Morphometric analysis of human embryos to predict developmental competence
Søren ZiebeThe Fertility Clinic, Rigshospitalet, Section 4071, University Hospital of Copenhagen, Blegdamsvej 9, Dk-2100 Denmark. Email: sziebe@rh.dk
Reproduction, Fertility and Development 26(1) 55-64 https://doi.org/10.1071/RD13296
Published: 5 December 2013
Abstract
Morphometric and morphokinetic approaches toward embryo quality assessment have for many years been difficult due to technical limitations. Today, with improvements in laboratory techniques and subsequent quality, we have a better understanding of the morphometric and kinetics of embryo development. Fertility clinics are moving from “sensing” embryo quality to measuring embryo quality – and this is happening every day in fertility clinics all over the world. However, we cannot select for something that is not there. In daily clinical life it is almost never a question of selecting the optimal embryo, but rather choosing and prioritising between the available embryos. Data suggest that only approximately 5% of aspirated human oocytes have the competence to implant and develop into a child and that, in most treatment cycles, there is no oocyte capable of implanting. The most likely outcome is a negative pregnancy test, no matter what we choose in the laboratory. Still, both with the increasing complexity of infertile patients treated today and the important focus on reducing multiple pregnancies, it becomes increasingly important to improve our ability to predict the developmental competence of each embryo. This involves an improved understanding of the basic biology controlling early embryonic development and, over the years, many groups have tried to identify parameters reflecting embryonic competence.
Additional keywords: embryonic development, embryo evaluation, embryo selection, morphokinetic.
References
Agerholm, I. E., Hnida, C., Kølvraa, S., Crüger, D. G., Berg, C., Bruun Petersen, G., and Ziebe, S. (2008). Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos J. Assist. Reprod. Genet. 25, 95–102.| Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryosCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c7lt1GqsQ%3D%3D&md5=86f99ef3fa0e2bfb0f6cba51b97399aeCAS | 18256921PubMed |
Alikani, M., Cohen, J., Tomkin, G., Garrisi, G. J., Mack, C., and Scott, R. T. (1999). Human embryo fragmentation in vitro and its implications for pregnancy and implantation Fertil. Steril. 71, 836–842.
| Human embryo fragmentation in vitro and its implications for pregnancy and implantationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ks1SksQ%3D%3D&md5=449e964e0515120f5cb921b990f78fe3CAS | 10231042PubMed |
Alikani, M., Calderon, G., Tomkin, G., Garrisi, J., Kokot, M., and Cohen, J. (2000). Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro Hum. Reprod. 15, 2634–2643.
| Cleavage anomalies in early human embryos and survival after prolonged culture in-vitroCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWmug%3D%3D&md5=52aeb5a2d2ac5e33825643a006cc6023CAS | 11098037PubMed |
Antczak, M., and Van Blerkom, J. (1999). Temporal and spatial aspects of fragmentation in early human embryos: Possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains Hum. Reprod. 14, 429–447.
| Temporal and spatial aspects of fragmentation in early human embryos: Possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domainsCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7pvFOltg%3D%3D&md5=2bf66ab700be804df2c99c4953f6bfe3CAS | 10099991PubMed |
Arce, J.-C., Ziebe, S., Lundin, K., Janssens, R., Helmgaard, L., and Sørensen, P. (2006). Interobserver agreement and intraobserver reproducibility of embryo quality assessments Hum. Reprod. 21, 2141–2148.
| Interobserver agreement and intraobserver reproducibility of embryo quality assessmentsCrossref | GoogleScholarGoogle Scholar | 16606640PubMed |
Balakier, H., and Cadesky, K. (1997). The frequency and developmental capability of human embryos containing multinucleated blastomeres Hum. Reprod. 12, 800–804.
| The frequency and developmental capability of human embryos containing multinucleated blastomeresCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szgtlSitg%3D%3D&md5=7c370e610247f518054b6794e0c9c8a8CAS | 9159445PubMed |
Balakier, H., MacLusky, N. J., and Casper, R. F. (1993). Characterization of the first cell cycle in human zygotes: implications for cryopreservation Fertil. Steril. 59, 359–365.
