Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

Lin Lin A B H , Yonglun Luo A H I , Peter Sørensen B , Helle Prætorius A , Gabor Vajta C G , Henrik Callesen B , Csaba Pribenszky F , Lars Bolund A C and Torsten Nygård Kristensen D E
+ Author Affiliations
- Author Affiliations

A Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark.

B Department of Animal Science, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark.

C BGI/HuaDa, Beishan Road 10, 518000, Shenzhen, China.

D Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark.

E NordGen, Nordic Genetic Resource Center, NO-1431 Ås, Norway.

F Department of Animal Breeding and Genetics, Szent István University, István u. 2, Budapest, 1078, Hungary.

G Central Queensland University, Rockhampton, Qld 4700, Australia.

H These authors contributed equally to this work.

I Corresponding author. Email: alun@hum-gen.au.dk

Reproduction, Fertility and Development 26(3) 469-484 https://doi.org/10.1071/RD13037
Submitted: 5 February 2012  Accepted: 8 March 2013   Published: 10 April 2013

Abstract

Handmade cloning (HMC) has been used to generate transgenic pigs for biomedical research. Recently, we found that parthenogenetic activation (PA) of porcine oocytes and improved HMC efficiency could be achieved by treatment with sublethal high hydrostatic pressure (HHP). However, the molecular mechanism underlying the effects of HHP treatment on embryonic development is poorly understood and so was investigated in the present study. Thus, in the present study, we undertook genome-wide gene expression analysis in HHP-treated and untreated oocytes, as well as in 4-cell and blastocyst stage embryos derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P < 0.05). These transcripts are predominantly involved in regulating cellular differentiation, gene expression and cell-to-cell signalling. We found that 44 transcripts were altered by HHP treatment, with most exhibiting lower expression in HHP-treated oocytes. Genes involved in embryonic development were prominent among the transcripts affected by HHP. Two of these genes (INHBB and ME3) were further validated by quantitative reverse transcription–polymerase chain reaction. We also observed that HHP treatment activated expression of the imprinting gene DLX5 in 4-cell PA embryos. In conclusion, our genomic expression profiling data suggest that HHP alters the RNA constitution in porcine oocytes and affects the expression of imprinting genes during embryonic development.

Additional keywords: handmade cloning, imprinting.


References

Aigner, B., Renner, S., Kessler, B., Klymiuk, N., Kurome, M., Wunsch, A., and Wolf, E. (2010). Transgenic pigs as models for translational biomedical research. J. Mol. Med. 88, 653–664.
Transgenic pigs as models for translational biomedical research.Crossref | GoogleScholarGoogle Scholar | 20339830PubMed |

Archibald, A. L., Bolund, L., Churcher, C., Fredholm, M., Groenen, M. A., Harlizius, B., Lee, K. T., Milan, D., Rogers, J., Rothschild, M. F., Uenishi, H., Wang, J., and Schook, L. B. (2010). Pig genome sequence: analysis and publication strategy. BMC Genomics 11, 438.
Pig genome sequence: analysis and publication strategy.Crossref | GoogleScholarGoogle Scholar | 20642822PubMed |

Bendixen, E., Danielsen, M., Larsen, K., and Bendixen, C. (2010). Advances in porcine genomics and proteomics: a toolbox for developing the pig as a model organism for molecular biomedical research. Brief. Funct. Genomics 9, 208–219.
Advances in porcine genomics and proteomics: a toolbox for developing the pig as a model organism for molecular biomedical research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOnu7k%3D&md5=6bc3b704ec828b1f533fcdf47247310bCAS | 20495211PubMed |

Bentzon, J. F. S., Sørensen, C. B., Al-Mashhadi, R. H., Kragh, P. M., Nielsen, L. B., Li, J., Lin, L., Liu, Y., Moldt, B., Schmidt, M., et al. (2012). Hypercholesterolemic minipigs created by liver-specific expression of a PCSK9 gain-of-function mutant. Transgenic Res. 21, s910–s911.

