Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The novel porcine gene early growth response 4 (Egr4) is differentially expressed in the ovaries of Erhualian and Pietrain pigs

Jingjing Wang A , Yongyan Zhao A , Kecui Gu A , Ping Yu A , Baole Zhang A , Wei Wang A , Juanjuan Yang A and Yinxue Xu A B
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

B Corresponding author. Email: xuyinxue@njau.edu.cn

Reproduction, Fertility and Development 26(4) 587-598 https://doi.org/10.1071/RD12380
Submitted: 29 November 2012  Accepted: 28 March 2013   Published: 30 May 2013

Abstract

The early growth response 4 (Egr4) gene plays a critical role in human and mouse fertility. In the present study, Affymetrix microarray gene chips were used to evaluate differential gene expression in the ovaries between Erhualian and Pietrain pigs. In all, 487 and 573 transcripts were identified with significantly higher and lower expression, respectively, in Erhualian compared with Pietrain sows. The Egr4 gene, one of the differentially expressed genes, was cloned and its genomic structure was analysed. Egr4 expression is increased 120-fold in ovaries from Erhualian sows. The full-length cDNA of porcine Egr4 was obtained by in silico cloning and 5′ rapid amplification of cDNA ends. The gene consists of two exons and its predicted protein contains a Cys2His2 zinc finger structure. The porcine transcript is alternatively spliced by exon sequence deletion, producing two different mRNAs differing at the 5′ end of Exon 2. Egr4 transcripts were detected in the central nervous system, including the cerebrum, cerebellum, hypothalamus and pituitary gland, and were highly expressed in the ovary. The Egr4 gene was evaluated as a candidate gene for porcine reproductivity. To investigate the role of Egr4 in the ovary, Egr4 was knocked down using short interference (si) RNA in porcine granulosa cells. Knockdown of Egr4 using siRNA effectively inhibited Egr4 mRNA and protein expression and knockdown significantly affected the expression of Bax, P450arom, P450scc, Egr1, Egr2, and Egr3. In conclusion, these observations establish an important role for Egr4 in the porcine ovary.

Additional keywords: microarray, reproductivity.


References

Adur, J., Takizawa, S., Quan, J., Uchide, T., and Saida, K. (2003). Increased gene expression and production of murine endothelin receptors after birth. Biochem. Biophys. Res. Commun. 305, 700–706.
Increased gene expression and production of murine endothelin receptors after birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFersLg%3D&md5=290dba9c221585b324d5160556e6b3e0CAS | 12763050PubMed |

Albamonte, M. S., Willis, M. A., Albamonte, M. I., Jensen, F., Espinosa, M. B., and Vitullo, A. D. (2008). The developing human ovary: immunohistochemical analysis of germ-cell-specific VASA protein, BCL-2/BAX expression balance and apoptosis. Hum. Reprod. 23, 1895–1901.
The developing human ovary: immunohistochemical analysis of germ-cell-specific VASA protein, BCL-2/BAX expression balance and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGqurc%3D&md5=56303e32d03370e9e3c9210e5dd5a4ccCAS | 18534994PubMed |

Bertani, G. R., Gladney, C. D., Johnson, R. K., and Pomp, D. (2004). Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR: II. Anterior pituitary. J. Anim. Sci. 82, 32–40.
| 1:CAS:528:DC%2BD2cXlsFWksA%3D%3D&md5=916277ddbde0335610443ff66e2cb798CAS | 14753346PubMed |

Boumela, I., Assou, S., Aouacheria, A., Haouzi, D., Dechaud, H., De Vos, J., Handyside, A., and Hamamah, S. (2011). Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond. Reproduction 141, 549–561.
Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCju7k%3D&md5=1824d1ff082b8d6bcfc1031010ae70f3CAS | 21339285PubMed |

Bridges, P. J., Jo, M., Al Alem, L., Na, G., Su, W., Gong, M. C., Jeoung, M., and Ko, C. (2010). Production and binding of endothelin-2 (EDN2) in the rat ovary: endothelin receptor subtype A (EDNRA)-mediated contraction. Reprod. Fertil. Dev. 22, 780–787.
Production and binding of endothelin-2 (EDN2) in the rat ovary: endothelin receptor subtype A (EDNRA)-mediated contraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVCqtLs%3D&md5=cee3eae82d48272ba6381c922ce20852CAS | 20450830PubMed |

Carter, J. H., Lefebvre, J. M., Wiest, D. L., and Tourtellotte, W. G. (2007). Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. J. Immunol. 178, 6796–6805.
| 1:CAS:528:DC%2BD2sXlsVOnur8%3D&md5=87814e0cfc214f5f807ff65265e9314cCAS | 17513727PubMed |

