Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Transgenerational programming of fetal nephron deficits and sex-specific adult hypertension in rats

Linda A. Gallo A E , Melanie Tran A , Luise A. Cullen‐McEwen B , Kate M. Denton C , Andrew J. Jefferies A , Karen M. Moritz D and Mary E. Wlodek A F
+ Author Affiliations
- Author Affiliations

A Department of Physiology, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic. 3168, Australia.

C Department of Physiology, Monash University, Clayton, Vic. 3168, Australia.

D School of Biomedical Sciences, The University of Queensland, St Lucia, Qld 4067, Australia.

E Present address: Mater Research, Translational Research Institute, Woolloongabba, Qld 4102, Australia.

F Corresponding author. Email: m.wlodek@unimelb.edu.au

Reproduction, Fertility and Development 26(7) 1032-1043 https://doi.org/10.1071/RD13133
Submitted: 3 May 2013  Accepted: 2 July 2013   Published: 5 August 2013

Abstract

A developmental insult that restricts growth in the first generation has the potential to program disease in subsequent generations. The aim of this study was to ascertain transgenerational growth and cardio–renal effects, via the maternal line, in a rat model of utero–placental insufficiency. Bilateral uterine vessel ligation or sham surgery (offspring termed first generation; F1 Restricted and Control, respectively) was performed in WKY rats. F1 Restricted and Control females were mated with normal males to produce second generation (F2) offspring (Restricted and Control) studied from fetal (embryonic Day 20) to adult (12 months) life. F2 Restricted male and female fetuses had reduced (P < 0.05) nephron number (down 15–22%) but this deficit was not sustained postnatally and levels were similar to Controls at Day 35. F2 Restricted males, but not females, developed elevated (+16 mmHg, P < 0.05) systolic blood pressure at 6 months of age, which was sustained to 9 months. This was not explained by alterations to intra-renal or plasma components of the renin–angiotensin system. In a rat model of utero–placental insufficiency, we report alterations to F2 kidney development and sex-specific adult hypertension. This study demonstrates that low birthweight can have far-reaching effects that extend into the next generation.

Additional keywords: fetal programming, intrauterine growth, pregnancy, sexual dimorphism.


References

Anderson, C. M., Lopez, F., Zimmer, A., and Benoit, J. N. (2006). Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague–Dawley rat offspring. Biol. Reprod. 74, 538–544.
Placental insufficiency leads to developmental hypertension and mesenteric artery dysfunction in two generations of Sprague–Dawley rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslejsL4%3D&md5=cee941dd236a90be2472d455954003d8CAS | 16306423PubMed |

Armitage, J. A., Khan, I. Y., Taylor, P. D., Nathanielsz, P. W., and Poston, L. (2004). Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J. Physiol. 561, 355–377.
Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFait7zP&md5=2781481ce500ef80bb64748018df1a5cCAS | 15459241PubMed |

Barker, D. J. P. (1995). Fetal origins of coronary heart disease. BMJ 311, 171–174.
Fetal origins of coronary heart disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzjvVSrtw%3D%3D&md5=6cb033377386729bfca1f3253abad087CAS |

Barker, D. J., Winter, P. D., Osmond, C., Margetts, B., and Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet 334, 577–580.
Weight in infancy and death from ischaemic heart disease.Crossref | GoogleScholarGoogle Scholar |

Ben-Shlomo, Y., McCarthy, A., Hughes, R., Tilling, K., Davies, D., and Smith, G. D. (2008). Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension 52, 638–644.
Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2jsr3K&md5=5060d24bbb4ffd23962f48ff3e66959cCAS | 18768401PubMed |

Bertram, J. F. (1995). Analysing renal glomeruli with the new stereology. Int. Rev. Cytol. 161, 111–172.
Analysing renal glomeruli with the new stereology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2Fhs1SnsQ%3D%3D&md5=f6b600de27e963884d9f3b7b706aa0ecCAS | 7558690PubMed |

