the dog (Canis familiaris, L.). Anat. Histol. Embryol. 30, 327–332.
Ultrastructural features in the epididymis of the dog (Canis familiaris, L.).Crossref | GoogleScholarGoogle Scholar |

Cornwall, G. A., Lareyre, J.-J., Matusik, R. J., Hinton, B. T., and Orgebin-Crist, M.-C. (2002). Gene expression and epididymal function. In ‘The Epididymis: From Molecules to Clinical Practice’. (Eds B. Robaire and B. T. Hinton.) pp. 169–199. (Kluwer Academic/Plenum Publishers: New York.)

Cyr, D. G. (2011). Connexins and pannexins: coordinating cellular communication in the testis and epididymis. Spermatogenesis 1, 325–338.
Connexins and pannexins: coordinating cellular communication in the testis and epididymis.Crossref | GoogleScholarGoogle Scholar | 22332116PubMed | 22332116PubMed |

Cyr, D. G., Hermo, L., and Laird, D. W. (1996). Immunocytochemical localization and regulation of connexin43 in the adult rat epididymis. Endocrinology 137, 1474–1484.
Immunocytochemical localization and regulation of connexin43 in the adult rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVegtb4%3D&md5=82eafffb15a138ccabd40d5e44b0b8c3CAS | 8625926PubMed | 8625926PubMed |

Cyr, D. G., Gregory, M., Dube, E., Dufresne, J., Chan, P. T., and Hermo, L. (2007). Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood–epididymal barrier in animals and humans. Asian J. Androl. 9, 463–475.
Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood–epididymal barrier in animals and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVSlsLc%3D&md5=e1f052f53d76f8d7dca6116294e23578CAS | 1:CAS:528:DC%2BD2sXptVSlsLc%3D&md5=e1f052f53d76f8d7dca6116294e23578CAS | 17589783PubMed | 17589783PubMed |

Da Silva, N., Piétrement, C., Brown, D., and Breton, S. (2006a). Segmental and cellular expression of aquaporins in the male excurrent duct. Biochim. Biophys. Acta 1758, 1025–1033.
Segmental and cellular expression of aquaporins in the male excurrent duct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Onu7w%3D&md5=5cfc40965f3c3a81559fc3ccf7e9284eCAS | 1:CAS:528:DC%2BD28Xps1Onu7w%3D&md5=5cfc40965f3c3a81559fc3ccf7e9284eCAS | 16935257PubMed | 16935257PubMed |

Da Silva, N., Silberstein, C., Beaulieu, V., Piétrement, C., Van Hoek, A. N., Brown, D., and Breton, S. (2006b). Postnatal expression of aquaporins in epithelial cells of the rat epididymis. Biol. Reprod. 74, 427–438.
Postnatal expression of aquaporins in epithelial cells of the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kkuw%3D%3D&md5=d05122061e0b9bae3b18a005fcbe2933CAS | 1:CAS:528:DC%2BD28Xot1Kkuw%3D%3D&md5=d05122061e0b9bae3b18a005fcbe2933CAS | 16221990PubMed | 16221990PubMed |

Da Silva, N., Shum, W. W., and Breton, S. (2007). Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis. Asian J. Androl. 9, 476–482.
Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVSlsb8%3D&md5=7a7c6049f3700459e781d24c97303056CAS | 17589784PubMed | 17589784PubMed |

Da Silva, N., Cortez-Retamozo, V., Reinecker, H. C., Wildgruber, M., Hill, E., Brown, D., Swirski, F. K., Pittet, M. J., and Breton, S. (2011). A dense network of dendritic cells populates the murine epididymis. Reproduction 141, 653–663.
A dense network of dendritic cells populates the murine epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCisrk%3D&md5=8b4ca654aacbe3fc284f0b96a9dd24eeCAS | 21310816PubMed | 21310816PubMed |

Dinges, H. P., Zatloukal, K., Schmid, C., Mair, S., and Wirnsberger, G. (1991). Co-expression of cytokeratin and vimentin filaments in rete testis and epididymis. An immunohistochemical study. Virchows Arch. A Pathol. Anat. Histopathol. 418, 119–127.
Co-expression of cytokeratin and vimentin filaments in rete testis and epididymis. An immunohistochemical study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7ktlSquw%3D%3D&md5=daf5d468447956caedf6081f389e31a8CAS | 1705065PubMed | 1705065PubMed |

Djakiew, D., and Jones, R. C. (1981). Structural differentiation of the male genital ducts of the echidna (Tachyglossus aculeatus). J. Anat. 132, 187–202.
| 1:STN:280:DyaL38%2FgslCgtQ%3D%3D&md5=e9f862c869b474798e2a4921e485fcc7CAS |
| 1:STN:280:DyaL38%2FgslCgtQ%3D%3D&md5=e9f862c869b474798e2a4921e485fcc7CAS | 7275798PubMed | 7275798PubMed |