Crosby, S. D., Puetz, J. J., Simburger, K. S., Fahrner, T. J., and Milbrandt, J. (1991). The early response gene NGFI-C encodes a zinc finger transcriptional activator and is a member of the GCGGGGGCG (GSG) element-binding protein family. Mol. Cell. Biol. 11, 3835–3841.
| 1:CAS:528:DyaK38XhsVGitr4%3D&md5=461cb0f216736973aad1e3227fa3606aCAS | 2072895PubMed |

Crosby, S. D., Veile, R. A., Donis-Keller, H., Baraban, J. M., Bhat, R. V., Simburger, K. S., and Milbrandt, J. (1992). Neural-specific expression, genomic structure, and chromosomal localization of the gene encoding the zinc-finger transcription factor NGFI-C. Proc. Natl Acad. Sci. USA 89, 4739–4743.
Neural-specific expression, genomic structure, and chromosomal localization of the gene encoding the zinc-finger transcription factor NGFI-C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1KrtL4%3D&md5=88ceee81479cbc1d5510bc1f84d7574bCAS | 1584812PubMed |

Dorsett, Y., and Tuschl, T. (2004). siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov. 3, 318–329.
siRNAs: applications in functional genomics and potential as therapeutics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Gkt74%3D&md5=b2e5941ec41d800988d667c05225f39dCAS | 15060527PubMed |

Gashler, A., and Sukhatme, V. P. (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog. Nucleic Acid Res. Mol. Biol. 50, 191–224.
Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFChsL4%3D&md5=589935cd7f48fc316fcb812329e893fdCAS | 7754034PubMed |

Gladney, C. D., Bertani, G. R., Johnson, R. K., and Pomp, D. (2004). Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR and human microarrays: I. Ovarian follicles. J. Anim. Sci. 82, 17–31.
| 1:CAS:528:DC%2BD2cXlsFWksw%3D%3D&md5=e32fac838cf10372dcf9200ddbca4c5cCAS | 14753345PubMed |

Groenen, M. A., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H.-J., et al. (2012). Analyses of pig genome provide insight into porcine demography and evolution. Nature 491, 393–398.
Analyses of pig genome provide insight into porcine demography and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ogs7rF&md5=f2b68a92502cff47607530b489c30ef0CAS | 23151582PubMed |

Hadziselimovic, F., Hadziselimovic, N. O., Demougin, P., Krey, G., Hoecht, B., and Oakeley, E. J. (2009). EGR4 is a master gene responsible for fertility in cryptorchidism. Sex. Dev. 3, 253–263.
EGR4 is a master gene responsible for fertility in cryptorchidism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaqtrvK&md5=161a58810c7065828726ed0c003c0f64CAS | 19828938PubMed |

Herlyn, M., Steplewski, Z., Herlyn, D., and Koprowski, H. (1979). Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc. Natl Acad. Sci. USA 76, 1438–1442.
Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1Kgs7c%3D&md5=487ea4583bf4c475b87e12439ef6d053CAS | 286328PubMed |

Hogarth, C. A., Mitchell, D., Small, C., and Griswold, M. (2010). EGR4 displays both a cell- and intracellular-specific localization pattern in the developing murine testis. Dev. Dyn. 239, 3106–3114.
EGR4 displays both a cell- and intracellular-specific localization pattern in the developing murine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyqurvP&md5=9154f3523649c948cc48c35224c0b289CAS | 20925118PubMed |

Holst, C., Skerka, C., Lichter, P., Bialonski, A., and Zipfel, P. F. (1993). Genomic organization, chromosomal localization and promoter function of the human zinc-finger gene pAT133. Hum. Mol. Genet. 2, 367–372.
| 1:CAS:528:DyaK3sXksVantL8%3D&md5=87c50a1b4620340b79cc52e5dfe74a30CAS | 8504297PubMed |

Klipper, E., Levit, A., Mastich, Y., Berisha, B., Schams, D., and Meidan, R. (2010). Induction of endothelin-2 expression by luteinizing hormone and hypoxia: possible role in bovine corpus luteum formation. Endocrinology 151, 1914–1922.
Induction of endothelin-2 expression by luteinizing hormone and hypoxia: possible role in bovine corpus luteum formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Cmurc%3D&md5=f7a0ab67dfa501d3692228b7dba87c5bCAS | 20176726PubMed |