Brawley, L., Itoh, S., Torrens, C., Barker, A., Bertram, C., Poston, L., and Hanson, M. (2003). Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr. Res. 54, 83–90.
Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFWlsLo%3D&md5=696fbc254fac984a9044d0c021d19f8fCAS | 12646717PubMed |

Brenner, B. M., Garcia, D. L., and Anderson, S. (1988). Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347.
Glomeruli and blood pressure. Less of one, more the other?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7gsFegtA%3D%3D&md5=b5aae35cf056c0cc9aaadf9b830b995dCAS | 3063284PubMed |

Cullen-McEwen, L. A., Armitage, J. A., Nyengaard, J. R., and Moritz, K. M. (2011). A design-based method for estimating glomerular number in the developing kidney. Am. J. Physiol. Renal Physiol. 300, F1448–F1453.
| 1:CAS:528:DC%2BC3MXot1Grtbo%3D&md5=1ffd63246b585f9d2846b20e5c447269CAS | 21411478PubMed |

Cullen-McEwen, L. A., Armitage, J. A., Nyengaard, J. R., and Bertram, J. F. (2012). Estimating nephron number in the developing kidney using the physical dissector/fractionator combination. Methods Mol. Biol. 886, 109–119.
Estimating nephron number in the developing kidney using the physical dissector/fractionator combination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVylsA%3D%3D&md5=cd78cd6846348022d7642220270a25b5CAS | 22639255PubMed |

Denton, K., and Baylis, C. (2007). Physiological and molecular mechanisms governing sexual dimorphism of kidney, cardiac and vascular function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R697–R699.
| 1:CAS:528:DC%2BD2sXjt1Gntbg%3D&md5=aba06c7d2c36fb4ea225cedd5b9e8a28CAS | 17095645PubMed |

Eriksson, J., Forsen, T., Tuomilehto, J., Osmond, C., and Barker, D. (2000). Fetal and childhood growth and hypertension in adult life. Hypertension 36, 790–794.
Fetal and childhood growth and hypertension in adult life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FlvFKmtw%3D%3D&md5=7fa680e6aa35ab5208bb0afd128bf4c5CAS | 11082144PubMed |

Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C., and Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: longitudinal study. BMJ 322, 949.
Early growth and coronary heart disease in later life: longitudinal study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3it1SjsQ%3D%3D&md5=63a41cd3dd81c10ab88ec0391be73448CAS | 11312225PubMed |

Gallo, L. A., Denton, K. M., Moritz, K. M., Tare, M., Parkington, H. C., Davies, M., Tran, M., Jefferies, A. J., and Wlodek, M. E. (2012a). Long-term alteration in maternal blood pressure and renal function after pregnancy in normal and growth-restricted rats. Hypertension 60, 206–213.
Long-term alteration in maternal blood pressure and renal function after pregnancy in normal and growth-restricted rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVerur3N&md5=b1e39d81fdfe29100f0a92dc99a75eb7CAS | 22585946PubMed |

Gallo, L. A., Tran, M., Master, J. S., Mortiz, K. M., and Wlodek, M. E. (2012b). Maternal adaptations and inheritance in the transgenerational programming of adult disease. Cell Tissue Res. 349, 863–880.
Maternal adaptations and inheritance in the transgenerational programming of adult disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yltbrF&md5=3960a5e479b99a42cf190782d33d6197CAS | 22526629PubMed |

Gallo, L. A., Tran, M., Moritz, K. M., Jefferies, A. J., and Wlodek, M. E. (2012c). Pregnancy in aged rats that were born small: cardio–renal and metabolic adaptations and second-generation fetal growth. FASEB J. 26, 4337–4347.
Pregnancy in aged rats that were born small: cardio–renal and metabolic adaptations and second-generation fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSmtbnJ&md5=6085be0062b553c90093ea15d311f023CAS | 22772163PubMed |