Domeniconi, R. F., Orsi, A. M., Justulin, L. A., Beu, C. C., and Felisbino, S. L. (2007). Aquaporin 9 (AQP9) localization in the adult dog testis excurrent ducts by immunohistochemistry. Anat. Rec. (Hoboken) 290, 1519–1525.
Aquaporin 9 (AQP9) localization in the adult dog testis excurrent ducts by immunohistochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Cr&md5=24d461b148e19e600622670bc7c58511CAS | 1:CAS:528:DC%2BD1cXis1Cr&md5=24d461b148e19e600622670bc7c58511CAS | 17957752PubMed | 17957752PubMed |

Domeniconi, R. F., Orsi, A. M., Justulin, L. A., Leme Beu, C. C., and Felisbino, S. L. (2008). Immunolocalization of aquaporins 1, 2 and 7 in rete testis, efferent ducts, epididymis and vas deferens of adult dog. Cell Tissue Res. 332, 329–335.
Immunolocalization of aquaporins 1, 2 and 7 in rete testis, efferent ducts, epididymis and vas deferens of adult dog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Gksr0%3D&md5=485bc92009f6e8bb1a960f70bc14edbfCAS | 1:CAS:528:DC%2BD1cXks1Gksr0%3D&md5=485bc92009f6e8bb1a960f70bc14edbfCAS | 18340467PubMed | 18340467PubMed |

Dubé, E., and Cyr, D. G. (2012). The blood–epididymis barrier and human male fertility. Adv. Exp. Med. Biol. 763, 218–236.
| 23397627PubMed |
| 23397627PubMed |

Dubé, E., Chan, P. T. K., Hermo, L., and Cyr, D. G. (2007). Gene expression profiling and its relevance to the blood–epididymal barrier in the human epididymis. Biol. Reprod. 76, 1034–1044.
Gene expression profiling and its relevance to the blood–epididymal barrier in the human epididymis.Crossref | GoogleScholarGoogle Scholar | 17287494PubMed | 17287494PubMed |

Dufresne, J., Finnson, K. W., Gregory, M., and Cyr, D. G. (2003). Expression of multiple connexins in the rat epididymis indicates a complex regulation of gap junctional communication. Am. J. Physiol. Cell Physiol. 284, C33–C43.
Expression of multiple connexins in the rat epididymis indicates a complex regulation of gap junctional communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvF2rtA%3D%3D&md5=53e49ab73953a1fe386913fcb7787ea4CAS | 12388089PubMed | 12388089PubMed |

Elkjaer, M. L., Nejsum, L. N., Gresz, V., Kwon, T. H., Jensen, U. B., Frøkiaer, J., and Nielsen, S. (2001). Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am. J. Physiol. Renal Physiol. 281, F1047–F1057.
| 1:CAS:528:DC%2BD3MXptlKnurw%3D&md5=d8468c3652dea9c4d8158b26cda07938CAS |
| 1:CAS:528:DC%2BD3MXptlKnurw%3D&md5=d8468c3652dea9c4d8158b26cda07938CAS | 11704555PubMed | 11704555PubMed |

Fisher, J. S., Turner, K. J., Fraser, H. M., Saunders, P. T., Brown, D., and Sharpe, R. M. (1998). Immunoexpression of aquaporin-1 in the efferent ducts of the rat and marmoset monkey during development, its modulation by estrogens, and its possible role in fluid resorption. Endocrinology 139, 3935–3945.
Immunoexpression of aquaporin-1 in the efferent ducts of the rat and marmoset monkey during development, its modulation by estrogens, and its possible role in fluid resorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOiu7s%3D&md5=26bd94ab8ddae8efc6c1b6b10a2eae79CAS | 1:CAS:528:DyaK1cXlsFOiu7s%3D&md5=26bd94ab8ddae8efc6c1b6b10a2eae79CAS | 9724049PubMed | 9724049PubMed |

Flickinger, C. J., Bush, L. A., Howards, S. S., and Herr, J. C. (1997). Distribution of leukocytes in the epithelium and interstitium of four regions of the Lewis rat epididymis. Anat. Rec. 248, 380–390.
Distribution of leukocytes in the epithelium and interstitium of four regions of the Lewis rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szlslajtw%3D%3D&md5=f9ce65207309bceacf7f65b328986c70CAS | 9214556PubMed | 9214556PubMed |

Gabrielli, N. M., Veiga, M. F., Matos, M. L., Quintana, S., Chemes, H., Blanco, G., and Vazquez-Levin, M. H. (2011). Expression of dysadherin in the human male reproductive tract and in spermatozoa. Fertil. Steril. 96, 554–561.e2.
Expression of dysadherin in the human male reproductive tract and in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFarsr%2FM&md5=bf1f4c70d04db5e8b50f5008a1466442CAS | 21774927PubMed | 21774927PubMed |

Goyal, H. O. (1985). Morphology of the bovine epididymis. Am. J. Anat. 172, 155–172.
Morphology of the bovine epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7ksFKjtw%3D%3D&md5=1321eadd85128eee9b9cf5c65b5cee7dCAS | 3919558PubMed | 3919558PubMed |

Goyal, H. O., and Dhingra, L. D. (1975). The postnatal histology of the epididymis in buffalo (Bubalus bubalis). Acta Anatomica 91, 573–582.
| 1:STN:280:DyaE2M3itFGmtg%3D%3D&md5=6ee91f2c55d58dd4a1418d8412af4a3dCAS |
| 1:STN:280:DyaE2M3itFGmtg%3D%3D&md5=6ee91f2c55d58dd4a1418d8412af4a3dCAS | 1171568PubMed | 1171568PubMed |

