Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Induction of autophagy during in vitro maturation improves the nuclear and cytoplasmic maturation of porcine oocytes

Bong-Seok Song A C , Ji-Su Kim A C , Young-Hyun Kim A B C , Bo-Woong Sim A C , Seung-Bin Yoon A B , Jae-Jin Cha A , Seon-A Choi A , Hae-Jun Yang A , Seong-Eun Mun A , Young-Ho Park A , Kang-Jin Jeong A , Jae-Won Huh A B , Sang-Rae Lee A , Sang-Hyun Kim A , Sun-Uk Kim A B D and Kyu-Tae Chang A B D
+ Author Affiliations
- Author Affiliations

A National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea.

B Department of Functional Genomics, University of Science and Technology, Daejeon 305-350, Republic of Korea.

C These authors contributed equally to this work.

D Corresponding authors. Emails: sunuk@kribb.re.kr; changkt@kribb.re.kr

Reproduction, Fertility and Development 26(7) 974-981 https://doi.org/10.1071/RD13106
Submitted: 28 March 2013  Accepted: 25 June 2013   Published: 1 August 2013

Abstract

While a critical role of autophagy in mammalian early embryogenesis has been demonstrated, few studies have been conducted regarding the role of autophagy in in vitro maturation (IVM) of immature oocytes. In the present study we investigated the effect of rapamycin, a chemical autophagy inducer, on the nuclear and cytoplasmic maturation of porcine oocytes. Rapamycin treatment led to increased expression of LC3-II, an autophagy marker. Compared with the control group, as well as the 5 and 10 nM rapamycin treatment groups, the rate of MII oocyte production was higher in the 1 nM rapamycin treatment group, indicating improvement in nuclear maturation. In the analyses of cytoplasmic maturation, we found that the level of p34cdc2, a cytoplasmic maturation marker, and the monospermic fertilisation rate were higher in the 1 nM rapamycin treatment group than in the other groups. Moreover, the beneficial effect of 1 nM rapamycin on cytoplasmic maturation of MII oocytes was further evidenced by increases in blastocyst formation rate, total cell number and cell survival. In the blastocyst embryos, anti-apoptotic Bcl-xL transcript levels were elevated in the 1 nM rapamycin-treated group, whereas pro-apoptotic Bax transcript levels were decreased. Collectively, these results suggest that induction of autophagy during IVM contributes to enhancement of the nuclear and cytoplasmic maturation of porcine oocytes.

Additional keywords: apoptosis, development, in vitro fertilisation.


References

Abeydeera, L. R., and Day, B. N. (1997). Fertilisation and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
Fertilisation and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFCqs7c%3D&md5=7abaea11f386d024b7602360bd7e0f7bCAS | 9314573PubMed |

Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgella, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfister-Genskow, M., Strelchenko, N., Voelker, G., Watt, S., Thompson, S., and Bishop, M. (2000). Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–1059.
Production of cloned pigs from in vitro systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlOhtr0%3D&md5=0fe08977cc59872b9e1d0982655f65c6CAS | 11017042PubMed |

Blanco, M. R., Demyda, S., Moreno Millán, M., and Genero, E. (2011). Developmental competence of in vivo- and in vitro-matured oocytes: a review. Biotechnol. Mol. Biol. Rev. 6, 155–165.

Foster, K. G., and Fingar, D. C. (2010). Mammalian target of rapamycin (mTOR): conducting the cellular signalling symphony. J. Biol. Chem. 285, 14 071–14 077.
Mammalian target of rapamycin (mTOR): conducting the cellular signalling symphony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVOitLg%3D&md5=44b362eedca7cdf2ef23e6b692484959CAS |

Funahashi, H., Cantley, T. C., Stumpf, T. T., Terlouw, S. L., and Day, B. N. (1994). In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilisation. Biol. Reprod. 50, 1072–1077.
In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3pslSktQ%3D%3D&md5=a62751451050c0cbc1fef853080bba37CAS | 8025163PubMed |