| 1:STN:280:DyaK3s7ks1Wqsg%3D%3D&md5=e22880e8f7ef2ab5cbd7aec00b8f75c1CAS | 8425632PubMed |
Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artifacts Hum. Reprod. Update 1, 91–148.
| Culture of preimplantation embryos: facts and artifactsCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fps1Cisw%3D%3D&md5=628fc147a2fc59f739cd692a36d2cadaCAS | 15726768PubMed |
Baxter Bendus, A. E., Mayer, J. F., Shipley, S. K., and Catherino, W. H. (2006). Interobserver and intraobserver variation in Day 3 embryo grading Fertil. Steril. 86, 1608–1615.
| Interobserver and intraobserver variation in Day 3 embryo gradingCrossref | GoogleScholarGoogle Scholar | 17074349PubMed |
Burke, B., and Ellenberg, J. (2002). Remodeling the walls of the nucleus Nat. Rev. Mol. Cell Biol. 3, 487–497.
| Remodeling the walls of the nucleusCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFKmur8%3D&md5=31fa7de5cd6a099a9fee9e39f70ec527CAS | 12094215PubMed |
Canipari, R., Palombi, F. R., and Mangia, F. (1984). Early programming of maturation competence in mouse oogenesis Dev. Biol. 102, 519–524.
| Early programming of maturation competence in mouse oogenesisCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7lvFahsA%3D%3D&md5=9e96296a2eb0158c36be6c04eb95d194CAS | 6200376PubMed |
Cavilla, J. L., Kennedy, J. L., Byskov, A. G., and Hartshorne, G. M. (2008). Human immature oocytes grow during culture for IVM Hum. Reprod. 23, 37–45.
| Human immature oocytes grow during culture for IVMCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjhvVSrsg%3D%3D&md5=7d20ff9f8032d53bc6226808c4f4660fCAS | 17932084PubMed |
Cummins, J. M., Breen, T. M., Harrison, K. L., Shaw, J. M., Wilson, L. M., and Hennesey, J. F. (1986). A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality J. In Vitro Fert. Embryo Transf. 3, 284–295.
| A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo qualityCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FlvFCmug%3D%3D&md5=9f2b727ffdd605399387b1d33633d987CAS | 3783014PubMed |
Diéguez, L., Soler, C., Pérez-Sánchez, F., Molina, I., Alvarez, C., and Romeu, A. (1995). Morphometric characterization of normal and abnormal human zygotes Hum. Reprod. 10, 2339–2342.
| 8530663PubMed |
Ding, J., Clarke, N., Nagai, T., and Moor, R. M. (1992). Protein and nuclear changes in pig eggs at fertilization Mol. Reprod. Dev. 31, 287–296.
| Protein and nuclear changes in pig eggs at fertilizationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383jvFWmtg%3D%3D&md5=d3b641363fd8c859b9cce111795edbccCAS | 1571162PubMed |
Ebner, T., Yaman, C., Moser, M., Sommergruber, M., Pölz, W., and Tews, G. (2001). Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome Fertil. Steril. 76, 281–285.
| Embryo fragmentation in vitro and its impact on treatment and pregnancy outcomeCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvivFCmsw%3D%3D&md5=9f8b7cca745b2d84c4597a164acd683bCAS | 11476773PubMed |
Edwards, R. G., Bavister, B. D., and Steptoe, P. C. (1969). Early stages of fertilization in vitro of human oocytes matured in vitro Nature 221, 632–635.
| Early stages of fertilization in vitro of human oocytes matured in vitroCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7jslyiuw%3D%3D&md5=d7a40ebf82814ab7cfc63d56777b77daCAS | 4886881PubMed |
Erenus, M., Zouves, C., Rajamahendran, P., Leung, S., Fluker, M., and Gomel, V. (1991). The effect of embryo quality on subsequent pregnancy rates after in vitro fertilization Fertil. Steril. 56, 707–710.
| 1:STN:280:DyaK38%2FgvVOmsA%3D%3D&md5=873831d9f4b17f4181badd3280814cf2CAS | 1915946PubMed |
Escrich, L., Grau, N., Meseguer, M., Pellicer, A., and Escribá, M.-J. (2009). Morphologic indicators predict the stage of chromatin condensation of human germinal vesicle oocytes recovered from stimulated cycles Fertil. Steril. 93, 2557–2564.