Goyal, H. O., and Williams, C. S. (1991). Regional differences in the morphology of the goat epididymis: a light microscopic and ultrastructural study. Am. J. Anat. 190, 349–369.
Regional differences in the morphology of the goat epididymis: a light microscopic and ultrastructural study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3otFKqtQ%3D%3D&md5=94b2d4cd77b097ed63d796bb3f9e2841CAS | 2058569PubMed | 2058569PubMed |

Goyal, H. O., Hutto, V., and Maloney, M. A. (1994). Effects of androgen deprivation in the goat epididymis. Acta Anat. 150, 127–135.
Effects of androgen deprivation in the goat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1agt7k%3D&md5=5c3d08489806fa2e86d05bde4d0d9d92CAS | 7976193PubMed | 7976193PubMed |

Goyal, H. O., Bartol, F. F., Wiley, A. A., Khalil, M. K., Chiu, J., and Vig, M. M. (1997). Immunolocalization of androgen receptor and estrogen receptor in the developing testis and excurrent ducts of goats. Anat. Rec. 249, 54–62.
Immunolocalization of androgen receptor and estrogen receptor in the developing testis and excurrent ducts of goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlCrtLw%3D&md5=07209dbbce43b551a87fdaf621d37b57CAS | 9294649PubMed | 9294649PubMed |

Hamilton, D. W. (1975). Structure and function of the epithelium lining the ductuli efferentes, ductus epididymis and ductus deferens in the rat. In ‘Handbook of Physiology, Section 7, Endocrinology. Vol. V. Male Reproductive System’. (Eds D. W. Hamilton and R. O. Creep.) pp. 259–301. (American Physiological Society: Washington, DC.)

Hayashi, T., Yoshinaga, A., Ohno, R., Ishii, N., Kamata, S., and Yamada, T. (2004). Expression of the p63 and Notch signaling systems in rat testes during postnatal development: comparison with their expression levels in the epididymis and vas deferens. J. Androl. 25, 692–698.
| 1:CAS:528:DC%2BD2cXns1GgtLo%3D&md5=94c32b0af036cb12867ed67bfdfd9c6fCAS | 15292098PubMed | 15292098PubMed |

Hermo, L., and Smith, C. E. (2011). Thirsty business: cell, region, and membrane specificity of aquaporins in the testis, efferent ducts, and epididymis and factors regulating their expression. J. Androl. 32, 565–575.
Thirsty business: cell, region, and membrane specificity of aquaporins in the testis, efferent ducts, and epididymis and factors regulating their expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCru7zK&md5=778aeab8e96b2aa4e092d53650f13d82CAS | 1:CAS:528:DC%2BC3MXhsVCru7zK&md5=778aeab8e96b2aa4e092d53650f13d82CAS | 21441426PubMed | 21441426PubMed |

Hermo, L., Oko, R., and Morales, C. R. (1994). Secretion and endocytosis in the male reproductive tract: a role in sperm maturation. Int. Rev. Cytol. 154, 105–189.
Secretion and endocytosis in the male reproductive tract: a role in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslOhs7s%3D&md5=3df10fb293abdb76825360e412a01c84CAS |

Hermo, L., Krzeczunowicz, D., and Ruz, R. (2004). Cell specificity of aquaporins 0, 3, and 10 expressed in the testis, efferent ducts, and epididymis of adult rats. J. Androl. 25, 494–505.
| 1:CAS:528:DC%2BD2cXmtFSns7g%3D&md5=936fcb63db10f8b25db94955037bffc0CAS | 15223838PubMed | 15223838PubMed |

Hermo, L., Schellenberg, M., Liu, L. Y., Dayanandan, B., Zhang, T., Mandato, C. A., and Smith, C. E. (2008). Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats. J. Histochem. Cytochem. 56, 1121–1135.
Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaitb3O&md5=0a9f65890571f008a0bffd280c93264eCAS | 1:CAS:528:DC%2BD1cXhsVaitb3O&md5=0a9f65890571f008a0bffd280c93264eCAS | 18796408PubMed | 18796408PubMed |

Hess, R. A., Fernandes, S. A., Gomes, G. R., Oliveira, C. A., Lazari, M. F., and Porto, C. S. (2011). Estrogen and its receptors in efferent ductules and epididymis. J. Androl. 32, 600–613.
Estrogen and its receptors in efferent ductules and epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCru73M&md5=d55b07eeda5587859016eb91f2dfd034CAS | 1:CAS:528:DC%2BC3MXhsVCru73M&md5=d55b07eeda5587859016eb91f2dfd034CAS | 21441425PubMed | 21441425PubMed |

Hinton, B. T. (1985). Physiological aspects of the blood–epididymis barrier. In ‘Male Fertility and its Regulation’. (Eds T. J. Lobl and E. S. E. Hafez.) pp. 371–382. (MTP Press: Boston.)

