Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The beneficial effects of reduced magnesium during the oocyte-to-embryo transition are conserved in mice, domestic cats and humans

Jason R. Herrick A D , Kevin J. Strauss A , Ann Schneiderman B , Mary Rawlins B , John Stevens B , William B. Schoolcraft C and Rebecca L. Krisher A
+ Author Affiliations
- Author Affiliations

A National Foundation for Fertility Research, 10290 RidgeGate Cr., Lone Tree, CO 80124, USA.

B Fertility Laboratories of Colorado, 10290 RidgeGate Cr., Lone Tree, CO 80124, USA.

C Colorado Center for Reproductive Medicine, 10290 RidgeGate Cr., Lone Tree, CO 80124, USA.

D Corresponding author. Email: jherrick@fertilityresearch.org

Reproduction, Fertility and Development 27(2) 323-331 https://doi.org/10.1071/RD13268
Submitted: 24 August 2013  Accepted: 17 October 2013   Published: 27 November 2013

Abstract

In many cell types Mg2+ can antagonise Ca2+-stimulated signalling pathways, but information regarding the effects of these ions on IVF and subsequent embryonic development is limited. Our objectives were to evaluate the effects of Mg2+ in the IVF medium on embryonic development in mice and then determine if similar effects occurred in domestic cats and humans. Oocytes from hybrid and outbred mice, domestic cats and humans were fertilised (IVF, mice and cats; intracytoplasmic sperm injection (ICSI), humans) in the presence of 0.2 or 1.2 (mouse and human) or 1.0 (cat) mM Mg2+ and the resulting embryos were cultured to the blastocyst stage. Decreased concentrations of Mg2+ during IVF increased (P < 0.05) cleavage of oocytes from outbred mice (77.9 vs 51.0%), development of embryos from hybrid mice (74.5 vs 51.0% hatching blastocyst per cleaved embryo) and both cleavage (68.4 vs 46.8%) and blastocyst development (53.0 vs 26.2% per cleaved embryo) in cats. Development to the blastocyst stage (52.1 vs 40.2%) was also improved (P < 0.05) when ICSI was performed on human oocytes in the presence of 0.2 mM Mg2+, compared with a commercial culture medium. Sensitivity to increased (1.0 to 1.2 mM) concentrations of Mg2+ in the medium during the oocyte-to-embryo transition appears to be conserved in three different species.

Additional keywords: calcium, in vitro fertilisation, mouse.


References

Amarnath, D., Wakayama, S., Zhu, J., Moawad, A. R., Wakayama, T., and Campbell, K. H. S. (2011). The novel use of modified pig zygotic medium for the efficient culture of preimplantation mouse embryos. Theriogenology 76, 1639–1646.
The novel use of modified pig zygotic medium for the efficient culture of preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanur3K&md5=5a130a7b8e7f2374ece8d4ce52d6eb39CAS | 21958643PubMed |

Ayabe, T., Kopf, G. S., and Schultz, R. M. (1995). Regulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs. Development 121, 2233–2244.
| 1:CAS:528:DyaK2MXmsl2ksrs%3D&md5=872cb545be7bfc2f1fcce16fd3a23997CAS | 7635066PubMed |

Baltz, J. M., and Zhou, C. (2012). Cell volume regulation in mammalian oocytes and preimplantation embryos. Mol. Reprod. Dev. 79, 821–831.
Cell volume regulation in mammalian oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFamu7%2FP&md5=8989cf648b8b402e61f8e13798f0179dCAS | 23011956PubMed |

Bootman, M. D., Missiaen, L., Parys, J. B., DeSmedt, H., and Casteels, R. (1995). Control of inositol 1,4,5-triphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem. J. 306, 445–451.
| 1:CAS:528:DyaK2MXkt1Kht7w%3D&md5=51d2b34beda3c291817ad6cbc1ece204CAS | 7887898PubMed |

Byers, S. L., Payson, S. J., and Taft, R. A. (2006). Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65, 1716–1726.
Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs).Crossref | GoogleScholarGoogle Scholar | 16271754PubMed |

Campbell, K., and Swann, K. (2006). Ca2+ oscillations stimulate an ATP increase during fertilisation of mouse eggs. Dev. Biol. 298, 225–233.
Ca2+ oscillations stimulate an ATP increase during fertilisation of mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFeksLc%3D&md5=deb855f0bbd244e96f5d5a38f40fc607CAS | 16872595PubMed |

Dumollard, R., Campbell, K., Halet, G., Carroll, J., and Swann, K. (2008). Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes. Dev. Biol. 316, 431–440.
Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVKrtLs%3D&md5=8160e10764fa495875dc5f30439b4dd1CAS | 18342302PubMed |