| Morphologic indicators predict the stage of chromatin condensation of human germinal vesicle oocytes recovered from stimulated cyclesCrossref | GoogleScholarGoogle Scholar | 19596313PubMed |
Futcher, B. (1996). Cyclins and the wiring of the yeast cell cycle Yeast 12, 1635–1646.
| Cyclins and the wiring of the yeast cell cycleCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFOmu74%3D&md5=c1c3ac2be652167ba8bae9a05836b328CAS | 9123966PubMed |
Giorgetti, C., Terriou, P., Auquier, P., Hans, E., Spach, J. L., Salzmann, J., and Roulier, R. (1995). Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers Hum. Reprod. 10, 2427–2431.
| 1:STN:280:DyaK287itFWqtQ%3D%3D&md5=8a6486264b4bb5a24afec7110e71f03bCAS | 8530679PubMed |
Giorgetti, C., Hans, E., Terriou, P., Salzmann, J., Barry, B., Chabert-Orsini, V., Chinchole, J. M., Franquebalme, J. P., Glowaczower, E., Sitri, M. C., Thibault, M. C., and Roulier, R. (2007). Early cleavage: an additional predictor of high implantation rate following elective single embryo transfer Reprod. Biomed. Online 14, 85–91.
| 1:STN:280:DC%2BD2s%2Fht1agug%3D%3D&md5=55c82c6b47b9d8f1a61c369e4b927316CAS | 17207338PubMed |
Gosden, R. G., and Bownes, M. (1995). Cellular and molecular aspects of oocyte development. In ‘Gametes: Oocytes. Cambridge Reviews in Human Reproduction’. (Eds J. G. Grudzinskas and J. L. Yovich.) pp. 23–55. (Cambridge University Press: Cambridge.)
Gougeon, A. (1996). Regulation of ovarian follicular development in primates: facts and hypotheses Endocr. Rev. 17, 121–155.
| Regulation of ovarian follicular development in primates: facts and hypothesesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGisbc%3D&md5=d6971992e06b1257c7ed78c58e17acdcCAS | 8706629PubMed |
Goyanes, V. J., Ron-Corzo, A., Costas, E., and Maneiro, E. (1990). Morphometric categorization of the human oocyte and early conceptus Hum. Reprod. 5, 613–618.
| 1:STN:280:DyaK3czmvV2isQ%3D%3D&md5=d13ecb31effc21083cc6b1d7972bb532CAS | 2394794PubMed |
Hardarson, T., Hanson, C., Sjögren, A., and Lundin, K. (2001). Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation Hum. Reprod. 16, 313–318.
| Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3ksV2htQ%3D%3D&md5=d7cdd0a10d5a5dd8cc5541522144e270CAS | 11157826PubMed |
Hardarson, T., Lofman, C., Coull, G., Sjogren, A., Hamberger, L., and Edwards, R. G. (2002). Internalization of cellular fragments in a human embryo: time-lapse recordings Reprod. Biomed. Online 5, 36–38.
| Internalization of cellular fragments in a human embryo: time-lapse recordingsCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38jgvFKmug%3D%3D&md5=c43e69bdc2cdb5092f2ebb5350f7feb0CAS | 12470543PubMed |
Hardy, K., Winston, R. M. L., and Handyside, A. H. (1993). Binucleate blastomeres in preimplantation human embryos in vitro: failure of cytokinesis during early cleavage J. Reprod. Fertil. 98, 549–558.
| Binucleate blastomeres in preimplantation human embryos in vitro: failure of cytokinesis during early cleavageCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2Fhs1Wgug%3D%3D&md5=489889b7f2cc3ecac92c1d1364b5191fCAS | 8410824PubMed |
Hill, G. A., Freeman, M., Bastias, M. C., Rogers, B. J., Herbert, C. M., Osteens, K. G., and Wentz, A. C. (1989). The influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization–embryo transfer Fertil. Steril. 52, 801–806.
| 1:STN:280:DyaK3c%2FjtlCntA%3D%3D&md5=1c2f22fd1ab317b93334adc2d222ce09CAS | 2509252PubMed |
Hnida, C., and Ziebe, S. (2004). Total cytoplasmic volume as biomarker of fragmentation in human embryos J. Assist. Reprod. Genet. 21, 335–340.