Ko, C., Gieske, M. C., Al-Alem, L., Hahn, Y., Su, W., Gong, M. C., Iglarz, M., and Koo, Y. (2006). Endothelin-2 in ovarian follicle rupture. Endocrinology 147, 1770–1779.
Endothelin-2 in ovarian follicle rupture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Oht7w%3D&md5=00e9c968e3ea129f493afdfa03d1d708CAS | 16410304PubMed |

Litvinov, S. V., Velders, M. P., Bakker, H. A., and Fleuren, G. J. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell–cell adhesion molecule. J. Cell Biol. 125, 437–446.
Ep-CAM: a human epithelial antigen is a homophilic cell–cell adhesion molecule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVWhurs%3D&md5=68b87bfe8b33b30ea48902f2ec748823CAS | 8163559PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=9cad4ff7133d540452bb50aaaa4ededfCAS | 11846609PubMed |

Ludwig, A., Uvarov, P., Soni, S., Thomas-Crusells, J., Airaksinen, M. S., and Rivera, C. (2011). Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription. J. Neurosci. 31, 644–649.
Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1arsr8%3D&md5=6c8b35a4d00b34be4c415f6900185e13CAS | 21228173PubMed |

Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., et al. (2009). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37, D205–D210.
CDD: specific functional annotation with the Conserved Domain Database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejt7nO&md5=c8ac6b6f167513a39cb5a15c600ae28fCAS | 18984618PubMed |

Mittal, V. (2004). Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355–365.
| 1:CAS:528:DC%2BD2cXjsl2iu70%3D&md5=1dbabdae2bda4434218777ae9c589e9dCAS | 15143318PubMed |

Moore, R. K., Otsuka, F., and Shimasaki, S. (2001). Role of ERK1/2 in the differential synthesis of progesterone and estradiol by granulosa cells. Biochem. Biophys. Res. Commun. 289, 796–800.
Role of ERK1/2 in the differential synthesis of progesterone and estradiol by granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVWitbo%3D&md5=40511474e602d55a799ac1ed122cfed4CAS | 11735115PubMed |

Na, G., Bridges, P. J., Koo, Y., and Ko, C. (2008). Role of hypoxia in the regulation of periovulatory EDN2 expression in the mouse. Can. J. Physiol. Pharmacol. 86, 310–319.
Role of hypoxia in the regulation of periovulatory EDN2 expression in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1CgsLk%3D&md5=001d2d1096d4e5e403e73eb9ded1f4adCAS | 18516093PubMed |

Nissen, P. H., Thomsen, B., Offenberg, H., Thomsen, P. D., and Bendixen, C. (2003). Cloning and characterization of the bovine EGR4 gene and evaluation as candidate gene for bovine spinal dysmyelination. Anim. Genet. 34, 124–131.
Cloning and characterization of the bovine EGR4 gene and evaluation as candidate gene for bovine spinal dysmyelination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlKntrc%3D&md5=d8198393bbcc94ba44fa08b23edd6665CAS | 12648095PubMed |

O’Donovan, K. J., Tourtellotte, W. G., Milbrandt, J., and Baraban, J. M. (1999). The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22, 167–173.
The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlCrsbY%3D&md5=956a71706e87cc5e96add401bc06f41dCAS | 10203854PubMed |

Safford, M., Collins, S., Lutz, M. A., Allen, A., Huang, C. T., Kowalski, J., Blackford, A., Horton, M. R., Drake, C., Schwartz, R. H., and Powell, J. D. (2005). Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480.
Egr-2 and Egr-3 are negative regulators of T cell activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlymtLw%3D&md5=603f3688d8d7ff555b95595cfccf97dcCAS | 15834410PubMed |

Saida, K., Uchide, T., Zhang, S., Adur, J., Kawano, Y., Ogiso, M., Oka, S., and Takizawa, S. (2004). Molecular cloning and sequence analysis of the porcine precursor of endothelin-2. J. Cardiovasc. Pharmacol. 44, S244–S247.
Molecular cloning and sequence analysis of the porcine precursor of endothelin-2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVCksA%3D%3D&md5=200385c7f231b402e730a60bedef8f00CAS | 15838291PubMed |

Sun, X., Mei, S., Tao, H., Wang, G., Su, L., Jiang, S., Deng, C., Xiong, Y., and Li, F. (2011). Microarray profiling for differential gene expression in PMSG–hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genomics 12, 111.
Microarray profiling for differential gene expression in PMSG–hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislCht7g%3D&md5=e2347cec931893771980712f50dbcaf1CAS | 21324170PubMed |

Swirnoff, A. H., and Milbrandt, J. (1995). DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol. Cell. Biol. 15, 2275–2287.
| 1:CAS:528:DyaK2MXksFWjtbo%3D&md5=e8e5483b7c6ed8462f947c05091562aeCAS | 7891721PubMed |