Engelender, S., and DeMeis, L. (1996). Pharmacological differentiation between intracellular calcium pump isoforms. Mol. Pharmacol. 50, 1243–1252.
| 1:CAS:528:DyaK28XntFCqs7c%3D&md5=14b31224a6d535821f18c8d667b4eb10CAS | 8913356PubMed |

Fraser, L. R. (1982). Ca2+ is required for mouse sperm capacitation and fertilisation in vitro. J. Androl. 3, 412–419.
| 1:CAS:528:DyaL3sXos12gsw%3D%3D&md5=962e77ed018aff9ff023c1f8a5347fb1CAS |

Fraser, L. R. (1987). Minimum and maximum extracellular Ca2+ requirements during mouse sperm capacitation and fertilisation in vitro. J. Reprod. Fertil. 81, 77–89.
Minimum and maximum extracellular Ca2+ requirements during mouse sperm capacitation and fertilisation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslegt7Y%3D&md5=74a4e4006e8aaa77520e5e1ede1cf6cdCAS | 3668962PubMed |

Fraser, L. R., and Drury, L. M. (1975). The relationship between sperm capacitation and fertilisation in vitro of mouse eggs. Biol. Reprod. 13, 513–518.
The relationship between sperm capacitation and fertilisation in vitro of mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE28%2FovFaruw%3D%3D&md5=9f8197c0a9ecab877f7e0dcd41fa7407CAS | 1203407PubMed |

Gardner, D. K., Lane, M., Stevens, J., Schlenker, T., and Schoolcraft, W. B. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–1158.
Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czhsF2hug%3D%3D&md5=7d1b46f25411303c524659a55d1ba2e4CAS | 10856474PubMed |

Gillespie, D., Chen, H., and Fill, M. (2012). Is ryanodine receptor a calcium or magnesium channel? Roles of K+ and Mg2+ during Ca2+ release. Cell Calcium 51, 427–433.
Is ryanodine receptor a calcium or magnesium channel? Roles of K+ and Mg2+ during Ca2+ release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Oqu74%3D&md5=d374c332642ad16626a9d427403ae3fcCAS | 22387011PubMed |

Hadi, T., Hammer, M. A., Algire, C., Richards, T., and Baltz, J. M. (2005). Similar effects of osmolarity, glucose and phosphate on cleavage past the 2-cell stage in mouse embryos from outbred and F1 hybrid females. Biol. Reprod. 72, 179–187.
Similar effects of osmolarity, glucose and phosphate on cleavage past the 2-cell stage in mouse embryos from outbred and F1 hybrid females.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlOq&md5=1e1590803361a10f72c7e7f4008e099cCAS | 15385415PubMed |

Herrick, J. R. (2013). Reversible meiotic arrest in feline oocytes. Reprod. Fertil. Dev. , .
Reversible meiotic arrest in feline oocytes.Crossref | GoogleScholarGoogle Scholar | 23327827PubMed |

Herrick, J. R., Bond, J. B., Magarey, G. M., Bateman, H. L., Krisher, R. L., Dunford, S. A., and Swanson, W. F. (2007). Toward a feline optimised culture medium: impact of ions, carbohydrates, essential amino acids, vitamins and serum on development and metabolism of IVF-derived feline embryos relative to embryos grown in vivo. Biol. Reprod. 76, 858–870.
Toward a feline optimised culture medium: impact of ions, carbohydrates, essential amino acids, vitamins and serum on development and metabolism of IVF-derived feline embryos relative to embryos grown in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1OhsLo%3D&md5=6d00a10e7de4b6fc0846f2172b1f1d2cCAS | 17267698PubMed |

Herrick, J. R., Campbell, M., Levens, G., Moore, T., Benson, K., D’Agostino, J., West, G., Okeson, D. M., Coke, R., Portacio, S. C., Leiske, K., Kreider, C., Polumbo, P. J., and Swanson, W. F. (2010). In vitro fertilisation and sperm cryopreservation in the black-footed cat (Felis nigripes) and sand cat (Felis margarita). Biol. Reprod. 82, 552–562.
In vitro fertilisation and sperm cryopreservation in the black-footed cat (Felis nigripes) and sand cat (Felis margarita).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVeku7w%3D&md5=74b386e5df1ca74f11fdc23e631bb1c9CAS | 19906688PubMed |