| Total cytoplasmic volume as biomarker of fragmentation in human embryosCrossref | GoogleScholarGoogle Scholar | 15587147PubMed |
Hnida, C., Engenheiro, E., and Ziebe, S. (2004). Computer controlled multi-level morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryos Hum. Reprod. 19, 288–293.
| Computer controlled multi-level morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryosCrossref | GoogleScholarGoogle Scholar | 14747169PubMed |
Hnida, C., Agerholm, I., and Ziebe, S. (2005). Traditional detection versus computer-controlled multilevel analysis of nuclear structures from donated human embryos Hum. Reprod. 20, 665–671.
| Traditional detection versus computer-controlled multilevel analysis of nuclear structures from donated human embryosCrossref | GoogleScholarGoogle Scholar | 15591086PubMed |
Hourvitz, A., Lerner-Geva, L., Elizur, S., Baum, M., Levron, J., David, B., Meirow, D., Yaron, R., and Dor, J. (2006). Role of embryo quality in predicting early pregnancy loss following assisted reproductive technology Reprod. Biomed. Online 13, 504–509.
| Role of embryo quality in predicting early pregnancy loss following assisted reproductive technologyCrossref | GoogleScholarGoogle Scholar | 17007670PubMed |
Howlett, S. K., and Bolton, W. N. (1985). Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis J. Embryol. Exp. Morphol. 87, 175–206.
| 1:CAS:528:DyaL2MXltVals7o%3D&md5=5a05b89f50115e54ebe06a088cf911c8CAS | 4031752PubMed |
Jackson, K. V., Ginsburg, E. S., Hornstein, M. D., Rein, M. S., and Clarke, R. N. (1998). Multinucleation in normal fertilized embryos is associated with an accelerated ovulation induction response and lower implantation rates in in vitro fertilization–embryo transfer cycles Fertil. Steril. 70, 60–66.
| Multinucleation in normal fertilized embryos is associated with an accelerated ovulation induction response and lower implantation rates in in vitro fertilization–embryo transfer cyclesCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czitFymuw%3D%3D&md5=76384d06ec5da132c9bcdee96b1cd5ebCAS | 9660422PubMed |
Johansson, M., Hardarson, T., and Lundin, K. (2003). There is a cutoff limit in diameter between a blastomere and a small anucleate fragment J. Assist. Reprod. Genet. 20, 309–313.
| There is a cutoff limit in diameter between a blastomere and a small anucleate fragmentCrossref | GoogleScholarGoogle Scholar | 12948092PubMed |
Jurisicova, A., Varmuza, S., and Casper, R. F. (1996). Programmed cell death and human embryo fragmentation Mol. Hum. Reprod. 2, 93–98.
| Programmed cell death and human embryo fragmentationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szotFegsA%3D%3D&md5=6ad552f0e3111719708284611803c203CAS | 9238664PubMed |
Keltz, M. D., Skorupski, J. C., Bradley, K., and Stein, D. (2006). Predictors of embryo fragmentation and outcome after fragment removal in in vitro fertilization Fertil. Steril. 86, 321–324.
| Predictors of embryo fragmentation and outcome after fragment removal in in vitro fertilizationCrossref | GoogleScholarGoogle Scholar | 16824522PubMed |
Kligman, I., Benadiva, C., Alikani, M., and Munné, S. (1996). The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities Hum. Reprod. 11, 1492–1498.
| The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalitiesCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zisVKqsQ%3D%3D&md5=65cbb2f2b3ec9dede2a224c943464088CAS | 8671491PubMed |
Krishna, M., and Generoso, W. M. (1977). Timing of sperm penetration, pronuclear formation, pronuclear DNA synthesis, and first cleavage in naturally ovulated mouse eggs J. Exp. Zool. 202, 245–252.
| Timing of sperm penetration, pronuclear formation, pronuclear DNA synthesis, and first cleavage in naturally ovulated mouse eggsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXjsFWnsw%3D%3D&md5=b65f4b543e5d745a4a30c9c8dedec1c9CAS | 925671PubMed |
Lemmen, J., Agerholm, I. E., and Ziebe, S. (2008). Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI fertilized oocytes Reprod. Biomed. Online 17, 385–391.
| Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI fertilized oocytesCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crnslSguw%3D%3D&md5=10483961fbe50dea0b6f028ebb6eefe0CAS | 18765009PubMed |
Lopata, A., McLaster, R., McBain, J. C., and Johnston, W. I. H. (1978). In vitro fertilization of preovulatory human eggs J. Reprod. Fertil. 52, 339–342.
| In vitro fertilization of preovulatory human eggsCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c7jt1KktQ%3D%3D&md5=885cc468255b1f9b3a80a5a0c401fac9CAS | 564963PubMed |
Lopata, A., Sathananthan, A. H., McBain, J. C., Johnston, W. I. H., and Speirs, A. L. (1980). The ultrastructure of the preovulatory human egg fertilized in vitro Fertil. Steril. 33, 12–20.
| 1:STN:280:DyaL3c%2Fpt1ahtg%3D%3D&md5=9c6e0f5be431c246c12994f3b213a391CAS | 7188691PubMed |
Lundin, K., Bergh, C., and Hardarson, T. (2001). Early embryo cleavage is a strong indicator of embryo quality in human IVF Hum. Reprod. 16, 2652–2657.
| Early embryo cleavage is a strong indicator of embryo quality in human IVFCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnotVCktA%3D%3D&md5=d7af2477ea283e7bd01763e09fd0815dCAS | 11726590PubMed |
Magli, M. C., Gianaroli, L., and Ferraretti, A. P. (2001). Chromosomal abnormalities in embryos Mol. Cell. Endocrinol. 183, S29–S34.
| Chromosomal abnormalities in embryosCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVCmu7k%3D&md5=39553cdf66df8a5a53af9dcb2f821a17CAS | 11576729PubMed |
Masui, M., and Kominami, T. (2001). Change in the adhesive properties of blastomeres duringearly cleavage stages in sea urchin embryo Dev. Growth Differ. 43, 43–53.
| Change in the adhesive properties of blastomeres duringearly cleavage stages in sea urchin embryoCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3jt1ektQ%3D%3D&md5=d6828ca0ec8f24308e98c3506a6f2822CAS | 11148451PubMed |
Masui, M., Yoneda, M., and Kominami, T. (2001). Nucleus : cell volume ratio directs the timing of increase in blastomere adhesiveness in starfish embryos Dev. Growth Differ. 43, 295–304.
| Nucleus : cell volume ratio directs the timing of increase in blastomere adhesiveness in starfish embryosCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzmtF2ksQ%3D%3D&md5=7f8b4157c63564da6a0463fd4df65e26CAS | 11422295PubMed |
McMaster, R., Yanagimachi, R., and Lopata, A. (1978). Penetration of human eggs by human spermatozoa in vitro Biol. Reprod. 19, 212–216.
| Penetration of human eggs by human spermatozoa in vitroCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FgtVKnsQ%3D%3D&md5=4f618b0c43de6ff04d0b13f109d67333CAS | 687706PubMed |
Munné, S., and Cohen, J. (1993). Unsuitability of multinucleated human blastomeres for preimplantation genetic diagnosis Hum. Reprod. 8, 1120–1125.
| 8408497PubMed |
Munné, S., Alikani, M., Tomkin, G., Grifo, J., and Cohen, J. (1995). Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities Fertil. Steril. 64, 382–391.
| 7615118PubMed |
Palermo, G., Joris, H., Devroey, P., and Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic sperm injection of a single spermatozoon into an oocyte Lancet 340, 17–18.
| Pregnancies after intracytoplasmic sperm injection of a single spermatozoon into an oocyteCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zgtFWrsA%3D%3D&md5=5693347f2eea18f45bea3393869f88a2CAS | 1351601PubMed |
Payne, D., Flaherty, S. P., Barry, M. F., and Matthews, C. D. (1997). Preliminary observations on polarbody extrusion and pronuclear formation in human oocytes using time-lapse video cinematography Hum. Reprod. 12, 532–541.
| Preliminary observations on polarbody extrusion and pronuclear formation in human oocytes using time-lapse video cinematographyCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3nslSlsA%3D%3D&md5=4795426457a11794209ea36909f71564CAS | 9130755PubMed |
Pelinck, M. J., De Vos, M., Dekens, M., Van der Elst, J., De Sutter, P., and Dhont, M. (1998). Embryos cultured in vitro with multinucleated blastomeres have poor implantation potential in human in-vitro fertilization and intracytoplasmic sperm injection Hum. Reprod. 13, 960–963.