Bock, I., Losonczi, E., Mamo, S., Polgar, Z., Harnos, A., Dinnyes, A., and Pribenszky, C. (2010). Stress tolerance and transcriptional response in mouse embryos treated with high hydrostatic pressure to enhance cryotolerance. Cryo Lett. 31, 401–412.

Brown, C. W., Houston-Hawkins, D. E., Woodruff, T. K., and Matzuk, M. M. (2000). Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions. Nat. Genet. 25, 453–457.
Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVeqsrc%3D&md5=69b11f7f675fa4b2ab0fbf4121058f25CAS | 10932194PubMed |

Brown, K. K., Reiss, J. A., Crow, K., Ferguson, H. L., Kelly, C., Fritzsch, B., and Morton, C. C. (2010). Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35). Hum. Genet. 127, 19–31.
Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOhtLvK&md5=263e7f921924595a0d39b7e48989bd8bCAS | 19707792PubMed |

Domitrovic, T., Fernandes, C. M., Boy-Marcotte, E., and Kurtenbach, E. (2006). High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae. FEBS Lett. 580, 6033–6038.
High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOhsr7N&md5=37e41e76b8f55ee71d76dc6502fc2d9dCAS | 17055490PubMed |

Du, Y., Kragh, P. M., Zhang, Y., Li, J., Schmidt, M., Bogh, I. B., Zhang, X., Purup, S., Jorgensen, A. L., Pedersen, A. M., Villemoes, K., Yang, H., Bolund, L., and Vajta, G. (2007). Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology 68, 1104–1110.
Piglets born from handmade cloning, an innovative cloning method without micromanipulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srpvVOktA%3D%3D&md5=bf4cb67b0fd68ac899ae27d51d3f563eCAS | 17889304PubMed |

Du, Y., Lin, L., Schmidt, M., Bogh, I. B., Kragh, P. M., Sorensen, C. B., Li, J., Purup, S., Pribenszky, C., Molnar, M., Kuwayama, M., Zhang, X., Yang, H., Bolund, L., and Vajta, G. (2008). High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells 10, 325–330.
High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7zK&md5=cd2205b22c0c9cffa2295af176eb8489CAS | 18479211PubMed |

Fernandes, P. M., Domitrovic, T., Kao, C. M., and Kurtenbach, E. (2004). Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett. 556, 153–160.
Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosl2h&md5=e3748cf4e0ff3a7436effa0634425556CAS | 14706843PubMed |

Filho, E. S., Caixeta, E. S., Pribenszky, C., Molnar, M., Horvath, A., Harnos, A., Franco, M. M., and Rumpf, R. (2011). Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression. Reprod. Fertil. Dev. 23, 585–590.
Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression.Crossref | GoogleScholarGoogle Scholar |

Forster, R., Ancian, P., Fredholm, M., Simianer, H., and Whitelaw, B. (2010). The minipig as a platform for new technologies in toxicology. J. Pharmacol. Toxicol. Methods 62, 227–235.
The minipig as a platform for new technologies in toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GjtrjP&md5=8702964d467ca6ae8da72535bbf242d5CAS | 20685311PubMed |

Fukui, Y., Sawai, K., Furudate, M., Sato, N., Iwazumi, Y., and Ohsaki, K. (1992). Parthenogenetic development of bovine oocytes treated with ethanol and cytochalasin B after in vitro maturation. Mol. Reprod. Dev. 33, 357–362.
Parthenogenetic development of bovine oocytes treated with ethanol and cytochalasin B after in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVSqug%3D%3D&md5=58b07c501f4d402c0c141ba4785e85e8CAS | 1449802PubMed |

Gao, F., Li, S., Lin, L., Li, J., Luo, Y., Zhang, X., Nielsen, A. L., and Bolund, L. (2011a). DNA methylation in peripheral blood cells of pigs cloned by somatic cell nuclear transfer. Cell Reprogram. 13, 307–314.
DNA methylation in peripheral blood cells of pigs cloned by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOqurzO&md5=e8a82ead9611616c08cd736757effa57CAS | 21599517PubMed |