Hinton, B. T., and Palladino, M. A. (1995). Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment. Microsc. Res. Tech. 30, 67–81.
Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFSqtL0%3D&md5=d604428d1250a1036fc9353751401540CAS | 1:CAS:528:DyaK2MXjvFSqtL0%3D&md5=d604428d1250a1036fc9353751401540CAS | 7711321PubMed | 7711321PubMed |

Hoffer, A. P., and Hinton, B. T. (1984). Morphological evidence for a blood–epididymis barrier and the effects of gossypol on its integrity. Biol. Reprod. 30, 991–1004.
Morphological evidence for a blood–epididymis barrier and the effects of gossypol on its integrity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVSqt7g%3D&md5=b4c71fcd141e3cfd592457bb9b1627b5CAS | 1:CAS:528:DyaL2cXktVSqt7g%3D&md5=b4c71fcd141e3cfd592457bb9b1627b5CAS | 6733204PubMed | 6733204PubMed |

Holschbach, C., and Cooper, T. G. (2002). A possible extratubular origin of epididymal basal cells in mice. Reproduction 123, 517–525.
A possible extratubular origin of epididymal basal cells in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtb8%3D&md5=0118756ea8ea01a3793caa0b56f5f553CAS | 11914114PubMed | 11914114PubMed |

Holt, W. V., Jones, R. C., and Skinner, J. D. (1980). Studies of the deferent ducts from the testis of the African elephant, Loxodonta africana. II. Histochemistry of the epididymis. J. Anat. 130, 367–379.
| 1:STN:280:DyaL3c3kvFantQ%3D%3D&md5=bae69c10881e4e8fd07e2049907989c4CAS | 6447136PubMed | 6447136PubMed |

Jean, Y., Perrault, A., Auger, M., Roberts, K. D., Chapdelaine, A., and Bleau, G. (1979). Properties of spermatozoa in relation to their elimination after vasectomy. Arch. Androl. 3, 139–146.
Properties of spermatozoa in relation to their elimination after vasectomy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2Fos1OjtQ%3D%3D&md5=644ef3a388070725e02595e7342bc12cCAS | 518196PubMed | 518196PubMed |

Jones, R., Hamilton, D. W., and Fawcett, D. W. (1979). Morphology of the epithelium of the extratesticular rete testis, ductuli efferentes and ductus epididymidis of the adult male rabbit. Am. J. Anat. 156, 373–400.
Morphology of the epithelium of the extratesticular rete testis, ductuli efferentes and ductus epididymidis of the adult male rabbit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7islaitQ%3D%3D&md5=b0f9381f4c37babff6c16a381f8a05a0CAS | 1:STN:280:DyaL3c7islaitQ%3D%3D&md5=b0f9381f4c37babff6c16a381f8a05a0CAS | 532791PubMed | 532791PubMed |

Jones, R. C., Hinds, L. A., and Tyndale-Biscoe, C. H. (1984). Ultrastructure of the epididymis of the tammar, Macropus eugenii, and its relationship to sperm maturation. Cell Tissue Res. 237, 525–535.
Ultrastructure of the epididymis of the tammar, Macropus eugenii, and its relationship to sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2FisVOqtw%3D%3D&md5=fd659eab0af72160f643f5ad4e1e6df6CAS | 1:STN:280:DyaL2M%2FisVOqtw%3D%3D&md5=fd659eab0af72160f643f5ad4e1e6df6CAS | 6488287PubMed | 6488287PubMed |

Joseph, A., Shur, B. D., and Hess, R. A. (2011). Estrogen, efferent ductules, and the epididymis. Biol. Reprod. 84, 207–217.
Estrogen, efferent ductules, and the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVelsbo%3D&md5=da503dd2bdc4d3dbc0d7418fce046c01CAS | 1:CAS:528:DC%2BC3MXhsVelsbo%3D&md5=da503dd2bdc4d3dbc0d7418fce046c01CAS | 20926801PubMed | 20926801PubMed |

Kasper, M., and Stosiek, P. (1989). Immunohistochemical investigation of different cytokeratins and vimentin in the human epididymis from the fetal period up to adulthood. Cell Tissue Res. 257, 661–664.
Immunohistochemical investigation of different cytokeratins and vimentin in the human epididymis from the fetal period up to adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFWqtLY%3D&md5=ae147319a47b4e2a1c16ef316ac7c1ddCAS | 2477155PubMed | 2477155PubMed |

Klein, C., Troedsson, M. H., and Rutllant, J. (2013). Region-specific expression of aquaporin subtypes in equine testis, epididymis, and ductus deferens. Anat. Rec. 296, 1115–1126.
| 1:CAS:528:DC%2BC3sXpslCgtbs%3D&md5=28f8807bb08b6dede910ac9f2a9e5ef5CAS |

Kujala, M., Hihnala, S., Tienari, J., Kaunisto, K., Hastbacka, J., Holmberg, C., Kere, J., and Hoglund, P. (2007). Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction 133, 775–784.
Expression of ion transport-associated proteins in human efferent and epididymal ducts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku7c%3D&md5=e0729090d8b93ca7f55e7e33340dde04CAS | 1:CAS:528:DC%2BD2sXmsFeku7c%3D&md5=e0729090d8b93ca7f55e7e33340dde04CAS | 17504921PubMed | 17504921PubMed |