| Embryos cultured in vitro with multinucleated blastomeres have poor implantation potential in human in-vitro fertilization and intracytoplasmic sperm injectionCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3otVymsQ%3D%3D&md5=21063c2e5f926ef5f593b60e50962f77CAS | 9619554PubMed |
Pickering, S. J., Taylor, A., Johnson, M. H., and Braude, P. R. (1995). An analysis of multinucleated blastomere formation in human embryos Hum. Reprod. 10, 1912–1922.
| 1:STN:280:DyaK28%2FjtlWktQ%3D%3D&md5=ed02b9b9d836444a713fcf27abaaa233CAS | 8583010PubMed |
Plachot, M., Junca, A.-M., Mandelbaum, J., Cohen, J., Salat-Baroux, J., and Da Lage, C. (1986). Timing of in-vitro fertilization of cumulus-free and cumulus-enclosed human oocytes Hum. Reprod. 4, 237–242.
Puissant, F., Van Rysselberge, M., Barlow, P., Deweze, J., and Leroy, F. (1987). Embryo scoring as a prognostic tool in IVF treatment Hum. Reprod. 2, 705–708.
| 1:STN:280:DyaL1c7jvFKmuw%3D%3D&md5=9fa3176e74949a8e16ed5e75d477cad4CAS | 3437050PubMed |
Quinn, P. (2004). The development and impact of culture media for assisted reproductive technologies Fertil. Steril. 81, 27–29.
| The development and impact of culture media for assisted reproductive technologiesCrossref | GoogleScholarGoogle Scholar | 14711540PubMed |
Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R., and Navajas, D. (2008). Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation Biophys. J. 94, 4984–4995.
| Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFKgtbw%3D&md5=c3a51951dbcbe1ebfb165e32065ef006CAS | 18326659PubMed |
Roux, C., Joanne, C., Agnani, G., Fromm, M., Clavequin, M. C., and Bresson, J. L. (1995). Morphometric parameters of living human in-vitro fertilization embryos; importance of asynchronous division process Hum. Reprod. 10, 1201–1207.
| 1:STN:280:DyaK2Mzos1KntA%3D%3D&md5=c60d9434c9f1baa9b732fc392734f473CAS | 7657766PubMed |
Sakkas, D., Percival, G., D’Arcy, Y., Sharif, K., and Afnan, M. (2001). Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection Fertil. Steril. 76, 1150–1156.
| Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selectionCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnosVymsA%3D%3D&md5=b996b7f19913205391b2a0b27438d351CAS | 11730743PubMed |
Saldeen, P., and Sundström, P. (2005). Nuclear status of four-cell preembryos predicts implantation potential in in vitro fertilization treatment cycles Fertil. Steril. 84, 584–589.
| Nuclear status of four-cell preembryos predicts implantation potential in in vitro fertilization treatment cyclesCrossref | GoogleScholarGoogle Scholar | 16169389PubMed |
Sathananthan, A. H., and Trounson, A. O. (1985). The human pronuclear ovum: fine structure of monospermic and polyspermic fertilization in vitro Gamete Res. 12, 385–398.
| The human pronuclear ovum: fine structure of monospermic and polyspermic fertilization in vitroCrossref | GoogleScholarGoogle Scholar |
Sato, S., Burgess, S. B., and McIlwain, D. L. (1994). Transcription and motoneuron size J. Neurochem. 63, 1609–1615.
| Transcription and motoneuron sizeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslemur0%3D&md5=f5dbebedacd4c2325c08d95619989bbdCAS | 7523596PubMed |
Schmidt, E. E., and Schibler, U. (1995). Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP J. Cell Biol. 128, 467–483.
| Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBPCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1ehtbs%3D&md5=f8292b1daf7d98cc53c9938f57582048CAS | 7532171PubMed |
Schultz, R. M. (1999). Preimplantation embryo development. In ‘Molecular Biology in Reproductive Medicine’. (Ed. B. C. J. M. Fauser.) pp. 313–331. (The Parthenon Publishing Group: Carnforth, UK.)