Gao, F., Luo, Y., Li, S., Li, J., Lin, L., Nielsen, A. L., Sorensen, C. B., Vajta, G., Wang, J., Zhang, X., Du, Y., Yang, H., and Bolund, L. (2011b). Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls. PLoS One 6, e25901.
Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2lsr3E&md5=a030a4992f24c1d01ba2994eaff97203CAS | 22022462PubMed |

Gentleman, R., Carey, V., Huber, W., and Hahne, F. (2009) ‘genefilter: methods for filtering genes from microarray experiments’, version 1.32.0. Available from: http://www.bioconductor.org/packages/2.11/bioc/html/genefilter.html, accessed 19 March 2013.

Hao, Y. H., Lai, L. X., Liu, Z. H., Im, G. S., Wax, D., Samuel, M., Murphy, C. N., Sutovsky, P., and Prather, R. S. (2006). Developmental competence of porcine parthenogenetic embryos relative to embryonic chromosomal abnormalities. Mol. Reprod. Dev. 73, 77–82.
Developmental competence of porcine parthenogenetic embryos relative to embryonic chromosomal abnormalities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12ntbzJ&md5=f42c8908576520c559ae6c8e87040261CAS | 16224773PubMed |

Horner, V. L., and Wolfner, M. F. (2008). Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev. Dyn. 237, 527–544.
Transitioning from egg to embryo: triggers and mechanisms of egg activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlKksLY%3D&md5=f17c56a6af0edb9d0806839e9cbe3663CAS | 18265018PubMed |

Hsieh, J. Y., Chen, S. H., and Hung, H. C. (2009). Functional roles of the tetramer organization of malic enzyme. J. Biol. Chem. 284, 18 096–18 105.
Functional roles of the tetramer organization of malic enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslegt78%3D&md5=2ce393dd7bf0244f9a14746118b6d5c9CAS |

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15.
Summaries of Affymetrix GeneChip probe level data.Crossref | GoogleScholarGoogle Scholar | 12582260PubMed |

Kim, N. H., Simerly, C., Funahashi, H., Schatten, G., and Day, B. N. (1996). Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol. Reprod. 54, 1397–1404.
Microtubule organization in porcine oocytes during fertilization and parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtV2ju70%3D&md5=43fea5003ff466e56a07726759c4a3ecCAS | 8724370PubMed |

Kragh, P. M., Vajta, G., Corydon, T. J., Purup, S., Bolund, L., and Callesen, H. (2004). Production of transgenic porcine blastocysts by hand-made cloning. Reprod. Fertil. Dev. 16, 315–318.
Production of transgenic porcine blastocysts by hand-made cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Gntrs%3D&md5=4633aeab93091d080873f2b14bc2856cCAS | 15304204PubMed |

Kragh, P. M., Du, Y., Corydon, T. J., Purup, S., Bolund, L., and Vajta, G. (2005). Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation. Theriogenology 64, 1536–1545.
Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVartrnE&md5=97eb7dc41c29e914fd7e66d95587cbb3CAS | 15935461PubMed |

Kragh, P. M., Nielsen, A. L., Li, J., Du, Y., Lin, L., Schmidt, M., Bogh, I. B., Holm, I. E., Jakobsen, J. E., Johansen, M. G., Purup, S., Bolund, L., Vajta, G., and Jorgensen, A. L. (2009). Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res. 18, 545–558.
Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFKisLs%3D&md5=dd1081bd7f0f21b01e6221a3f94a3fb0CAS | 19184503PubMed |

Le Bourg, E., Minois, N., Bullens, P., and Baret, P. (2000). A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology 1, 145–155.
A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnmtlWksg%3D%3D&md5=dd88836c9349d1fc2def0f9daab44075CAS | 11707930PubMed |