Tian, B., Hu, J., Zhang, H., and Lutz, C. S. (2005). A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201–212.
A large-scale analysis of mRNA polyadenylation of human and mouse genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVyhug%3D%3D&md5=10d7eb010c2287edc3337cad52173befCAS | 15647503PubMed |

Tourtellotte, W. G., Nagarajan, R., Auyeung, A., Mueller, C., and Milbrandt, J. (1999). Infertility associated with incomplete spermatogenic arrest and oligozoospermia in Egr4-deficient mice. Development 126, 5061–5071.
| 1:CAS:528:DyaK1MXotV2lsbo%3D&md5=144754c624a65632867a76fbe241b365CAS | 10529423PubMed |

Tourtellotte, W. G., Nagrajan, R., Bartke, A., and Milbrandt, J. (2000). Functional compensation by Egr4 in Egr1-dependent luteinizing hormone regulation and Leydig cell steroidogenesis. Mol. Cell. Biol. 20, 5261–5268.
Functional compensation by Egr4 in Egr1-dependent luteinizing hormone regulation and Leydig cell steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1OjsLs%3D&md5=afb26291b752886b4f38129a0d4fc7dcCAS | 10866682PubMed |

Trzpis, M., McLaughlin, P. M., de Leij, L. M., and Harmsen, M. C. (2007). Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am. J. Pathol. 171, 386–395.
Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFaitLg%3D&md5=d1f56f2d52daba6a1ee58e3c03a4b915CAS | 17600130PubMed |

Uvarov, P., Ludwig, A., Markkanen, M., Rivera, C., and Airaksinen, M. S. (2006). Upregulation of the neuron-specific K+/Cl– cotransporter expression by transcription factor early growth response 4. J. Neurosci. 26, 13 463–13 473.
Upregulation of the neuron-specific K+/Cl cotransporter expression by transcription factor early growth response 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFaqsg%3D%3D&md5=15ef071e6717b1cc6a1ac4d669afb686CAS |

Wang, W., Chen, X., Li, X., Wang, L., Zhang, H., He, Y., Wang, J., Zhao, Y., Zhang, B., and Xu, Y. (2011). Interference RNA-based silencing of endogenous Smad4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis. Reproduction 141, 643–651.
Interference RNA-based silencing of endogenous Smad4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCisrg%3D&md5=d7052e048f286b6704273439f5d7af21CAS | 21292728PubMed |

Wieland, G. D., Nehmann, N., Müller, D., Eibel, H., Siebenlist, U., Sühnel, J., Zipfel, P. F., and Skerka, C. (2005). Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-κB p50 and p65. J. Cell Sci. 118, 3203–3212.
Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-κB p50 and p65.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVemurY%3D&md5=f4a06daebaa297097889cab72872cf6cCAS | 16014385PubMed |

Yang, Y., Dong, B., Mittelstadt, P. R., Xiao, H., and Ashwell, J. D. (2002). HIV Tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter. J. Biol. Chem. 277, 19 482–19 487.
HIV Tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVWlurg%3D&md5=7afae0640827bbd58ba76f7d4b5cb670CAS |

Yoo, Y. G., and Lee, M. O. (2004). Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J. Biol. Chem. 279, 36 242–36 249.
Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCntLg%3D&md5=a7e5cbfd337a4fadaa2a86064a26c3a5CAS |

Zhang, H., Wang, S., Liu, M., Zhang, A., Wu, Z., Zhang, Z., and Li, J. (2013). Differential gene expression in the endometrium on gestation day 12 provides insight into sow prolificacy. BMC Genomics 14, 45.
Differential gene expression in the endometrium on gestation day 12 provides insight into sow prolificacy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFSktrrE&md5=7780d6a9be3bf1f457464a3f789fd8a6CAS | 23339594PubMed |

Zhang, W. C., Wu, J. S., and Rempel, W. E. (1983). Some performance characteristics of prolific breeds of pigs in China. Livest. Prod. Sci. 10, 59–68.
Some performance characteristics of prolific breeds of pigs in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVymt7o%3D&md5=48e9143e0e1d408f0dad6bc8411ce3dbCAS |

Zhou, Q. Y., Fang, M. D., Huang, T. H., Li, C. C., Yu, M., and Zhao, S. H. (2009). Detection of differentially expressed genes between Erhualian and Large White placentas on day 75 and 90 of gestation. BMC Genomics 10, 337.
Detection of differentially expressed genes between Erhualian and Large White placentas on day 75 and 90 of gestation.Crossref | GoogleScholarGoogle Scholar | 19630995PubMed |