Han, Y. M., Wang, W. H., Abeydeera, L. R., Petersen, A. L., Kim, J. H., Murphy, C., Day, B. N., and Prather, R. S. (1999). Pronuclear location before the first cell division determines ploidy of polyspermic pig embryos. Biol. Reprod. 61, 1340–1346.
Pronuclear location before the first cell division determines ploidy of polyspermic pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFert7c%3D&md5=55161cc3e92f182afbbf47e85f95324bCAS | 10529283PubMed |

Hao, Y., Lai, L., Mao, J., Im, G. S., Bonk, A., and Prather, R. S. (2004). Apoptosis in parthenogenetic preimplantation porcine embryos. Biol. Reprod. 70, 1644–1649.
Apoptosis in parthenogenetic preimplantation porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOmtrw%3D&md5=58a011096351b08a67a48cd888ef4987CAS | 14766725PubMed |

Hashimoto, N., and Kishimoto, T. (1988). Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 126, 242–252.
Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVOrt7w%3D&md5=be7f58dace6d3a279da1c5bd0c0d8dafCAS | 3350209PubMed |

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFaiurk%3D&md5=3e94754f99c2c19100fe003dc3b93f9aCAS | 11060023PubMed |

Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., and Yoshimori, T. (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812.
LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFehtL4%3D&md5=03f7883050e8ec75671d42ea5da7fa1cCAS | 15169837PubMed |

Kashiwakura, Y., Mimuro, J., Onishi, A., Iwamoto, M., Madoiwa, S., Fuchimoto, D., Suzuki, S., Suzuki, M., Sembon, S., Ishiwata, A., Yasumoto, A., Sakata, A., Ohmori, T., Hashimoto, M., Yazaki, S., and Sakata, Y. (2012). Porcine model of haemophilia A. PLoS ONE 7, e49450.
Porcine model of haemophilia A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGjtr3P&md5=c16fa085c320820e1871631a8332f30bCAS | 23209578PubMed |

Kim, J. S., Cho, Y. S., Song, B. S., Wee, G., Park, J. S., Choo, Y. K., Yu, K., Lee, K. K., Han, Y. M., and Koo, D. B. (2008). Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs. Theriogenology 69, 290–301.
Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2itQ%3D%3D&md5=ac3340df02ac249e831a5a9155a95d14CAS | 17977589PubMed |

Kim, J. S., Song, B. S., Lee, S. R., Yoon, S. B., Huh, J. W., Kim, S. U., Kim, E., Kim, S. H., Choo, Y. K., Koo, D. B., and Chang, K. T. (2011). Supplementation with oestradiol-17beta improves porcine oocyte maturation and subsequent embryo development. Fertil. Steril. 95, 2582–2584.
Supplementation with oestradiol-17beta improves porcine oocyte maturation and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1akt7s%3D&md5=c3586db2bc1b211a3f19f79896270bc7CAS | 21459376PubMed |

Koo, D. B., Kim, Y. J., Yu, I., Kim, H. N., Lee, K. K., and Han, Y. M. (2005). Effects of in vitro fertilisation conditions on preimplantation development and quality of pig embryos. Anim. Reprod. Sci. 90, 101–110.
Effects of in vitro fertilisation conditions on preimplantation development and quality of pig embryos.Crossref | GoogleScholarGoogle Scholar | 16257600PubMed |

Krisher, R. L. (2004). The effect of oocyte quality on development. J. Anim. Sci. 82, E14–E23.
| 15471793PubMed |

Kubelka, M., Rimkevicova, Z., Guerrier, P., and Motlik, J. (1995). Inhibition of protein synthesis affects histone H1 kinase, but not chromosome condensation activity, during the first meiotic division of pig oocytes. Mol. Reprod. Dev. 41, 63–69.
Inhibition of protein synthesis affects histone H1 kinase, but not chromosome condensation activity, during the first meiotic division of pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVagsrg%3D&md5=c24d1abd508917e06cd765d47a6d8327CAS | 7619507PubMed |