Leung, G. P., Cheung, K. H., Leung, C. T., Tsang, M. W., and Wong, P. Y. (2004). Regulation of epididymal principal cell functions by basal cells: role of transient receptor potential (Trp) proteins and cyclooxygenase-1 (COX-1). Mol. Cell. Endocrinol. 216, 5–13.
Regulation of epididymal principal cell functions by basal cells: role of transient receptor potential (Trp) proteins and cyclooxygenase-1 (COX-1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVensrY%3D&md5=8cce7a527d0b725e0838f248322ddfb2CAS | 1:CAS:528:DC%2BD2cXjsVensrY%3D&md5=8cce7a527d0b725e0838f248322ddfb2CAS | 15109739PubMed | 15109739PubMed |

Levy, S., and Robaire, B. (1999). Segment-specific changes with age in the expression of junctional proteins and the permeability of the blood–epididymis barrier in rats. Biol. Reprod. 60, 1392–1401.
Segment-specific changes with age in the expression of junctional proteins and the permeability of the blood–epididymis barrier in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVejtLk%3D&md5=8263dc115a95cce3f3ca0b58091cbc3eCAS | 10330098PubMed | 10330098PubMed |

Mital, P., Hinton, B. T., and Dufour, J. M. (2011). The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858.
The blood–testis and blood–epididymis barriers are more than just their tight junctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlGju7o%3D&md5=f141f2c8d3e84d4c2ff68ae025707831CAS | 1:CAS:528:DC%2BC3MXltlGju7o%3D&md5=f141f2c8d3e84d4c2ff68ae025707831CAS | 21209417PubMed | 21209417PubMed |

Moore, H. D. M., and Bedford, J. M. (1978). Fate of spermatozoa in the male: 1. quantitation of sperm accumulation after vasectomy in the rabbit. Biol. Reprod. 18, 784–790.
Fate of spermatozoa in the male: 1. quantitation of sperm accumulation after vasectomy in the rabbit.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c3htFGhtg%3D%3D&md5=240ff87d1c73bddec24e598085aa5561CAS | 1:STN:280:DyaE1c3htFGhtg%3D%3D&md5=240ff87d1c73bddec24e598085aa5561CAS |

Murashima, A., Miyagawa, S., Ogino, Y., Nishida-Fukuda, H., Araki, K., Matsumoto, T., Kaneko, T., Yoshinaga, K., Yamamura, K., Kurita, T., Kato, S., Moon, A. M., and Yamada, G. (2011). Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology 152, 1640–1651.
Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOktLs%3D&md5=c99ad3e119e79ad8226c6f6a01c1fd57CAS | 21303954PubMed | 21303954PubMed |

Nicander, L. (1958). Studies on the regional histology and cytochemistry of the ductus epididymidis in stallions, rams and bulls. Acta Morphol. Neerl. Scand. 1, 337–362.
| 1:CAS:528:DyaF3MXjsFWi&md5=8856a9b1b50b86f018da5e60d4d5188aCAS | 13532569PubMed | 13532569PubMed |

Nie, R., Zhou, Q., Jassim, E., Saunders, P. T., and Hess, R. A. (2002). Differential expression of estrogen receptors alpha and beta in the reproductive tracts of adult male dogs and cats. Biol. Reprod. 66, 1161–1168.
Differential expression of estrogen receptors alpha and beta in the reproductive tracts of adult male dogs and cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClu7s%3D&md5=dc59a289e44f18670900740a7c7bb285CAS | 11906937PubMed | 11906937PubMed |

Nilnophakoon, N. (1978). Histological studies on the regional postnatal differentiation of the epididymis in the ram. Anat. Histol. Embryol. 7, 253–272.
Histological studies on the regional postnatal differentiation of the epididymis in the ram.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FjvFyqsA%3D%3D&md5=f48195ebc2b9e981543c9bdadea1e753CAS | 152071PubMed | 152071PubMed |

Nonogaki, T., Noda, Y., Narimoto, K., Shiotani, M., Mori, T., Matsuda, T., and Yoshida, O. (1992). Localization of CuZn-superoxide dismutase in the human male genital organs. Hum. Reprod. 7, 81–85.
| 1:STN:280:DyaK383gt1emsA%3D%3D&md5=80af9d2e97457fea06d259e6bcae58f5CAS | 1551966PubMed | 1551966PubMed |

Oliveira, C. A., Carnes, K., França, L. R., Hermo, L., and Hess, R. A. (2005). Aquaporin-1 and -9 are differentially regulated by oestrogen in the efferent ductule epithelium and initial segment of the epididymis. Biol. Cell 97, 385–395.
Aquaporin-1 and -9 are differentially regulated by oestrogen in the efferent ductule epithelium and initial segment of the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1GltLk%3D&md5=6ec4f459349416ac4790c8e1edf880f8CAS | 15850448PubMed | 15850448PubMed |