Scott, L., Finn, A., O’Leary, T., McLellan, S., and Hill, J. (2007). Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates Hum. Reprod. 22, 230–240.
| Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy ratesCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jitVCqsA%3D%3D&md5=fa676ea4c4d3368a5b6ff33f22c21a2dCAS | 16982662PubMed |
Slater, D. N., Rice, S., Stewart, R., Melling, S. E., Hewer, E. M., and Smith, J. H. (2005). Proposed Sheffield quantitative criteria in cervical cytology to assist the grading of squamous cell dyskaryosis, as the British Society for Clinical Cytology definitions require amendment Cytopathology 16, 179–192.
| Proposed Sheffield quantitative criteria in cervical cytology to assist the grading of squamous cell dyskaryosis, as the British Society for Clinical Cytology definitions require amendmentCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzptVWktQ%3D%3D&md5=e21a4e32a6e79afbcbd7c40b86506a13CAS | 16048504PubMed |
Staessen, C., and Van Steirteghem, A. (1998). The genetic constitution of multinuclear blastomeres and their derivative daughter blastomeres Hum. Reprod. 13, 1625–1631.
| The genetic constitution of multinuclear blastomeres and their derivative daughter blastomeresCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czltFKruw%3D%3D&md5=021f4138c328f1e51891d05e10370893CAS | 9688403PubMed |
Staessen, C., Camus, M., Bollen, N., Devroey, P., and Van Steirteghem, A. C. (1992). The relationship between preembryo quality and the occurrence of multiple pregnancies Fertil. Steril. 57, 626–630.
| 1:STN:280:DyaK387lsFeqsA%3D%3D&md5=855e4675049f478779b2af4d16d0300fCAS | 1740209PubMed |
Steer, C. V., Mills, C. L., Tan, S. L., Campbell, S., and Edwards, R. G. (1992). The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and transfer programme Hum. Reprod. 7, 117–119.
| 1:STN:280:DyaK383gt1ehuw%3D%3D&md5=99ff841c702a7c16495e7aad06441124CAS | 1551945PubMed |
Straight, A. F., and Field, C. M. (2000). Microtubules, membranes and cytokinesis Curr. Biol. 10, R760–R770.
| Microtubules, membranes and cytokinesisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVSrsr4%3D&md5=afb911077d4a3b70399baa674ace22b0CAS | 11069103PubMed |
Tesarik, J., Kopecny, V., Plachot, M., and Mandelbaum, J. (1987). Ultrastructural and autoradiographic observations on multinucleated blastomeres of human cleaving embryos obtained by in-vitro fertilization Hum. Reprod. 2, 127–136.
| 1:STN:280:DyaL2s3it12lsQ%3D%3D&md5=8a1809c58cac384dda8a74a2e20bfa4cCAS | 2438298PubMed |
Trounson, A. O., Mohr, M. R., Wood, C., and Leeton, J. F. (1982). Effect of delayed insemination on in-vitro fertilization, culture and transfer of human embryos J. Reprod. Fertil. 64, 285–294.
| Effect of delayed insemination on in-vitro fertilization, culture and transfer of human embryosCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387ntVWnsg%3D%3D&md5=9d3140680122d9eb6866629451471415CAS | 7069652PubMed |
Trounson, A., Anderiesz, C., and Jones, G. (2001). Maturation of human oocytes in vitro and their developmental competence Reproduction 121, 51–75.
| Maturation of human oocytes in vitro and their developmental competenceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslakuw%3D%3D&md5=6da8588e0f17ee8885a4d607c6cb31d6CAS | 11226029PubMed |
Tsuji, K., Sowa, M., and Nakano, R. (1985). Relationship between human oocyte maturation and different follicular sizes Biol. Reprod. 32, 413–417.
| Relationship between human oocyte maturation and different follicular sizesCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7nsFaqtg%3D%3D&md5=797b0f67df2e1f7c0514f523fe382ed6CAS | 3986271PubMed |
Van Blerkom, J., Antczak, M., and Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics Hum. Reprod. 12, 1047–1055.
| The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristicsCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szjsl2qsQ%3D%3D&md5=fc2837b88810d53a176f64a8e06f25d3CAS | 9194664PubMed |
Van Blerkom, J., Davis, P., and Alexander, S. (2001). A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos Hum. Reprod. 16, 719–729.