Kubelka, M., Anger, M., Kalous, J., Schultz, R. M., and Motlik, J. (2002). Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol. Reprod. Dev. 63, 110–118.
Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVemtr4%3D&md5=8143d6fed21989eece9ff9640c72e7e6CAS | 12211068PubMed |

Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., Samuel, M., Bonk, A., Rieke, A., Day, B. N., Murphy, C. N., Carter, D. B., Hawley, R. J., and Prather, R. S. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092.
Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Gqtbw%3D&md5=b50e24fa6a4d4b0c6ad457a8f3e99ae4CAS | 11778012PubMed |

Levine, B., and Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477.
Development by self-digestion: molecular mechanisms and biological functions of autophagy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFeqsbs%3D&md5=2610c79e5f8174e8d27d796705f8965aCAS | 15068787PubMed |

Levy, R. R., Cordonier, H., Czyba, J. C., and Guerin, J. F. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106, 101–108.
| 1:STN:280:DC%2BD3MnosF2rtw%3D%3D&md5=673bc2e96db1425943881cb11bf4ca97CAS | 11732565PubMed |

Macháty, Z., Day, B. N., and Prather, R. S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455.
Development of early porcine embryos in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 9687321PubMed |

Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823–830.
Autophagy in mammalian development and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSju7zJ&md5=bf448b1557cfec8a3ba31945bd7ab25bCAS | 20811354PubMed |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=d1c333412cc96909299bbec3222f40ceCAS | 8145215PubMed |

Song, B. S., Kim, J. S., Yoon, S. B., Lee, K. S., Koo, D. B., Lee, D. S., Choo, Y. K., Huh, J. W., Lee, S. R., Kim, S. U., Kim, S. H., Kim, H. M., and Chang, K. T. (2011). Inactivated Sendai-virus-mediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis. Reprod. Fertil. Dev. 23, 826–836.
Inactivated Sendai-virus-mediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis.Crossref | GoogleScholarGoogle Scholar | 21791184PubMed |

Song, B. S., Yoon, S. B., Kim, J. S., Sim, B. W., Kim, Y. H., Cha, J. J., Choi, S. A., Min, H. K., Lee, Y., Huh, J. W., Lee, S. R., Kim, S. H., Koo, D. B., Choo, Y. K., Kim, H. M., Kim, S. U., and Chang, K. T. (2012). Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol. Reprod. 87, 1–11.
Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress.Crossref | GoogleScholarGoogle Scholar |

Sully, K., Akinduro, O., Philpott, M. P., Naeem, A. S., Harwood, C. A., Reeve, V. E., O’Shaughnessy, R. F., and Byrne, C. (2012). The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBalpha isoform signalling. Oncogene , .
The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBalpha isoform signalling.Crossref | GoogleScholarGoogle Scholar | 22890326PubMed |

Tanida, I., Ueno, T., and Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–2518.
LC3 conjugation system in mammalian autophagy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFemu7Y%3D&md5=2a9df69ee183e0b45ed497181405f464CAS | 15325588PubMed |

Tsukamoto, S., Kuma, A., and Mizushima, N. (2008a). The role of autophagy during the oocyte-to-embryo transition. Autophagy 4, 1076–1078.
| 18849666PubMed |

Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A., and Mizushima, N. (2008b). Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120.
Autophagy is essential for preimplantation development of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFeksLc%3D&md5=f596fcc4f35de65d163dbf37ee21d097CAS | 18599786PubMed |

Xu, Y. N., Shen, X. H., Lee, S. E., Kwon, J. S., Kim, D. J., Heo, Y. T., Cui, X. S., and Kim, N. H. (2012). Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro. J. Reprod. Dev. 58, 576–584.
Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVClt7vE&md5=44dd5e6407ad25d684859628a70e7d32CAS | 22785354PubMed |