Gallo, L. A., Tran, M., Moritz, K. M., Mazzuca, M. Q., Parry, L. J., Westcott, K. T., Jefferies, A. J., Cullen-McEwen, L. A., and Wlodek, M. E. (2012d). Cardio–renal and metabolic adaptations during pregnancy in female rats born small: implications for maternal health and second-generation fetal growth. J. Physiol. 590, 617–630.
| 1:CAS:528:DC%2BC38Xislemur0%3D&md5=8fee4d113093df6b2a8f377961b7067dCAS | 22144579PubMed |

Giussani, D. A., Fletcher, A. J., and Gardner, D. S. (2011). Sex differences in the ovine fetal cortisol response to stress. Pediatr. Res. 69, 118–122.
Sex differences in the ovine fetal cortisol response to stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFCqsrY%3D&md5=21657610b54316dcb5563e012deab5cfCAS | 21045750PubMed |

Grigore, D., Ojeda, N. B., Robertson, E. B., Dawson, A. S., Huffman, C. A., Bourassa, E. A., Speth, R. C., Brosnihan, K. B., and Alexander, B. T. (2007). Placental insufficiency results in temporal alterations in the renin–angiotensin system in male hypertensive growth restricted offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R804–R811.
| 1:CAS:528:DC%2BD2sXptlyqs7s%3D&md5=e936d9a38156e82f2fac2f335f9f0846CAS | 17537837PubMed |

Grigore, D., Ojeda, N. B., and Alexander, B. T. (2008). Sex differences in the fetal programming of hypertension. Gend. Med. 5, S121–S132.
Sex differences in the fetal programming of hypertension.Crossref | GoogleScholarGoogle Scholar | 18395678PubMed |

Gubhaju, L., Sutherland, M. R., Yoder, B. A., Zulli, A., Bertram, J. F., and Black, M. J. (2009). Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am. J. Physiol. Renal Physiol. 297, F1668–F1677.
| 1:CAS:528:DC%2BD1MXhsFOltb3I&md5=a4eb24e4b0db9ce596c22e74f2959102CAS | 19759270PubMed |

Hanson, M., and Gluckman, P. (2005). Endothelial dysfunction and cardiovascular disease: the role of predictive adaptive responses. Heart 91, 864–866.
Endothelial dysfunction and cardiovascular disease: the role of predictive adaptive responses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzhtFajsw%3D%3D&md5=e0cbaa323115f940e6c11b893c1b3136CAS | 15958346PubMed |

Harrison, M., and Langley-Evans, S. C. (2009). Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br. J. Nutr. 101, 1020–1030.
Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGksrc%3D&md5=a4948d4c9f7415402985917412f3da91CAS | 18778527PubMed |

Henriksen, T., and Clausen, T. (2002). The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet. Gynecol. Scand. 81, 112–114.
The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations.Crossref | GoogleScholarGoogle Scholar | 11942899PubMed |

Hoy, W. E., Rees, M., Kile, E., Mathews, J. D., and Wang, Z. (1999). A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int. 56, 1072–1077.
A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzpvVGgtQ%3D%3D&md5=71d27540248bbe235ef5100f18c540e9CAS | 10469376PubMed |

Hoy, W. E., Hughson, M. D., Bertram, J. F., Denton, D. R., and Amann, K. (2005). Nephron number, hypertension, renal disease and renal failure. J. Am. Soc. Nephrol. 16, 2557–2564.
Nephron number, hypertension, renal disease and renal failure.Crossref | GoogleScholarGoogle Scholar | 16049069PubMed |

Lim, K., Armitage, J. A., Stefanidis, A., Oldfield, B. J., and Black, M. J. (2011). IUGR in the absence of postnatal “catch-up” growth leads to improved whole body insulin sensitivity in rat offspring. Pediatr. Res. 70, 339–344.
IUGR in the absence of postnatal “catch-up” growth leads to improved whole body insulin sensitivity in rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFeiu7fE&md5=72549183e6fe78d3a2e07d01d930af40CAS | 21885936PubMed |