Jones, K. T., Carroll, J., and Whittingham, D. G. (1995). Ionomycin, thapsigargin, ryanodine and sperm-induced Ca2+ release increase during meiotic maturation of mouse oocytes. J. Biol. Chem. 270, 6671–6677.
Ionomycin, thapsigargin, ryanodine and sperm-induced Ca2+ release increase during meiotic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1yisL8%3D&md5=ba5c8bb43d2babd999b0a6fb03ca9b8fCAS | 7896808PubMed |

Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A., and Rizzuto, R. (1999). Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl. Acad. Sci. USA 96, 13807–13812.
Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Oqt7s%3D&md5=fb188ec0037eebeb26ae6200ffd89d2aCAS | 10570154PubMed |

Kito, S., Hayao, T., Noguchi-Kawasaki, Y., Ohta, Y., Uhara, H., and Tateno, S. (2004). Improved in vitro fertilisation and development by use of modified human tubal fluid and applicability of pronucleate embryos for cryopreservation by rapid freezing in inbred mice. Comp. Med. 54, 564–570.
| 1:CAS:528:DC%2BD2cXhtVejsrvK&md5=677db8d21234a7a7dfba73ef2ff22ad1CAS | 15575371PubMed |

Kline, J. T., and Kline, D. (1994). Regulation of intracellular calcium in the mouse egg: evidence for inositol triphosphate-induced calcium release, but not calcium-induced calcium release. Biol. Reprod. 50, 193–203.
Regulation of intracellular calcium in the mouse egg: evidence for inositol triphosphate-induced calcium release, but not calcium-induced calcium release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFWiuw%3D%3D&md5=b1f5e71e32df2bcf0b2ce5a0114c0c18CAS | 8312443PubMed |

Lane, M., and Bavister, B. D. (1998). Calcium homeostasis in early hamster preimplantation embryos. Biol. Reprod. 59, 1000–1007.
Calcium homeostasis in early hamster preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVGrt70%3D&md5=ab69d7b0d4306b4287169f1cee8fd627CAS | 9746754PubMed |

Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
Differential regulation of mouse embryo development and viability by amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gls78%3D&md5=73157417dce478ba8f92bb7b17cbdfbaCAS | 9068427PubMed |

Lane, M., and Gardner, D. K. (2000). Regulation of ionic homeostasis by mammalian embryos. Semin. Reprod. Med. 18, 195–204.
Regulation of ionic homeostasis by mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7pslShtA%3D%3D&md5=b5fd8fceb7c562fab8e969487bc24954CAS | 11256169PubMed |

Lane, M., and Gardner, D. K. (2001). Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage-stage mouse embryo. Mol. Reprod. Dev. 60, 233–240.
Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage-stage mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSjsrg%3D&md5=401fe5b3d9930318c9b3c49a99893a03CAS | 11553924PubMed |

Lane, M., Boatman, D. E., Albrecht, R. M., and Bavister, B. D. (1998). Intracellular divalent cation homeostasis and developmental competence in the hamster preimplantation embryo. Mol. Reprod. Dev. 50, 443–450.
Intracellular divalent cation homeostasis and developmental competence in the hamster preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlKrtL0%3D&md5=faeeab9aaf2260527089aa82f228729dCAS | 9669528PubMed |

Lane, M., Maybach, J. M., Hooper, K., Hasler, J. F., and Gardner, D. K. (2003). Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol. Reprod. Dev. 64, 70–78.
Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan.Crossref | GoogleScholarGoogle Scholar | 12420301PubMed |

Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996). ‘SAS System for Mixed Models’. (SAS Institute Inc.: Cary, NC, USA.)

Liu, L., Hammar, K., Smith, P. J. S., Inoue, S., and Keefe, D. L. (2001). Mitochondrial modulation of calcium signalling at the initiation of development. Cell Calcium 30, 423–433.
Mitochondrial modulation of calcium signalling at the initiation of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlKlurc%3D&md5=2396e0f75b51008706a22650bae23474CAS | 11728137PubMed |

Ludwig, T. E., Squirrell, J. M., Palmenberg, A. C., and Bavister, B. D. (2001). Relationship between development, metabolism and mitochondrial organisation in 2-cell hamster embryos in the presence of low levels of phosphate. Biol. Reprod. 65, 1648–1654.
Relationship between development, metabolism and mitochondrial organisation in 2-cell hamster embryos in the presence of low levels of phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Knsrw%3D&md5=0fa4fc556024e4c7b2dc241f90a973caCAS | 11717124PubMed |

Malmendal, A., Linse, S., Evenäs, J., Forsén, S., and Drakenberg, T. (1999). Battle for the EF-hands: magnesium–calcium interference in calmodulin. Biochemistry 38, 11844–11850.
Battle for the EF-hands: magnesium–calcium interference in calmodulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFSku7c%3D&md5=6adcc745c4e9843c2456da820c1999b1CAS | 10512641PubMed |