Lee, J. W., Tian, X. C., and Yang, X. (2004). Optimization of parthenogenetic activation protocol in porcine. Mol. Reprod. Dev. 68, 51–57.
Optimization of parthenogenetic activation protocol in porcine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyku7Y%3D&md5=21198ffb7ca584dd7e02a0c50aade8d2CAS | 15039947PubMed |

Li, J., Svarcova, O., Villemoes, K., Kragh, P. M., Schmidt, M., Bogh, I. B., Zhang, Y., Du, Y., Lin, L., Purup, S., Xue, Q., Bolund, L., Yang, H., Maddox-Hyttel, P., and Vajta, G. (2008). High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70, 800–808.
High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVamt7%2FE&md5=92532f0d7258d4563311eedc71cbdd27CAS | 18573521PubMed |

Li, J., Villemoes, K., Zhang, Y., Du, Y., Kragh, P. M., Purup, S., Xue, Q., Pedersen, A. M., Jorgensen, A. L., Jakobsen, J. E., Bolund, L., Yang, H., and Vajta, G. (2009). Efficiency of two enucleation methods connected to handmade cloning to produce transgenic porcine embryos. Reprod. Domest. Anim. 44, 122–127.
Efficiency of two enucleation methods connected to handmade cloning to produce transgenic porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2Fns1Ohtg%3D%3D&md5=c4ddc34ef8255fececea3bd73291214dCAS | 18564317PubMed |

Lin, L., Du, Y., Liu, Y., Kragh, P. M., Li, J., Purup, S., Kuwayama, M., Zhang, X., Yang, H., Bolund, L., and Vajta, G. (2009a). Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes. Reprod. Biomed. Online 18, 360–366.
Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 19298735PubMed |

Lin, L., Kragh, P. M., Purup, S., Kuwayama, M., Du, Y., Zhang, X., Yang, H., Bolund, L., Callesen, H., and Vajta, G. (2009b). Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes. Reprod. Fertil. Dev. 21, 338–344.
Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVensb8%3D&md5=968d066a6541710cf50a65b2613bce89CAS | 19210925PubMed |

Lin, L., Pribenszky, C., Molnar, M., Kragh, P. M., Du, Y., Zhang, X., Yang, H., Bolund, L., Callesen, H., Machaty, Z., and Vajta, G. (2010). High hydrostatic pressure treatment of porcine oocytes induces parthenogenetic activation. Cell. Reprogram. 12, 475–480.
High hydrostatic pressure treatment of porcine oocytes induces parthenogenetic activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCltLzN&md5=67449592125d46f758648cfea03b5fa0CAS | 20698785PubMed |

Liu, C. F., Parker, K., and Yao, H. H. (2010). WNT4/beta-catenin pathway maintains female germ cell survival by inhibiting activin betaB in the mouse fetal ovary. PLoS One 5, e10382.
WNT4/beta-catenin pathway maintains female germ cell survival by inhibiting activin betaB in the mouse fetal ovary.Crossref | GoogleScholarGoogle Scholar | 20454446PubMed |

Liu, W. M., Mei, R., Di, X., Ryder, T. B., Hubbell, E., Dee, S., Webster, T. A., Harrington, C. A., Ho, M. H., Baid, J., and Smeekens, S. P. (2002). Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18, 1593–1599.
Analysis of high density expression microarrays with signed-rank call algorithms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslOht7Y%3D&md5=0a4c8bf7c355002805271dd0a4d1620bCAS | 12490443PubMed |

Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., Yang, H., Vajta, G., Callesen, H., Bolund, L., and Sorensen, C. B. (2011). High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res. 20, 975–988.
High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrt7%2FL&md5=59dca8a8a64891d3d5163eb3c28eb3e5CAS | 21181439PubMed |