| A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryosCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisrw%3D&md5=8cec3ece0c0b66c4f7b3c5bffaf2d719CAS | 11278225PubMed |
Van Royen, E., Mangelschots, K., De Neubourg, D., Valkenburg, M., Van de Meerssche, M., Ryckaert, G., Eestermans, W., and Gerris, J. (1999). Characterization of top quality embryo, a step towards single-embryo transfer Hum. Reprod. 14, 2345–2349.
| Characterization of top quality embryo, a step towards single-embryo transferCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvgtVOhsA%3D%3D&md5=4c81c9771f671ecf23645a806092825bCAS | 10469708PubMed |
Van Royen, E., Mangelschots, K., Vercruyssen, M., De Neubourg, D., Valkenburg, M., Ryckaert, G., and Gerris, J. (2003). Multinucleation in cleavage stage embryos Hum. Reprod. 18, 1062–1069.
| Multinucleation in cleavage stage embryosCrossref | GoogleScholarGoogle Scholar | 12721185PubMed |
Von Wangenheim, K. H., and Peterson, H. P. (2001). A mechanism of intracellular timing and its cooperation with extracellular signals in controlling cell proliferation and differentiation, an amended hypothesis J. Theor. Biol. 211, 239–251.
| A mechanism of intracellular timing and its cooperation with extracellular signals in controlling cell proliferation and differentiation, an amended hypothesisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFOqurs%3D&md5=22b51127440f45e817c0428feffcacedCAS | 11444955PubMed |
Winston, N. J., Braude, P. R., Pickering, S. J., George, M. A., Cant, A., Currie, J., and Johnson, M. H. (1991). The incidence of abnormalmorphology and nucleocytoplasmic ratios in 2-, 3- and 5-day human pre-embryos Hum. Reprod. 6, 17–24.
| 1:STN:280:DyaK3MzktFSlsA%3D%3D&md5=cff236823415e627dc34ac42842ae0d1CAS | 1874952PubMed |
Wolf, J. P., Bulwa, S., Rodrigues, D., and Jouannet, P. (1995). Human oocyte cytometry and fertilisation rate after subzonal insemination Zygote 3, 101–109.
| Human oocyte cytometry and fertilisation rate after subzonal inseminationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FotlSgsQ%3D%3D&md5=b08f58dfa4022578fbaef7a62045a281CAS | 7582912PubMed |
Yen, A., and Pardee, A. B. (1979). Role of nuclear size in cell growth initiation Science 204, 1315–1317.
| Role of nuclear size in cell growth initiationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M3gtlWmuw%3D%3D&md5=2961ced6a26827011a3371e648ecadbcCAS | 451539PubMed |
Ziebe, S., Petersen, K., Lindenberg, S., Andersen, A.-G., Gabrielsen, A., and Andersen, A. N. (1997). Embryo morphology or cleavage rate: how to select the best embryos for transfer after in vitro fertilization Hum. Reprod. 12, 1545–1549.
| Embryo morphology or cleavage rate: how to select the best embryos for transfer after in vitro fertilizationCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svgsVajtQ%3D%3D&md5=63ae0c134f986809c6ef75340727b7e6CAS | 9262293PubMed |
Ziebe, S., Lundin, K., Loft, A., Bergh, C., Nyboe Andersen, A., Selleskog, U., Nielsen, D., Grøndahl, C., Kim, H., and Arce, J.-C. (2003). FISH analysis for chromosomes 13, 16, 18, 21, 22, X and Y in all blastomeres of IVF pre-embryos from 144 randomly selected donated human oocytes and impact on pre-embryo morphology Hum. Reprod. 18, 2575–2581.
| FISH analysis for chromosomes 13, 16, 18, 21, 22, X and Y in all blastomeres of IVF pre-embryos from 144 randomly selected donated human oocytes and impact on pre-embryo morphologyCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srmslyhsQ%3D%3D&md5=31c0f63e6cbd294b4f3c3cf126f60b7eCAS | 14645173PubMed |
Zink, D., Fischer, A. H., and Nickerson, J. A. (2004). Nuclear structure in cancer cells Nat. Rev. Cancer 4, 677–687.
| Nuclear structure in cancer cellsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCmsbg%3D&md5=c6705552859af7f31a1aea7adae9dc65CAS | 15343274PubMed |