Oliveira, R. L., Campolina-Silva, G. H., Nogueira, J. C., Mahecha, G. A., and Oliveira, C. A. (2013). Differential expression and seasonal variation on aquaporins 1 and 9 in the male genital system of big fruit-eating bat Artibeus lituratus. Gen. Comp. Endocrinol. 186, 116–125.
Differential expression and seasonal variation on aquaporins 1 and 9 in the male genital system of big fruit-eating bat Artibeus lituratus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslemsL4%3D&md5=2d08293e0454275f80fe0cb874880c43CAS | 23510858PubMed | 23510858PubMed |

Palacios, J., Regadera, J., Paniagua, R., Gamallo, C., and Nistal, M. (1993). Immunohistochemistry of the human ductus epididymis. Anat. Rec. 235, 560–566.
Immunohistochemistry of the human ductus epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3itVylsA%3D%3D&md5=2a981b3ce291938eef5a6acc65039e49CAS | 7682039PubMed | 7682039PubMed |

Parlevliet, J. M., Pearl, C. A., Hess, M. F., Famula, T. R., and Roser, J. F. (2006). Immunolocalization of estrogen and androgen receptors and steroid concentrations in the stallion epididymis. Theriogenology 66, 755–765.
Immunolocalization of estrogen and androgen receptors and steroid concentrations in the stallion epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1WrtL0%3D&md5=9f348b7c7da3298e5ffc7a871269feafCAS | 16530259PubMed | 16530259PubMed |

Pastor-Soler, N., Bagnis, C., Sabolic, I., Tyszkowski, R., McKee, M., Van Hoek, A., Breton, S., and Brown, D. (2001). Aquaporin 9 expression along the male reproductive tract. Biol. Reprod. 65, 384–393.
Aquaporin 9 expression along the male reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Wgu74%3D&md5=473d21c8c0a28f2876d6b151b4aa1ff0CAS | 11466204PubMed | 11466204PubMed |

Pastor-Soler, N., Isnard-Bagnis, C., Herak-Kramberger, C., Sabolic, I., Van Hoek, A., Brown, D., and Breton, S. (2002). Expression of aquaporin 9 in the adult rat epididymal epithelium is modulated by androgens. Biol. Reprod. 66, 1716–1722.
Expression of aquaporin 9 in the adult rat epididymal epithelium is modulated by androgens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegurs%3D&md5=73d05070f0cf61ac9ca56840b0cd0845CAS | 1:CAS:528:DC%2BD38XjvFegurs%3D&md5=73d05070f0cf61ac9ca56840b0cd0845CAS | 12021052PubMed | 12021052PubMed |

Pastor-Soler, N., Pietrement, C., and Breton, S. (2005). Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20, 417–428.
Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleltrzJ&md5=f4c33d8a89afeb408213a3f4e3968f27CAS | 16287991PubMed | 16287991PubMed |

Pastor-Soler, N. M., Fisher, J. S., Sharpe, R., Hill, E., Van Hoek, A., Brown, D., and Breton, S. (2010). Aquaporin 9 expression in the developing rat epididymis is modulated by steroid hormones. Reproduction 139, 613–621.
Aquaporin 9 expression in the developing rat epididymis is modulated by steroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtV2ltr8%3D&md5=04832bbc783b2763017090d36727944aCAS | 1:CAS:528:DC%2BC3cXjtV2ltr8%3D&md5=04832bbc783b2763017090d36727944aCAS | 19948840PubMed | 19948840PubMed |

Pietrement, C., Sun-Wada, G. H., Silva, N. D., McKee, M., Marshansky, V., Brown, D., Futai, M., and Breton, S. (2006). Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol. Reprod. 74, 185–194.
Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCjsrfP&md5=5f51b56c86b3fa4a712745c4c44d34c4CAS | 1:CAS:528:DC%2BD2MXhtlCjsrfP&md5=5f51b56c86b3fa4a712745c4c44d34c4CAS | 16192400PubMed | 16192400PubMed |

Queiróz, D. B., Silva, A. M., Gutiérrez-Ospina, G., Porto, C. S., Grossman, G., Petrusz, P., and Avellar, M. C. (2006). Cells positive for microtubule-associated protein 1B (MAP 1B) are present along rat and human efferent ductules and epididymis. Cell Tissue Res. 325, 125–133.
Cells positive for microtubule-associated protein 1B (MAP 1B) are present along rat and human efferent ductules and epididymis.Crossref | GoogleScholarGoogle Scholar | 16541288PubMed | 16541288PubMed |

Ramos, A. S., and Dym, M. (1977). Fine structure of the monkey epididymis. Am. J. Anat. 149, 501–531.
Fine structure of the monkey epididymis.Crossref | GoogleScholarGoogle Scholar | 410287PubMed | 410287PubMed |

Robaire, B., Hinton, B. T., and Orgebin-Crist, M. C. (2006). The epididymis. In ‘Physiology of Reproduction’. (Eds E. Knobil and J. Neill.) pp. 1071–1148. (Elsevier: New York.)