Luo, Y., Lin, L., Bolund, L., Jensen, T. G., and Sorensen, C. B. (2012). Genetically modified pigs for biomedical research. J. Inherit. Metab. Dis. 35, 695–713.
Genetically modified pigs for biomedical research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVyrsrc%3D&md5=784b6ee517b4c8d9c874eb65ec8518d5CAS | 22453682PubMed |

Lynch, T. W., and Sligar, S. G. (2002). Experimental and theoretical high pressure strategies for investigating protein–nucleic acid assemblies. Biochim. Biophys. Acta 1595, 277–282.
Experimental and theoretical high pressure strategies for investigating protein–nucleic acid assemblies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Srsrw%3D&md5=8e1406b1a32320f62cb9cb2c4dcdc779CAS | 11983402PubMed |

Maier, A., Zell, M. B., and Maurino, V. G. (2011). Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C(4) and C(3) photosynthesis. J. Exp. Bot. 62, 3061–3069.
Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C(4) and C(3) photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWjtL8%3D&md5=495e0515fd76696fec55535a3531532fCAS | 21459769PubMed |

McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=4fed7c6456c743c05e762cdd8a760c46CAS | 10793638PubMed |

Merlo, G. R., Paleari, L., Mantero, S., Genova, F., Beverdam, A., Palmisano, G. L., Barbieri, O., and Levi, G. (2002). Mouse model of split hand/foot malformation type I. Genesis 33, 97–101.
Mouse model of split hand/foot malformation type I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlOrsLg%3D&md5=f2a5e8dfbe9396fded963f56c07e8f4eCAS | 12112878PubMed |

Moritz, C. (1991). The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): evidence for recent and localized origins of widespread clones. Genetics 129, 211–219.
| 1:STN:280:DyaK38%2FjvV2ntg%3D%3D&md5=811b641c775061ef3eecacf1b451baf8CAS | 1682211PubMed |

Newman-Smith, E., and Werb, Z. (1997). Functional analysis of trophoblast giant cells in parthenogenetic mouse embryos. Dev. Genet. 20, 1–10.
Functional analysis of trophoblast giant cells in parthenogenetic mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFGnsbs%3D&md5=a886d330c1dc106766ec8e7e5b9e9174CAS | 9094206PubMed |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=64f6c68b3c300628d934f07b29da1668CAS | 18239046PubMed |

Oestrup, O., Hall, V., Petkov, S. G., Wolf, X. A., Hyldig, S., and Hyttel, P. (2009). From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reprod. Domest. Anim. 44, 39–49.
From zygote to implantation: morphological and molecular dynamics during embryo development in the pig.Crossref | GoogleScholarGoogle Scholar | 19660079PubMed |

Ogushi, S., Palmieri, C., Fulka, H., Saitou, M., Miyano, T., and Fulka, J. (2008). The maternal nucleolus is essential for early embryonic development in mammals. Science 319, 613–616.
The maternal nucleolus is essential for early embryonic development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Knt7w%3D&md5=5b5ce4095f28b408a9a96599cc2d5879CAS | 18239124PubMed |

Peat, J. R., and Reik, W. (2012). Incomplete methylation reprogramming in SCNT embryos. Nat. Genet. 44, 965–966.
Incomplete methylation reprogramming in SCNT embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KkurzE&md5=ae98d20d01405893df6062c1ec8ee050CAS | 22932499PubMed |

Pribenszky, C., Molnar, M., Cseh, S., and Solti, L. (2005). Improving post-thaw survival of cryopreserved mouse blastocysts by hydrostatic pressure challenge. Anim. Reprod. Sci. 87, 143–150.
Improving post-thaw survival of cryopreserved mouse blastocysts by hydrostatic pressure challenge.Crossref | GoogleScholarGoogle Scholar | 15885447PubMed |

Pribenszky, C., Du, Y., Molnar, M., Harnos, A., and Vajta, G. (2008). Increased stress tolerance of matured pig oocytes after high hydrostatic pressure treatment. Anim. Reprod. Sci. 106, 200–207.
Increased stress tolerance of matured pig oocytes after high hydrostatic pressure treatment.Crossref | GoogleScholarGoogle Scholar | 18329829PubMed |