Mazzuca, M. Q., Tare, M., Parkington, H. C., Dragomir, N. M., Parry, L. J., and Wlodek, M. E. (2012). Utero–placental insufficiency programmes vascular dysfunction in non-pregnant rats: compensatory adaptations in pregnancy. J. Physiol. 590, 3375–3388.
Utero–placental insufficiency programmes vascular dysfunction in non-pregnant rats: compensatory adaptations in pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oks7bK&md5=9b4c8d108d4f000e58e4cc1afe400924CAS | 22586217PubMed |

Mercuro, G., Deidda, M., Piras, A., Dessalvi, C. C., Maffei, S., and Rosano, G. M. (2010). Gender determinants of cardiovascular risk factors and diseases. J. Cardiovasc. Med. 11, 207–220.
Gender determinants of cardiovascular risk factors and diseases.Crossref | GoogleScholarGoogle Scholar |

Moritz, K. M., Mazzuca, M. Q., Siebel, A. L., Mibus, A., Arena, D., Tare, M., Owens, J. A., and Wlodek, M. E. (2009). Utero–placental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J. Physiol. 587, 2635–2646.
Utero–placental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1artr8%3D&md5=611358140ad1b313ec61f32eecbd213aCAS | 19359373PubMed |

O’Dowd, R., Kent, J. C., Moseley, J. M., and Wlodek, M. E. (2008). Effects of utero–placental insufficiency and reducing litter size on maternal mammary function and postnatal offspring growth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R539–R548.
| 1:CAS:528:DC%2BD1cXit1ylu78%3D&md5=1a523bcd7714d8c65bb8e56dc8cec71dCAS | 18077510PubMed |

Ojeda, N. B., Grigore, D., Robertson, E. B., and Alexander, B. T. (2007a). Oestrogen protects against increased blood pressure in postpubertal female growth-restricted offspring. Hypertension 50, 679–685.
Oestrogen protects against increased blood pressure in postpubertal female growth-restricted offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCrtLzN&md5=f7a0bb46beb75cc0111c8b7a95ed90bcCAS | 17724277PubMed |

Ojeda, N. B., Grigore, D., Yanes, L. L., Iliescu, R., Robertson, E. B., Zhang, H., and Alexander, B. T. (2007b). Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth-restricted offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R758–R763.
| 1:CAS:528:DC%2BD2sXjt1Gnurs%3D&md5=1abeaf4d4ecd97c79ca5076133f1a483CAS | 16917022PubMed |

Painter, R. C., Osmond, C., Gluckman, P., Hanson, M., Phillips, D. I., and Roseboom, T. J. (2008). Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249.
Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crjs1ejug%3D%3D&md5=738ba9645813bca1813b85b60e33cbe2CAS | 18715409PubMed |

Ponzio, B. F., Carvalho, M. H., Fortes, Z. B., and do Carmo, F. M. (2012). Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1–F3 offspring. Life Sci. 90, 571–577.
Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1–F3 offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOgtbs%3D&md5=d9b4f66c78e38e493a39924c63f235e7CAS | 22365957PubMed |

Roseboom, T. J., and Watson, E. D. (2012). The next generation of disease risk: are the effects of prenatal nutrition transmitted across generations? Evidence from animal and human studies. Placenta 33, e40–e44.
The next generation of disease risk: are the effects of prenatal nutrition transmitted across generations? Evidence from animal and human studies.Crossref | GoogleScholarGoogle Scholar | 22902003PubMed |

Schreuder, M. F., Van Wijk, J. A., Fodor, M., and Delemarre-van de Waal, H. A. (2007). Influence of intrauterine growth restriction on renal function in the adult rat. J. Physiol. Biochem. 63, 213–219.
Influence of intrauterine growth restriction on renal function in the adult rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c7ltlamsw%3D%3D&md5=590e2d0f57350b65f62197c04e97c84bCAS | 18309777PubMed |

Simmons, R. A., Templeton, L. J., and Gertz, S. J. (2001). Intrauterine growth retardation leads to the development of Type 2 diabetes in the rat. Diabetes 50, 2279–2286.
Intrauterine growth retardation leads to the development of Type 2 diabetes in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGhurc%3D&md5=c5fef69b2ebb3bc52d7a6b7da205eec9CAS | 11574409PubMed |