Saunders, P. T., Sharpe, R. M., Williams, K., Macpherson, S., Urquart, H., Irvine, D. S., and Millar, M. R. (2001). Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates. Mol. Hum. Reprod. 7, 227–236.
Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFymsLo%3D&md5=c7ea2d9f5ddb98c48f63ac3bde2c799dCAS | 1:CAS:528:DC%2BD3MXisFymsLo%3D&md5=c7ea2d9f5ddb98c48f63ac3bde2c799dCAS | 11228242PubMed | 11228242PubMed |

Schön, J., and Blottner, S. (2009). Seasonal variations in the epididymis of the roe deer (Capreolus capreolus). Anim. Reprod. Sci. 111, 344–352.
Seasonal variations in the epididymis of the roe deer (Capreolus capreolus).Crossref | GoogleScholarGoogle Scholar | 18450392PubMed |

Seiler, P., Wenzel, I., Wagenfeld, A., Yeung, C. H., Nieschlag, E., and Cooper, T. G. (1998). The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens. Int. J. Androl. 21, 217–226.
The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWitbY%3D&md5=fd730e61ddc1f6cf9d4b2995295c823eCAS | 1:CAS:528:DyaK1cXlslWitbY%3D&md5=fd730e61ddc1f6cf9d4b2995295c823eCAS | 9749352PubMed |

Seiler, P., Cooper, T. G., Yeung, C. H., and Nieschlag, E. (1999). Regional variation in macrophage antigen expression by murine epididymal basal cells and their regulation by testicular factors. J. Androl. 20, 738–746.
| 1:CAS:528:DyaK1MXotVOrtLg%3D&md5=7e69e9e8418b3b4054d3012d84f0edc4CAS | 10591613PubMed |

Seiler, P., Cooper, T. G., and Nieschlag, E. (2000). Sperm number and condition affect the number of basal cells and their expression of macrophage antigen in the murine epididymis. Int. J. Androl. 23, 65–76.
Sperm number and condition affect the number of basal cells and their expression of macrophage antigen in the murine epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3is1aksw%3D%3D&md5=59ba9a7c4da10dd0d355b15038fa7dbfCAS | 10762432PubMed |

Serre, V., and Robaire, B. (1998). Segment-specific morphological changes in aging brown Norway rat epididymis. Biol. Reprod. 58, 497–513.
Segment-specific morphological changes in aging brown Norway rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXot1Sqsg%3D%3D&md5=026477e252c164e763b35ea5672837a3CAS | 1:CAS:528:DyaK1cXot1Sqsg%3D%3D&md5=026477e252c164e763b35ea5672837a3CAS | 9475407PubMed |

Serre, V., and Robaire, B. (1999). Distribution of immune cells in the epididymis of the aging brown Norway rat is segment-specific and related to the luminal content. Biol. Reprod. 61, 705–714.
Distribution of immune cells in the epididymis of the aging brown Norway rat is segment-specific and related to the luminal content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCqsbk%3D&md5=4c893873d8e5d0b1d92475fa8bcb4280CAS | 10456848PubMed |

Setchell, B. P., and Waites, G. M. H. (1975). The blood-testis barrier. In ‘Handbook of Physiology, Section 7, Endocrinology, Vol. V, Male Reproductive System’. (Eds D. W. Hamilton and R .O. Creep.) p. 143. (American Physiological Society: Washington, DC.)

Shum, W. W., Da Silva, N., McKee, M., Smith, P. J., Brown, D., and Breton, S. (2008). Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135, 1108–1117.
Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslyh&md5=a116749a05d7ffa81f7bd3a2d62e7994CAS | 19070580PubMed |

Shum, W. W., Ruan, Y. C., Da Silva, N., and Breton, S. (2011). Establishment of cell-cell cross talk in the epididymis: control of luminal acidification. J. Androl. 32, 576–586.
Establishment of cell-cell cross talk in the epididymis: control of luminal acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCru7zL&md5=3ddff91bf2beb8271d6cd6e254ebf731CAS | 1:CAS:528:DC%2BC3MXhsVCru7zL&md5=3ddff91bf2beb8271d6cd6e254ebf731CAS | 21441423PubMed | 21441423PubMed |

Sinowatz, F. (1981). Ultrastructural and enzyme histochemical investigations of the ductus epididymidis of the bull. Adv. Vet. Med. 32, 1–99.

Sujarit, S., and Jones, R. C. (1991). [3H]thymidine uptake by the epididymis, seminal vesicles and prostate gland during postnatal development of the rat. Reprod. Fertil. Dev. 3, 313–319.
[3H]thymidine uptake by the epididymis, seminal vesicles and prostate gland during postnatal development of the rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FltlamsQ%3D%3D&md5=2d33f049034f79f6bf423a3c74dd05e7CAS | 1:STN:280:DyaK38%2FltlamsQ%3D%3D&md5=2d33f049034f79f6bf423a3c74dd05e7CAS | 1947230PubMed | 1947230PubMed |

Sun, E. L., and Flickinger, C. J. (1982). Proliferative activity in the rat epididymis during postnatal development. Anat. Rec. 203, 273–284.
Proliferative activity in the rat epididymis during postnatal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL383ot1WhsA%3D%3D&md5=8ec71565fbee658ac7dd89c1aefc9d35CAS | 1:STN:280:DyaL383ot1WhsA%3D%3D&md5=8ec71565fbee658ac7dd89c1aefc9d35CAS | 7202338PubMed | 7202338PubMed |