Renard, J. P. (1998). Chromatin remodelling and nuclear reprogramming at the onset of embryonic development in mammals. Reprod. Fertil. Dev. 10, 573–580.
Chromatin remodelling and nuclear reprogramming at the onset of embryonic development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FnslOisg%3D%3D&md5=e118193068d5d5939a245133decaa67fCAS | 10612463PubMed |

Robledo, R. F., Rajan, L., Li, X., and Lufkin, T. (2002). The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089–1101.
The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvV2ku70%3D&md5=90f9b0ab7f883edf5260c856451e1586CAS | 12000792PubMed |

Ryoo, H. M., Hoffmann, H. M., Beumer, T., Frenkel, B., Towler, D. A., Stein, G. S., Stein, J. L., van Wijnen, A. J., and Lian, J. B. (1997). Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol. Endocrinol. 11, 1681–1694.
Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFahsL8%3D&md5=9d136c4838bbb375e9d5e6f0915e5b9dCAS | 9328350PubMed |

Saeed, A. I., Bhagabati, N. K., Braisted, J. C., Liang, W., Sharov, V., Howe, E. A., Li, J., Thiagarajan, M., White, J. A., and Quackenbush, J. (2006). TM4 microarray software suite. Methods Enzymol. 411, 134–193.
TM4 microarray software suite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtV2lt7Y%3D&md5=eef1be4db6b563a3862dc99a9673746bCAS | 16939790PubMed |

Salmon, E. D. (1975). Pressure-induced depolymerization of brain microtubules in vitro. Science 189, 884–886.
Pressure-induced depolymerization of brain microtubules in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlsF2ntb4%3D&md5=45e6be810c865101fc47f24fa9ef703cCAS | 1171523PubMed |

Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002). PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129, 3533–3544.
| 1:CAS:528:DC%2BD38XmsFOks7Y%3D&md5=08da531785b1cd9bd101dce6548b6f94CAS | 12117804PubMed |

Schmidt, M., Winter, K. D., Dantzer, V., Li, J., Kragh, P. M., Du, Y., Lin, L., Liu, Y., Vajta, G., Sangild, P. T., Callesen, H., and Agerholm, J. S. (2011). Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets. Reprod. Fertil. Dev. 23, 645–653.
Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrntFeruw%3D%3D&md5=9b85beed8af410e69fb73fccc8084449CAS | 21635813PubMed |

Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344.
A unique regulatory phase of DNA methylation in the early mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1yrsbw%3D&md5=02e5db72f68cfa310fddec913da853eaCAS | 22456710PubMed |

Smyth, G. K. (2005). ‘Limma: linear models for microarray data.’ (Eds R. Gentleman, V. Carey, S. Dudoit, W. H. R. Irizarry) pp. 397–420. (Springer: New York.)

Staunstrup, N. H., Madsen, J., Primo, M. N., Li, J., Liu, Y., Kragh, P. M., Li, R., Schmidt, M., Purup, S., Dagnaes-Hansen, F., Svensson, L., Petersen, T. K., Callesen, H., Bolund, L., and Mikkelsen, J. G. (2012). Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin. PLoS One 7, e36658.
Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human beta1 and alpha2 integrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Ghu74%3D&md5=a7fb82bb7237cb7d704c0844b4c252d3CAS | 22590584PubMed |

Sturm, K. S., Flannery, M. L., and Pedersen, R. A. (1994). Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos. Dev. Dyn. 201, 11–28.
Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7gt1Wnsw%3D%3D&md5=fc2053dcb315d155218203cf4719d973CAS | 7803844PubMed |

Suzuki, R., and Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542.
Pvclust: an R package for assessing the uncertainty in hierarchical clustering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVensLg%3D&md5=818db017e6044888fd52760637e177bcCAS | 16595560PubMed |