Singh, R. R., Moritz, K. M., Wintour, E. M., Jefferies, A. J., Iqbal, J., Bertram, J. F., and Denton, K. M. (2011). Fetal uninephrectomy in male sheep alters the systemic and renal responses to angiotensin II infusion and AT1R blockade. Am. J. Physiol. Renal Physiol. 301, F319–F326.
| 1:CAS:528:DC%2BC3MXhtFSrtbjN&md5=5655d64fab2f2824efedc83d48ccfd64CAS | 21543419PubMed |

Torrens, C., Brawley, L., Barker, A. C., Itoh, S., Poston, L., and Hanson, M. A. (2003). Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring. J. Physiol. 547, 77–84.
Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFSktrc%3D&md5=2b189579c306146022cfb07120713479CAS | 12562942PubMed |

Torrens, C., Poston, L., and Hanson, M. A. (2008). Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br. J. Nutr. 100, 760–766.
Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KgtbrM&md5=56a864206a9e2df717623c0838478840CAS | 18304387PubMed |

Vehaskari, V. M. (2010). Prenatal programming of kidney disease. Curr. Opin. Pediatr. 22, 176–182.
Prenatal programming of kidney disease.Crossref | GoogleScholarGoogle Scholar | 20087184PubMed |

Vehaskari, V. M., Aviles, D. H., and Manning, J. (2001). Prenatal programming of adult hypertension in the rat. Kidney Int. 59, 238–245.
Prenatal programming of adult hypertension in the rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7jtFWrtA%3D%3D&md5=63d946b3bed54760f724fcffb0d52dadCAS | 11135076PubMed |

Vehaskari, V. M., Stewart, T., Lafont, D., Soyez, C., Seth, D., and Manning, J. (2004). Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am. J. Physiol. Renal Physiol. 287, F262–F267.
| 1:CAS:528:DC%2BD2cXmvFarsrg%3D&md5=ed4129d91847240f2236b02f4121a491CAS | 15100095PubMed |

Vikse, B. E., Irgens, L. M., Leivestad, T., Hallan, S., and Iversen, B. M. (2008). Low birthweight increases risk for end-stage renal disease. J. Am. Soc. Nephrol. 19, 151–157.
Low birthweight increases risk for end-stage renal disease.Crossref | GoogleScholarGoogle Scholar | 18057216PubMed |

Wadley, G. D., Siebel, A. L., Cooney, G. J., McConell, G. K., Wlodek, M. E., and Owens, J. A. (2008). Utero–placental insufficiency and reducing litter size alters skeletal muscle mitochondrial biogenesis in a sex-specific manner in the adult rat. Am. J. Physiol. Endocrinol. Metab. 294, E861–E869.
| 1:CAS:528:DC%2BD1cXlvFCju7w%3D&md5=35524f1646d3431cc480ef707c8e5a2cCAS | 18319353PubMed |

Wlodek, M. E., Mibus, A., Tan, A., Siebel, A. L., Owens, J. A., and Moritz, K. M. (2007). Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J. Am. Soc. Nephrol. 18, 1688–1696.
Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Squrg%3D&md5=d4177528ebb14898f0a3fa6642f533abCAS | 17442788PubMed |

Wlodek, M. E., Westcott, K., Siebel, A. L., Owens, J. A., and Moritz, K. M. (2008). Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int. 74, 187–195.
Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats.Crossref | GoogleScholarGoogle Scholar | 18432184PubMed |

Zimanyi, M. A., Denton, K. M., Forbes, J. M., Thallas-Bonke, V., Thomas, M. C., Poon, F., and Black, M. J. (2006). A developmental nephron deficit in rats is associated with increased susceptibility to a secondary renal injury due to advanced glycation end-products. Diabetologia 49, 801–810.
A developmental nephron deficit in rats is associated with increased susceptibility to a secondary renal injury due to advanced glycation end-products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitF2jt74%3D&md5=0bfcfd3a50ac63d37f4dfb3a1797234aCAS | 16496120PubMed |