Suzuki, F., and Glover, T. D. (1973). The effect of castration on the epididymal epithelium of the golden hamster, Mesocricetus auratus. J. Reprod. Fertil. 35, 584–585.
The effect of castration on the epididymal epithelium of the golden hamster, Mesocricetus auratus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2Fksl2ksQ%3D%3D&md5=0e2adb30831946260e24399fa74e0a6bCAS | 1:STN:280:DyaE2c%2Fksl2ksQ%3D%3D&md5=0e2adb30831946260e24399fa74e0a6bCAS | 4760161PubMed |

Suzuki, F., and Racey, P. A. (1976). Fine structural changes in the epididymal epithelium of moles (Talpa europaea) throughout the year. J. Reprod. Fertil. 47, 47–54.
Fine structural changes in the epididymal epithelium of moles (Talpa europaea) throughout the year.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287ptlGltQ%3D%3D&md5=5ae7604dc45c6650802e1a1d93da23a0CAS | 1271373PubMed |

Tingari, M. D. (1989). The fine structure of the epithelial lining of the epididymis of the camel (Camelus dromedarius) with special reference to regional differences. J. Anat. 165, 201–214.
| 1:STN:280:DC%2BC3cnisVantg%3D%3D&md5=e8b76ebb5c4e4b1bf11d5b395a0ca30cCAS | 17103615PubMed |

Ungefroren, H., Ivell, R., and Ergun, S. (1997). Region-specific expression of the androgen receptor in the human epididymis. Mol. Hum. Reprod. 3, 933–940.
Region-specific expression of the androgen receptor in the human epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlWhtA%3D%3D&md5=a7949c4ea16716ed1137efe7acfc8624CAS | 9433917PubMed |

Veri, J. P., Hermo, L., and Robaire, B. (1993). Immunocytochemical localization of the Yf subunit of glutathione S-transferase P shows regional variation in the staining of epithelial cells of the testis, efferent ducts, and epididymis of the male rat. J. Androl. 14, 23–44.
| 1:CAS:528:DyaK2cXhvVOrs7o%3D&md5=c7aa2f3753979b702e227b8b0bc8ce21CAS | 8473235PubMed | 8473235PubMed |

Vierula, M. E., Rankin, T. L., and Orgebin-Crist, M. C. (1995). Electron microscopic immunolocalization of the 18 and 29 kilodalton secretory proteins in the mouse epididymis: evidence for differential uptake by clear cells. Microsc. Res. Tech. 30, 24–36.
Electron microscopic immunolocalization of the 18 and 29 kilodalton secretory proteins in the mouse epididymis: evidence for differential uptake by clear cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjvFSqtLw%3D&md5=e61c891e3b16dc1b3688e2a881bc2b5dCAS | 7711318PubMed | 7711318PubMed |

Wakui, S., Furusato, M., Ushigome, S., and Kano, Y. (1994). Coexpression of different cytokeratins, vimentin and desmin in the rete testis and epididymis in the dog. J. Anat. 184, 147–151.
| 1:CAS:528:DyaK2cXktVGksrs%3D&md5=1bebe38cad0f830cf66d9720efdce056CAS | 7512542PubMed | 7512542PubMed |

Yao, T. S., and Eaton, O. N. (1954). Postnatal growth and histological development of reproductive organs in male goats. Am. J. Anat. 95, 401–431.
Postnatal growth and histological development of reproductive organs in male goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG2M%2FltFClsw%3D%3D&md5=a0d3be914cee9f4037abaf7319e8f805CAS | 1:STN:280:DyaG2M%2FltFClsw%3D%3D&md5=a0d3be914cee9f4037abaf7319e8f805CAS | 14349893PubMed | 14349893PubMed |

Yeung, C. H., Nashan, D., Sorg, C., Oberpenning, F., Schulze, H., Nieschlag, E., and Cooper, T. G. (1994). Basal cells of the human epididymis: antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol. Reprod. 50, 917–926.
Basal cells of the human epididymis: antigenic and ultrastructural similarities to tissue-fixed macrophages.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3lslOltQ%3D%3D&md5=e15db684fc8aff9a71f0d080a1c4d897CAS | 1:STN:280:DyaK2c3lslOltQ%3D%3D&md5=e15db684fc8aff9a71f0d080a1c4d897CAS | 8199271PubMed | 8199271PubMed |

Zaya, R., Hennick, C., and Pearl, C. A. (2012). In vitro expression of androgen and estrogen receptors in prepubertal and adult rat epididymis. Gen. Comp. Endocrinol. 178, 573–586.
In vitro expression of androgen and estrogen receptors in prepubertal and adult rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GksbnI&md5=964f204f24a05a17d9171566f4779b3cCAS | 1:CAS:528:DC%2BC38Xht1GksbnI&md5=964f204f24a05a17d9171566f4779b3cCAS | 22809666PubMed | 22809666PubMed |

Zhou, Q., Nie, R., Prins, G. S., Saunders, P. T., Katzenellenbogen, B. S., and Hess, R. A. (2002). Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J. Androl. 23, 870–881.
| 1:CAS:528:DC%2BD38XptV2hurk%3D&md5=2b3edb3c805e996408dff9b66af21828CAS | 12399534PubMed | 12399534PubMed |