Symington, A. L., Zimmerman, S., Stein, J., Stein, G., and Zimmerman, A. M. (1991). Hydrostatic pressure influences histone mRNA. J. Cell Sci. 98, 123–129.
| 1:CAS:528:DyaK3MXhs1Wls7w%3D&md5=4cee90f69eb1cd05f50b87d175ed0644CAS | 2055951PubMed |

Tian, X. C., Park, J., Bruno, R., French, R., Jiang, L., and Prather, R. S. (2009). Altered gene expression in cloned piglets. Reprod. Fertil. Dev. 21, 60–66.
Altered gene expression in cloned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislGgtLk%3D&md5=2618abb22dd53f30cf8ae732db7422b1CAS | 19152746PubMed |

Trigal, B., Muñoz, M., Gómez, E., Caamaño, J. N., Martin, D., Carrocera, S., Casais, R., and Diez, C. (2013). Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure. Reprod. Domest. Anim. 48, 200–206.
Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38josVejsA%3D%3D&md5=22aede957bc995e588399388521bddddCAS | 22775542PubMed |

Vajta, G., Peura, T. T., Holm, P., Paldi, A., Greve, T., Trounson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbY%3D&md5=89231e118949efd9f1972f7bcc1e0795CAS | 10657044PubMed |

Vajta, G., Bartels, P., Joubert, J., de la Rey, M., Treadwell, R., and Callesen, H. (2004). Production of a healthy calf by somatic cell nuclear transfer without micromanipulators and carbon dioxide incubators using the handmade cloning (HMC) and the submarine incubation system (SIS). Theriogenology 62, 1465–1472.
Production of a healthy calf by somatic cell nuclear transfer without micromanipulators and carbon dioxide incubators using the handmade cloning (HMC) and the submarine incubation system (SIS).Crossref | GoogleScholarGoogle Scholar | 15451255PubMed |

Wernersson, R., Schierup, M. H., Jorgensen, F. G., Gorodkin, J., Panitz, F., Staerfeldt, H. H., Christensen, O. F., Mailund, T., Hornshoj, H., Klein, A., Wang, J., Liu, B., Hu, S., Dong, W., Li, W., Wong, G. K., Yu, J., Bendixen, C., Fredholm, M., Brunak, S., Yang, H., and Bolund, L. (2005). Pigs in sequence space: a 0.66× coverage pig genome survey based on shotgun sequencing. BMC Genomics 6, 70.
Pigs in sequence space: a 0.66× coverage pig genome survey based on shotgun sequencing.Crossref | GoogleScholarGoogle Scholar | 15885146PubMed |

Wrenzycki, C., and Niemann, H. (2003). Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod. Biomed. Online 7, 649–656.
Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 14748963PubMed |

Yang, L., Zhang, H., Hu, G., Wang, H., Abate-Shen, C., and Shen, M. M. (1998). An early phase of embryonic Dlx5 expression defines the rostral boundary of the neural plate. J. Neurosci. 18, 8322–8330.
| 1:CAS:528:DyaK1cXms1ehur4%3D&md5=0960b22509e1cd43765138269d9c22d1CAS | 9763476PubMed |

Zhang, Y., Li, J., Villemoes, K., Pedersen, A. M., Purup, S., and Vajta, G. (2007). An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 9, 357–363.
An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSgs7zJ&md5=929295f8fe9f8f22beb48afb6af646f3CAS | 17907946PubMed |

Zhu, J., King, T., Dobrinsky, J., Harkness, L., Ferrier, T., Bosma, W., Schreier, L. L., Guthrie, H. D., DeSousa, P., and Wilmut, I. (2003). In vitro and in vivo developmental competence of ovulated and in vitro matured porcine oocytes activated by electrical activation. Cloning Stem Cells 5, 355–365.
In vitro and in vivo developmental competence of ovulated and in vitro matured porcine oocytes activated by electrical activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislaqsg%3D%3D&md5=88659156f8b972d70cc75f8644331b6aCAS | 14733753PubMed |