McKiernan, S. H., and Bavister, B. D. (1990). Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage. Biol. Reprod. 43, 404–413.
Environmental variables influencing in vitro development of hamster 2-cell embryos to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1yqsrc%3D&md5=405bb3ce349a0ae8061a0b5dff86d7f4CAS | 2125508PubMed |

Miao, Y. L., and Williams, C. J. (2012). Calcium signalling in mammalian egg activation and embryo development: the influence of subcellular localisation. Mol. Reprod. Dev. 79, 742–756.
Calcium signalling in mammalian egg activation and embryo development: the influence of subcellular localisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVegtr%2FE&md5=a0d6a87957736f6aee2fb7734bfca389CAS | 22888043PubMed |

National Research Council (U.S.A.) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011). ‘Guide for the Care and Use of Laboratory Animals’. 8th edn. (National Academies Press: Washington, DC.)

Pradhan, R. K., Qi, F., Beard, D. A., and Dash, R. K. (2011). Characterisation of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ uniporter. Biophys. J. 101, 2071–2081.
Characterisation of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ uniporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqs77M&md5=1beaa10a54e8f734b1c33147c8675e08CAS | 22067144PubMed |

Quinn, P. (2012). Culture systems: sequential. Methods Mol. Biol. 912, 211–230.
| 1:CAS:528:DC%2BC3sXmslWrug%3D%3D&md5=1e1bc9966d9164f6fd26098e4b5f25f6CAS | 22829377PubMed |

Quinn, P., Kerin, J. F., and Warnes, G. M. (1985). Improved pregnancy rate in human in vitro fertilisation with the use of a medium based on the composition of human tubal fluid. Fertil. Steril. 44, 493–498.
| 1:STN:280:DyaL28%2FjtVOnuw%3D%3D&md5=e4612b692d76adc3d40e23c941adb263CAS | 3902512PubMed |

Rogers, B. J., and Yanagimachi, R. (1976). Competitive effect of magnesium on the calcium-dependent acrosome reaction in guinea-pig spermatozoa. Biol. Reprod. 15, 614–619.
Competitive effect of magnesium on the calcium-dependent acrosome reaction in guinea-pig spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXmvFWltg%3D%3D&md5=4e971f803300847bdf3c539e99d138ffCAS | 1000001PubMed |

Summers, M. C., Bhatnagar, P. R., Lawitts, J. A., and Biggers, J. D. (1995). Fertilisation in vitro of mouse ova from inbred and outbred strains: complete preimplantation development in glucose-supplemented KSOM. Biol. Reprod. 53, 431–437.
Fertilisation in vitro of mouse ova from inbred and outbred strains: complete preimplantation development in glucose-supplemented KSOM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVSmu7k%3D&md5=9e85016e8c70ae1b589d6e239cd31222CAS | 7492697PubMed |

Suzuki, O., Asano, T., Yamamoto, Y., Takano, K., and Koura, M. (1996). Development in vitro of preimplantation embryos from 55 mouse strains. Reprod. Fertil. Dev. 8, 975–980.
Development in vitro of preimplantation embryos from 55 mouse strains.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FltFaqsQ%3D%3D&md5=bcc6ec8f94c66b3083557817d43c07b9CAS | 8896032PubMed |

Swann, K. (1992). Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store. Biochem. J. 287, 79–84.
| 1:CAS:528:DyaK38XmtV2ktbw%3D&md5=0c206e73781837d56a659c494ae1df78CAS | 1417794PubMed |

Taft, R. A. (2008). Virtues and limitations of the preimplantation mouse embryo as a model system. Theriogenology 69, 10–16.
Virtues and limitations of the preimplantation mouse embryo as a model system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmu7jE&md5=534a435317a974e99ad4b4994eea80b6CAS | 18023855PubMed |

Volpe, P., Alderson-Lang, B. H., and Nickols, G. A. (1990). Regulation of inositol 1,4,5-triphosphate-induced Ca2+ release. I. Effects of Mg2+. Am. J. Physiol. 258, C1077–C1085.
| 1:CAS:528:DyaK3cXkslWrtLs%3D&md5=ed3eb5154486cfb23bbf39dd71ad4613CAS | 2360619PubMed |

Wolf, M., Cuatrecasas, P., and Sahyoun, N. (1985). Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters and ATP. J. Biol. Chem. 260, 15718–15722.
| 1:CAS:528:DyaL2MXlvFaiu7s%3D&md5=96c6ace582a603d905f5c17c7349aa83CAS | 4066694PubMed |